unbound/validator/val_utils.c
Wouter Wijngaards b54a0400ab CNAME validation.
git-svn-id: file:///svn/unbound/trunk@542 be551aaa-1e26-0410-a405-d3ace91eadb9
2007-08-23 15:23:45 +00:00

587 lines
18 KiB
C

/*
* validator/val_utils.c - validator utility functions.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains helper functions for the validator module.
*/
#include "config.h"
#include "validator/val_utils.h"
#include "validator/validator.h"
#include "validator/val_kentry.h"
#include "validator/val_sigcrypt.h"
#include "util/data/msgreply.h"
#include "util/data/packed_rrset.h"
#include "util/data/dname.h"
#include "util/net_help.h"
enum val_classification
val_classify_response(struct query_info* qinf, struct reply_info* rep,
size_t skip)
{
int rcode = (int)FLAGS_GET_RCODE(rep->flags);
size_t i;
/* Normal Name Error's are easy to detect -- but don't mistake a CNAME
* chain ending in NXDOMAIN. */
if(rcode == LDNS_RCODE_NXDOMAIN && rep->an_numrrsets == 0)
return VAL_CLASS_NAMEERROR;
log_assert(rcode == LDNS_RCODE_NOERROR);
/* next check if the skip into the answer section shows no answer */
if(skip>0 && rep->an_numrrsets <= skip)
return VAL_CLASS_CNAMENOANSWER;
/* Next is NODATA */
if(rep->an_numrrsets == 0)
return VAL_CLASS_NODATA;
/* We distinguish between CNAME response and other positive/negative
* responses because CNAME answers require extra processing. */
/* We distinguish between ANY and CNAME or POSITIVE because
* ANY responses are validated differently. */
if(qinf->qtype == LDNS_RR_TYPE_ANY)
return VAL_CLASS_ANY;
/* Note that DNAMEs will be ignored here, unless qtype=DNAME. Unless
* qtype=CNAME, this will yield a CNAME response. */
for(i=skip; i<rep->an_numrrsets; i++) {
if(ntohs(rep->rrsets[i]->rk.type) == qinf->qtype)
return VAL_CLASS_POSITIVE;
if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_CNAME)
return VAL_CLASS_CNAME;
}
log_dns_msg("validator: failed to classify response message: ",
qinf, rep);
return VAL_CLASS_UNKNOWN;
}
/** Get signer name from RRSIG */
static void
rrsig_get_signer(uint8_t* data, size_t len, uint8_t** sname, size_t* slen)
{
/* RRSIG rdata is not allowed to be compressed, it is stored
* uncompressed in memory as well, so return a ptr to the name */
if(len < 21) {
/* too short RRSig:
* short, byte, byte, long, long, long, short, "." is
* 2 1 1 4 4 4 2 1 = 19
* and a skip of 18 bytes to the name.
* +2 for the rdatalen is 21 bytes len for root label */
*sname = NULL;
*slen = 0;
return;
}
data += 20; /* skip the fixed size bits */
len -= 20;
*slen = dname_valid(data, len);
if(!*slen) {
/* bad dname in this rrsig. */
*sname = NULL;
return;
}
*sname = data;
}
/**
* Find the signer name for an RRset.
* @param rrset: the rrset.
* @param sname: signer name is returned or NULL if not signed.
* @param slen: length of sname (or 0).
*/
static void
val_find_rrset_signer(struct ub_packed_rrset_key* rrset, uint8_t** sname,
size_t* slen)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)
rrset->entry.data;
/* return signer for first signature, or NULL */
if(d->rrsig_count == 0) {
*sname = NULL;
*slen = 0;
return;
}
/* get rrsig signer name out of the signature */
rrsig_get_signer(d->rr_data[d->count], d->rr_len[d->count],
sname, slen);
}
/**
* Find best signer name in this set of rrsigs.
* @param rrset: which rrsigs to look through.
