Remove old audio device implementation.

The iOS ADM implementation now lives in sdk/objc/native/api/audio_device_module.{h,mm}.

Bug: webrtc:10514
Change-Id: Ib0b162027b5680ebc40d621a57f1155f08e7a057
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/131326
Commit-Queue: Kári Helgason <kthelgason@webrtc.org>
Reviewed-by: Henrik Andreassson <henrika@webrtc.org>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#27488}
This commit is contained in:
Kári Tristan Helgason 2019-04-05 10:40:44 +02:00 committed by Commit Bot
parent 4c6ca30019
commit 0cfa4cba5c
14 changed files with 4 additions and 3165 deletions

View file

@ -45,47 +45,6 @@ rtc_source_set("audio_device") {
]
}
if (rtc_include_internal_audio_device && is_ios) {
rtc_source_set("audio_device_ios_objc") {
visibility = [
":audio_device_impl",
":audio_device_ios_objc_unittests",
]
sources = [
"ios/audio_device_ios.h",
"ios/audio_device_ios.mm",
"ios/audio_device_not_implemented_ios.mm",
"ios/audio_session_observer.h",
"ios/objc/RTCAudioSession.h",
"ios/objc/RTCAudioSessionConfiguration.h",
"ios/objc/RTCAudioSessionDelegateAdapter.h",
"ios/objc/RTCAudioSessionDelegateAdapter.mm",
"ios/voice_processing_audio_unit.h",
"ios/voice_processing_audio_unit.mm",
]
libs = [
"AudioToolbox.framework",
"AVFoundation.framework",
"Foundation.framework",
"UIKit.framework",
]
deps = [
":audio_device_api",
":audio_device_buffer",
":audio_device_generic",
"../../api:array_view",
"../../rtc_base",
"../../rtc_base:checks",
"../../rtc_base:gtest_prod",
"../../rtc_base/system:fallthrough",
"../../sdk:audio_device",
"../../sdk:audio_objc",
"../../sdk:base_objc",
"../../system_wrappers:metrics",
]
}
}
rtc_source_set("audio_device_api") {
visibility = [ "*" ]
sources = [
@ -224,7 +183,7 @@ rtc_source_set("audio_device_impl") {
"//third_party/abseil-cpp/absl/memory",
]
if (rtc_include_internal_audio_device && is_ios) {
deps += [ ":audio_device_ios_objc" ]
deps += [ "../../sdk:audio_device" ]
}
sources = [
@ -397,32 +356,6 @@ rtc_source_set("mock_audio_device") {
}
if (rtc_include_tests) {
# TODO(kthelgason): Reenable these tests on simulator.
# See bugs.webrtc.org/7812
if (rtc_include_internal_audio_device && is_ios && !use_ios_simulator) {
rtc_source_set("audio_device_ios_objc_unittests") {
testonly = true
visibility = [ ":*" ]
sources = [
"ios/audio_device_unittest_ios.mm",
]
deps = [
":audio_device",
":audio_device_buffer",
":audio_device_impl",
":audio_device_ios_objc",
":mock_audio_device",
"../../api:scoped_refptr",
"../../rtc_base:rtc_base_approved",
"../../sdk:audio_objc",
"../../system_wrappers",
"../../test:fileutils",
"../../test:test_support",
"//third_party/ocmock",
]
}
}
rtc_source_set("audio_device_unittests") {
testonly = true

View file

@ -7,28 +7,7 @@ specific_include_rules = {
"ensure_initialized\.cc": [
"+base/android",
],
"audio_device_ios\.h": [
"+sdk/objc",
],
"audio_device_ios\.mm": [
"+sdk/objc",
],
"audio_device_unittest_ios\.mm": [
"+sdk/objc",
],
"RTCAudioSession\.h": [
"+sdk/objc",
],
"RTCAudioSessionConfiguration\.h": [
"+sdk/objc",
],
"RTCAudioSessionDelegateAdapter\.h": [
"+sdk/objc",
],
"RTCAudioSessionDelegateAdapter\.mm": [
"+sdk/objc",
],
"voice_processing_audio_unit\.mm": [
"audio_device_impl\.cc": [
"+sdk/objc",
],
}