* @param qinf: the query name that needs validation.
* @param signer_name: the best signer_name. Updated if a better one is found.
* @param signer_len: length of signer name.
* @param matchcount: count of current best name (starts at 0 for no match).
* Updated if match is improved.
*/
static void
val_find_best_signer(struct ub_packed_rrset_key* rrset,
struct query_info* qinf, uint8_t** signer_name, size_t* signer_len,
int* matchcount)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)
rrset->entry.data;
uint8_t* sign;
size_t i;
int m;
for(i=d->count; i<d->count+d->rrsig_count; i++) {
sign = d->rr_data[i]+2+18;
/* look at signatures that are valid (long enough),
* and have a signer name that is a superdomain of qname,
* and then check the number of labels in the shared topdomain
* improve the match if possible */
if(d->rr_len[i] > 2+19 && /* rdata, sig + root label*/
dname_subdomain_c(qinf->qname, sign)) {
(void)dname_lab_cmp(qinf->qname,
dname_count_labels(qinf->qname),
sign, dname_count_labels(sign), &m);
if(m > *matchcount) {
*matchcount = m;
*signer_name = sign;
(void)dname_count_size_labels(*signer_name,
signer_len);
}
}
}
}
void
val_find_signer(enum val_classification subtype, struct query_info* qinf,
struct reply_info* rep, size_t cname_skip, uint8_t** signer_name,
size_t* signer_len)
{
size_t i;
if(subtype == VAL_CLASS_POSITIVE || subtype == VAL_CLASS_CNAME
|| subtype == VAL_CLASS_ANY) {
/* check for the answer rrset */
for(i=cname_skip; i<rep->an_numrrsets; i++) {
if(query_dname_compare(qinf->qname,
rep->rrsets[i]->rk.dname) == 0) {
val_find_rrset_signer(rep->rrsets[i],
signer_name, signer_len);
return;
}
}
*signer_name = NULL;
*signer_len = 0;
} else if(subtype == VAL_CLASS_NAMEERROR
|| subtype == VAL_CLASS_NODATA) {
/*Check to see if the AUTH section NSEC record(s) have rrsigs*/
for(i=rep->an_numrrsets; i<
rep->an_numrrsets+rep->ns_numrrsets; i++) {
if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC
|| ntohs(rep->rrsets[i]->rk.type) ==
LDNS_RR_TYPE_NSEC3) {
val_find_rrset_signer(rep->rrsets[i],
signer_name, signer_len);
return;
}
}
} else if(subtype == VAL_CLASS_CNAMENOANSWER) {
/* find closest superdomain signer name in authority section
* NSEC and NSEC3s */
int matchcount = 0;
*signer_name = NULL;
*signer_len = 0;
for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->
ns_numrrsets; i++) {
if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC
|| ntohs(rep->rrsets[i]->rk.type) ==
LDNS_RR_TYPE_NSEC3) {
val_find_best_signer(rep->rrsets[i], qinf,
signer_name, signer_len, &matchcount);
}
}
} else {
verbose(VERB_ALGO, "find_signer: could not find signer name"
" for unknown type response");
*signer_name = NULL;
*signer_len = 0;
}
}
/** return number of rrs in an rrset */
static size_t
rrset_get_count(struct ub_packed_rrset_key* rrset)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)
rrset->entry.data;
if(!d) return 0;
return d->count;
}
/** return TTL of rrset */
static uint32_t
rrset_get_ttl(struct ub_packed_rrset_key* rrset)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)
rrset->entry.data;
if(!d) return 0;
return d->ttl;
}
enum sec_status
val_verify_rrset(struct module_env* env, struct val_env* ve,
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* keys)
{
enum sec_status sec;
struct packed_rrset_data* d = (struct packed_rrset_data*)rrset->
entry.data;
if(d->security == sec_status_secure) {
/* re-verify all other statuses, because keyset may change*/
log_nametypeclass(VERB_ALGO, "verify rrset cached",
rrset->rk.dname, ntohs(rrset->rk.type),
ntohs(rrset->rk.rrset_class));
return d->security;
}
log_nametypeclass(VERB_ALGO, "verify rrset", rrset->rk.dname,
ntohs(rrset->rk.type), ntohs(rrset->rk.rrset_class));
sec = dnskeyset_verify_rrset(env, ve, rrset, keys);
verbose(VERB_ALGO, "verify result: %s", sec_status_to_string(sec));
/* update rrset security status
* only improves security status
* and bogus is set only once, even if we rechecked the status */
if(sec > d->security) {
d->security = sec;
if(sec == sec_status_secure)
d->trust = rrset_trust_validated;
else if(sec == sec_status_bogus) {
/* update ttl for rrset to fixed value. */
d->ttl = time(0) + ve->bogus_ttl;
/* leave RR specific TTL: not used for determine
* if RRset timed out and clients see proper value. */
}
}
return sec;
}
enum sec_status
val_verify_rrset_entry(struct module_env* env, struct val_env* ve,
struct ub_packed_rrset_key* rrset, struct key_entry_key* kkey)
{
/* temporary dnskey rrset-key */
struct ub_packed_rrset_key dnskey;
struct key_entry_data* kd = (struct key_entry_data*)kkey->entry.data;
enum sec_status sec;
dnskey.rk.type = htons(kd->rrset_type);
dnskey.rk.rrset_class = htons(kkey->key_class);
dnskey.rk.flags = 0;
dnskey.rk.dname = kkey->name;
dnskey.rk.dname_len = kkey->namelen;
dnskey.entry.key = &dnskey;
dnskey.entry.data = kd->rrset_data;
sec = val_verify_rrset(env, ve, rrset, &dnskey);
return sec;
}
/** verify that a DS RR hashes to a key and that key signs the set */
static enum sec_status
verify_dnskeys_with_ds_rr(struct module_env* env, struct val_env* ve,
struct ub_packed_rrset_key* dnskey_rrset,
struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
{
enum sec_status sec = sec_status_bogus;
size_t i, num;
num = rrset_get_count(dnskey_rrset);
for(i=0; i<num; i++) {
/* Skip DNSKEYs that don't match the basic criteria. */
if(ds_get_key_algo(ds_rrset, ds_idx)
!= dnskey_get_algo(dnskey_rrset, i)
|| dnskey_calc_keytag(dnskey_rrset, i)
!= ds_get_keytag(ds_rrset, ds_idx)) {
continue;
}
verbose(VERB_ALGO, "attempt DS match algo %d keytag %d",
ds_get_key_algo(ds_rrset, ds_idx),
ds_get_keytag(ds_rrset, ds_idx));
/* Convert the candidate DNSKEY into a hash using the
* same DS hash algorithm. */
if(!ds_digest_match_dnskey(env, dnskey_rrset, i, ds_rrset,
ds_idx)) {
continue;
}
/* Otherwise, we have a match! Make sure that the DNSKEY
* verifies *with this key* */
sec = dnskey_verify_rrset(env, ve, dnskey_rrset,
dnskey_rrset, i);
if(sec == sec_status_secure) {