View file

@ -45,7 +45,7 @@
#include "modules/audio_device/linux/audio_device_pulse_linux.h"
#endif
#elif defined(WEBRTC_IOS)
#include "modules/audio_device/ios/audio_device_ios.h"
#include "sdk/objc/native/src/audio/audio_device_ios.h"
#elif defined(WEBRTC_MAC)
#include "modules/audio_device/mac/audio_device_mac.h"
#endif
@ -287,7 +287,7 @@ int32_t AudioDeviceModuleImpl::CreatePlatformSpecificObjects() {
// iOS ADM implementation.
#if defined(WEBRTC_IOS)
if (audio_layer == kPlatformDefaultAudio) {
audio_device_.reset(new AudioDeviceIOS());
audio_device_.reset(new ios_adm::AudioDeviceIOS());
RTC_LOG(INFO) << "iPhone Audio APIs will be utilized.";
}
// END #if defined(WEBRTC_IOS)

View file

@ -1,296 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_DEVICE_IOS_AUDIO_DEVICE_IOS_H_
#define MODULES_AUDIO_DEVICE_IOS_AUDIO_DEVICE_IOS_H_
#include <memory>
#include "modules/audio_device/audio_device_generic.h"
#include "modules/audio_device/ios/audio_session_observer.h"
#include "modules/audio_device/ios/voice_processing_audio_unit.h"
#include "rtc_base/buffer.h"
#include "rtc_base/gtest_prod_util.h"
#include "rtc_base/thread.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/thread_checker.h"
#include "sdk/objc/base/RTCMacros.h"
RTC_FWD_DECL_OBJC_CLASS(RTCAudioSessionDelegateAdapter);
namespace webrtc {
class FineAudioBuffer;
// Implements full duplex 16-bit mono PCM audio support for iOS using a
// Voice-Processing (VP) I/O audio unit in Core Audio. The VP I/O audio unit
// supports audio echo cancellation. It also adds automatic gain control,
// adjustment of voice-processing quality and muting.
//
// An instance must be created and destroyed on one and the same thread.
// All supported public methods must also be called on the same thread.
// A thread checker will RTC_DCHECK if any supported method is called on an
// invalid thread.
//
// Recorded audio will be delivered on a real-time internal I/O thread in the
// audio unit. The audio unit will also ask for audio data to play out on this
// same thread.
class AudioDeviceIOS : public AudioDeviceGeneric,
public AudioSessionObserver,
public VoiceProcessingAudioUnitObserver,
public rtc::MessageHandler {
public:
AudioDeviceIOS();
~AudioDeviceIOS();
void AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) override;
InitStatus Init() override;
int32_t Terminate() override;
bool Initialized() const override;
int32_t InitPlayout() override;
bool PlayoutIsInitialized() const override;
int32_t InitRecording() override;
bool RecordingIsInitialized() const override;
int32_t StartPlayout() override;
int32_t StopPlayout() override;
bool Playing() const override { return playing_; }
int32_t StartRecording() override;
int32_t StopRecording() override;
bool Recording() const override { return recording_; }
// These methods returns hard-coded delay values and not dynamic delay
// estimates. The reason is that iOS supports a built-in AEC and the WebRTC
// AEC will always be disabled in the Libjingle layer to avoid running two
// AEC implementations at the same time. And, it saves resources to avoid
// updating these delay values continuously.
// TODO(henrika): it would be possible to mark these two methods as not
// implemented since they are only called for A/V-sync purposes today and
// A/V-sync is not supported on iOS. However, we avoid adding error messages
// the log by using these dummy implementations instead.
int32_t PlayoutDelay(uint16_t& delayMS) const override;
// Native audio parameters stored during construction.
// These methods are unique for the iOS implementation.
int GetPlayoutAudioParameters(AudioParameters* params) const override;
int GetRecordAudioParameters(AudioParameters* params) const override;
// These methods are currently not fully implemented on iOS:
// See audio_device_not_implemented.cc for trivial implementations.
int32_t ActiveAudioLayer(
AudioDeviceModule::AudioLayer& audioLayer) const override;
int32_t PlayoutIsAvailable(bool& available) override;
int32_t RecordingIsAvailable(bool& available) override;
int16_t PlayoutDevices() override;
int16_t RecordingDevices() override;