return sec;
}
/* If it didn't validate with the DNSKEY, try the next one! */
}
return sec_status_bogus;
}
struct key_entry_key*
val_verify_new_DNSKEYs(struct region* region, struct module_env* env,
struct val_env* ve, struct ub_packed_rrset_key* dnskey_rrset,
struct ub_packed_rrset_key* ds_rrset)
{
/* as long as this is false, we can consider this DS rrset to be
* equivalent to no DS rrset. */
int has_useful_ds = 0;
size_t i, num;
enum sec_status sec;
if(dnskey_rrset->rk.dname_len != ds_rrset->rk.dname_len ||
query_dname_compare(dnskey_rrset->rk.dname, ds_rrset->rk.dname)
!= 0) {
verbose(VERB_ALGO, "DNSKEY RRset did not match DS RRset "
"by name");
return key_entry_create_bad(region, ds_rrset->rk.dname,
ds_rrset->rk.dname_len,
ntohs(ds_rrset->rk.rrset_class));
}
num = rrset_get_count(ds_rrset);
for(i=0; i<num; i++) {
/* Check to see if we can understand this DS. */
if(!ds_digest_algo_is_supported(ds_rrset, i) ||
!ds_key_algo_is_supported(ds_rrset, i)) {
continue;
}
/* Once we see a single DS with a known digestID and
* algorithm, we cannot return INSECURE (with a
* "null" KeyEntry). */
has_useful_ds = true;
sec = verify_dnskeys_with_ds_rr(env, ve, dnskey_rrset,
ds_rrset, i);
if(sec == sec_status_secure) {
verbose(VERB_ALGO, "DS matched DNSKEY.");
return key_entry_create_rrset(region,
ds_rrset->rk.dname, ds_rrset->rk.dname_len,
ntohs(ds_rrset->rk.rrset_class), dnskey_rrset);
}
}
/* None of the DS's worked out. */
/* If no DSs were understandable, then this is OK. */
if(!has_useful_ds) {
verbose(VERB_ALGO, "No usable DS records were found -- "
"treating as insecure.");
return key_entry_create_null(region, ds_rrset->rk.dname,
ds_rrset->rk.dname_len,
ntohs(ds_rrset->rk.rrset_class),
rrset_get_ttl(ds_rrset));
}
/* If any were understandable, then it is bad. */
verbose(VERB_ALGO, "Failed to match any usable DS to a DNSKEY.");
return key_entry_create_bad(region, ds_rrset->rk.dname,
ds_rrset->rk.dname_len, ntohs(ds_rrset->rk.rrset_class));
}
int
val_dsset_isusable(struct ub_packed_rrset_key* ds_rrset)
{
size_t i;
for(i=0; i<rrset_get_count(ds_rrset); i++) {
if(ds_digest_algo_is_supported(ds_rrset, i) &&
ds_key_algo_is_supported(ds_rrset, i))
return 1;
}
return 0;
}
/** get label count for a signature */
static uint8_t
rrsig_get_labcount(struct packed_rrset_data* d, size_t sig)
{
if(d->rr_len[sig] < 2+4)
return 0; /* bad sig length */
return d->rr_data[sig][2+3];
}
int
val_rrset_wildcard(struct ub_packed_rrset_key* rrset, uint8_t** wc)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)rrset->
entry.data;
uint8_t labcount;
int labdiff;
size_t i;
if(d->rrsig_count == 0) {
*wc = NULL;
return 0;
}
labcount = rrsig_get_labcount(d, d->count + 0);
/* check rest of signatures identical */
for(i=1; i<d->rrsig_count; i++) {
if(labcount != rrsig_get_labcount(d, d->count + i)) {
*wc = NULL;
return 0;
}
}
/* OK the rrsigs check out */
/* if the RRSIG label count is shorter than the number of actual
* labels, then this rrset was synthesized from a wildcard.