int32_t PlayoutDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) override;
int32_t RecordingDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) override;
int32_t SetPlayoutDevice(uint16_t index) override;
int32_t SetPlayoutDevice(
AudioDeviceModule::WindowsDeviceType device) override;
int32_t SetRecordingDevice(uint16_t index) override;
int32_t SetRecordingDevice(
AudioDeviceModule::WindowsDeviceType device) override;
int32_t InitSpeaker() override;
bool SpeakerIsInitialized() const override;
int32_t InitMicrophone() override;
bool MicrophoneIsInitialized() const override;
int32_t SpeakerVolumeIsAvailable(bool& available) override;
int32_t SetSpeakerVolume(uint32_t volume) override;
int32_t SpeakerVolume(uint32_t& volume) const override;
int32_t MaxSpeakerVolume(uint32_t& maxVolume) const override;
int32_t MinSpeakerVolume(uint32_t& minVolume) const override;
int32_t MicrophoneVolumeIsAvailable(bool& available) override;
int32_t SetMicrophoneVolume(uint32_t volume) override;
int32_t MicrophoneVolume(uint32_t& volume) const override;
int32_t MaxMicrophoneVolume(uint32_t& maxVolume) const override;
int32_t MinMicrophoneVolume(uint32_t& minVolume) const override;
int32_t MicrophoneMuteIsAvailable(bool& available) override;
int32_t SetMicrophoneMute(bool enable) override;
int32_t MicrophoneMute(bool& enabled) const override;
int32_t SpeakerMuteIsAvailable(bool& available) override;
int32_t SetSpeakerMute(bool enable) override;
int32_t SpeakerMute(bool& enabled) const override;
int32_t StereoPlayoutIsAvailable(bool& available) override;
int32_t SetStereoPlayout(bool enable) override;
int32_t StereoPlayout(bool& enabled) const override;
int32_t StereoRecordingIsAvailable(bool& available) override;
int32_t SetStereoRecording(bool enable) override;
int32_t StereoRecording(bool& enabled) const override;
// AudioSessionObserver methods. May be called from any thread.
void OnInterruptionBegin() override;
void OnInterruptionEnd() override;
void OnValidRouteChange() override;
void OnCanPlayOrRecordChange(bool can_play_or_record) override;
void OnChangedOutputVolume() override;
// VoiceProcessingAudioUnitObserver methods.
OSStatus OnDeliverRecordedData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) override;
OSStatus OnGetPlayoutData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) override;
// Handles messages from posts.
void OnMessage(rtc::Message* msg) override;
private:
// Called by the relevant AudioSessionObserver methods on |thread_|.
void HandleInterruptionBegin();
void HandleInterruptionEnd();
void HandleValidRouteChange();
void HandleCanPlayOrRecordChange(bool can_play_or_record);
void HandleSampleRateChange(float sample_rate);
void HandlePlayoutGlitchDetected();
void HandleOutputVolumeChange();
// Uses current |playout_parameters_| and |record_parameters_| to inform the
// audio device buffer (ADB) about our internal audio parameters.
void UpdateAudioDeviceBuffer();
// Since the preferred audio parameters are only hints to the OS, the actual
// values may be different once the AVAudioSession has been activated.
// This method asks for the current hardware parameters and takes actions
// if they should differ from what we have asked for initially. It also
// defines |playout_parameters_| and |record_parameters_|.
void SetupAudioBuffersForActiveAudioSession();
// Creates the audio unit.
bool CreateAudioUnit();
// Updates the audio unit state based on current state.
void UpdateAudioUnit(bool can_play_or_record);
// Configures the audio session for WebRTC.
bool ConfigureAudioSession();
// Unconfigures the audio session.
void UnconfigureAudioSession();
// Activates our audio session, creates and initializes the voice-processing
// audio unit and verifies that we got the preferred native audio parameters.
bool InitPlayOrRecord();
// Closes and deletes the voice-processing I/O unit.
void ShutdownPlayOrRecord();
// Resets thread-checkers before a call is restarted.
void PrepareForNewStart();
// Ensures that methods are called from the same thread as this object is
// created on.
rtc::ThreadChecker thread_checker_;
// Native I/O audio thread checker.
rtc::ThreadChecker io_thread_checker_;
// Thread that this object is created on.
rtc::Thread* thread_;
// Raw pointer handle provided to us in AttachAudioBuffer(). Owned by the
// AudioDeviceModuleImpl class and called by AudioDeviceModule::Create().
// The AudioDeviceBuffer is a member of the AudioDeviceModuleImpl instance
// and therefore outlives this object.
AudioDeviceBuffer* audio_device_buffer_;
// Contains audio parameters (sample rate, #channels, buffer size etc.) for
// the playout and recording sides. These structure is set in two steps:
// first, native sample rate and #channels are defined in Init(). Next, the
// audio session is activated and we verify that the preferred parameters
// were granted by the OS. At this stage it is also possible to add a third
// component to the parameters; the native I/O buffer duration.
// A RTC_CHECK will be hit if we for some reason fail to open an audio session
// using the specified parameters.
AudioParameters playout_parameters_;
AudioParameters record_parameters_;
// The AudioUnit used to play and record audio.
std::unique_ptr<VoiceProcessingAudioUnit> audio_unit_;
// FineAudioBuffer takes an AudioDeviceBuffer which delivers audio data
// in chunks of 10ms. It then allows for this data to be pulled in
// a finer or coarser granularity. I.e. interacting with this class instead
// of directly with the AudioDeviceBuffer one can ask for any number of
// audio data samples. Is also supports a similar scheme for the recording
// side.
// Example: native buffer size can be 128 audio frames at 16kHz sample rate.
// WebRTC will provide 480 audio frames per 10ms but iOS asks for 128
// in each callback (one every 8ms). This class can then ask for 128 and the
// FineAudioBuffer will ask WebRTC for new data only when needed and also
// cache non-utilized audio between callbacks. On the recording side, iOS
// can provide audio data frames of size 128 and these are accumulated until
// enough data to supply one 10ms call exists. This 10ms chunk is then sent
// to WebRTC and the remaining part is stored.
std::unique_ptr<FineAudioBuffer> fine_audio_buffer_;
// Temporary storage for recorded data. AudioUnitRender() renders into this
// array as soon as a frame of the desired buffer size has been recorded.
// On real iOS devices, the size will be fixed and set once. For iOS
// simulators, the size can vary from callback to callback and the size
// will be changed dynamically to account for this behavior.
rtc::BufferT<int16_t> record_audio_buffer_;
// Set to 1 when recording is active and 0 otherwise.
volatile int recording_;
// Set to 1 when playout is active and 0 otherwise.
volatile int playing_;
// Set to true after successful call to Init(), false otherwise.
bool initialized_ RTC_GUARDED_BY(thread_checker_);
// Set to true after successful call to InitRecording() or InitPlayout(),
// false otherwise.
bool audio_is_initialized_;
// Set to true if audio session is interrupted, false otherwise.
bool is_interrupted_;
// Audio interruption observer instance.
RTCAudioSessionDelegateAdapter* audio_session_observer_
RTC_GUARDED_BY(thread_checker_);
// Set to true if we've activated the audio session.
bool has_configured_session_ RTC_GUARDED_BY(thread_checker_);
// Counts number of detected audio glitches on the playout side.
int64_t num_detected_playout_glitches_ RTC_GUARDED_BY(thread_checker_);
int64_t last_playout_time_ RTC_GUARDED_BY(io_thread_checker_);
// Counts number of playout callbacks per call.
// The value isupdated on the native I/O thread and later read on the
// creating thread (see thread_checker_) but at this stage no audio is
// active. Hence, it is a "thread safe" design and no lock is needed.
int64_t num_playout_callbacks_;
// Contains the time for when the last output volume change was detected.
int64_t last_output_volume_change_time_ RTC_GUARDED_BY(thread_checker_);
// Exposes private members for testing purposes only.
FRIEND_TEST_ALL_PREFIXES(AudioDeviceTest, testInterruptedAudioSession);
};
} // namespace webrtc
#endif // MODULES_AUDIO_DEVICE_IOS_AUDIO_DEVICE_IOS_H_