* Note that the RRSIG label count doesn't count the root label. */
labdiff = (dname_count_labels(rrset->rk.dname) - 1) - (int)labcount;
if(labdiff > 0) {
size_t wl = rrset->rk.dname_len;
*wc = rrset->rk.dname;
dname_remove_labels(wc, &wl, labdiff);
return 1;
}
*wc = NULL;
return 1;
}
int
val_chase_cname(struct query_info* qchase, struct reply_info* rep,
size_t* cname_skip) {
size_t i;
/* skip any DNAMEs, go to the CNAME for next part */
for(i = *cname_skip; i < rep->an_numrrsets; i++) {
if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_CNAME &&
query_dname_compare(qchase->qname, rep->rrsets[i]->
rk.dname) == 0) {
qchase->qname = NULL;
get_cname_target(rep->rrsets[i], &qchase->qname,
&qchase->qname_len);
if(!qchase->qname)
return 0; /* bad CNAME rdata */
(*cname_skip) = i;
return 1;
}
}
return 0; /* CNAME classified but no matching CNAME ?! */
}
/** see if rrset has signer name as one of the rrsig signers */
static int
rrset_has_signer(struct ub_packed_rrset_key* rrset, uint8_t* name, size_t len)
{
struct packed_rrset_data* d = (struct packed_rrset_data*)rrset->
entry.data;
size_t i;
for(i = d->count; i< d->count+d->rrsig_count; i++) {
if(d->rr_len[i] > 2+18+len) {
/* at least rdatalen + signature + signame (+1 sig)*/
if(query_dname_compare(name, d->rr_data[i]+2+18) == 0)
{
return 1;
}
}
}
return 0;
}
void
val_fill_reply(struct reply_info* chase, struct reply_info* orig,
size_t cname_skip, uint8_t* name, size_t len)
{
/* unsigned RRsets are never copied, but should not happen in
* secure answers anyway. Except for the synthesized CNAME after
* a DNAME. */
size_t i;
int seen_dname = 0;
chase->rrset_count = 0;
chase->an_numrrsets = 0;
chase->ns_numrrsets = 0;
chase->ar_numrrsets = 0;
/* ANSWER section */
for(i=cname_skip; i<orig->an_numrrsets; i++) {
if(seen_dname && ntohs(orig->rrsets[i]->rk.type) ==
LDNS_RR_TYPE_CNAME) {
chase->rrsets[chase->an_numrrsets++] = orig->rrsets[i];
seen_dname = 0;
} else if(rrset_has_signer(orig->rrsets[i], name, len)) {
chase->rrsets[chase->an_numrrsets++] = orig->rrsets[i];
if(ntohs(orig->rrsets[i]->rk.type) ==
LDNS_RR_TYPE_DNAME) {
seen_dname = 1;
}
}
}
/* AUTHORITY section */
for(i=orig->an_numrrsets; i<orig->an_numrrsets+orig->ns_numrrsets;
i++) {
if(rrset_has_signer(orig->rrsets[i], name, len)) {
chase->rrsets[chase->an_numrrsets+
chase->ns_numrrsets++] = orig->rrsets[i];
}
}
/* ADDITIONAL section */
for(i=orig->an_numrrsets+orig->ns_numrrsets; i<orig->rrset_count;
i++) {
if(rrset_has_signer(orig->rrsets[i], name, len)) {
chase->rrsets[chase->an_numrrsets+orig->ns_numrrsets+
chase->ar_numrrsets++] = orig->rrsets[i];
}
}
chase->rrset_count = chase->an_numrrsets + chase->ns_numrrsets +
chase->ar_numrrsets;
}
void
val_dump_nonsecure(struct reply_info* rep)
{
size_t i;
/* authority */
for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
if(((struct packed_rrset_data*)rep->rrsets[i]->entry.data)
->security != sec_status_secure) {
/* remove this unsigned/bogus/unneeded rrset */
memmove(rep->rrsets+i, rep->rrsets+i+1,
sizeof(struct ub_packed_rrset_key*)*
(rep->rrset_count - i - 1));
rep->ns_numrrsets--;
rep->rrset_count--;
}
}
/* additional */
for(i=rep->an_numrrsets+rep->ns_numrrsets; i<rep->rrset_count; i++) {
if(((struct packed_rrset_data*)rep->rrsets[i]->entry.data)
->security != sec_status_secure) {
/* remove this unsigned/bogus/unneeded rrset */
memmove(rep->rrsets+i, rep->rrsets+i+1,
sizeof(struct ub_packed_rrset_key*)*
(rep->rrset_count - i - 1));
rep->ar_numrrsets--;
rep->rrset_count--;
}
}
}