View file

@ -1,908 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#import <AVFoundation/AVFoundation.h>
#import <Foundation/Foundation.h>
#include "modules/audio_device/ios/audio_device_ios.h"
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_device/fine_audio_buffer.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/bind.h"
#include "rtc_base/checks.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/logging.h"
#include "rtc_base/thread.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"
#include "sdk/objc/native/src/audio/helpers.h"
#include "system_wrappers/include/metrics.h"
#import "modules/audio_device/ios/objc/RTCAudioSessionDelegateAdapter.h"
#import "sdk/objc/base/RTCLogging.h"
#import "sdk/objc/components/audio/RTCAudioSession+Private.h"
#import "sdk/objc/components/audio/RTCAudioSession.h"
#import "sdk/objc/components/audio/RTCAudioSessionConfiguration.h"
namespace webrtc {
#define LOGI() RTC_LOG(LS_INFO) << "AudioDeviceIOS::"
#define LOG_AND_RETURN_IF_ERROR(error, message) \
do { \
OSStatus err = error; \
if (err) { \
RTC_LOG(LS_ERROR) << message << ": " << err; \
return false; \
} \
} while (0)
#define LOG_IF_ERROR(error, message) \
do { \
OSStatus err = error; \
if (err) { \
RTC_LOG(LS_ERROR) << message << ": " << err; \
} \
} while (0)
// Hardcoded delay estimates based on real measurements.
// TODO(henrika): these value is not used in combination with built-in AEC.
// Can most likely be removed.
const UInt16 kFixedPlayoutDelayEstimate = 30;
const UInt16 kFixedRecordDelayEstimate = 30;
enum AudioDeviceMessageType : uint32_t {
kMessageTypeInterruptionBegin,
kMessageTypeInterruptionEnd,
kMessageTypeValidRouteChange,
kMessageTypeCanPlayOrRecordChange,
kMessageTypePlayoutGlitchDetected,
kMessageOutputVolumeChange,
};
using ios::CheckAndLogError;
#if !defined(NDEBUG)
// Returns true when the code runs on a device simulator.
static bool DeviceIsSimulator() {
return ios::GetDeviceName() == "x86_64";
}
// Helper method that logs essential device information strings.
static void LogDeviceInfo() {
RTC_LOG(LS_INFO) << "LogDeviceInfo";
@autoreleasepool {
RTC_LOG(LS_INFO) << " system name: " << ios::GetSystemName();
RTC_LOG(LS_INFO) << " system version: " << ios::GetSystemVersionAsString();
RTC_LOG(LS_INFO) << " device type: " << ios::GetDeviceType();
RTC_LOG(LS_INFO) << " device name: " << ios::GetDeviceName();
RTC_LOG(LS_INFO) << " process name: " << ios::GetProcessName();
RTC_LOG(LS_INFO) << " process ID: " << ios::GetProcessID();
RTC_LOG(LS_INFO) << " OS version: " << ios::GetOSVersionString();
RTC_LOG(LS_INFO) << " processing cores: " << ios::GetProcessorCount();
RTC_LOG(LS_INFO) << " low power mode: " << ios::GetLowPowerModeEnabled();
#if TARGET_IPHONE_SIMULATOR
RTC_LOG(LS_INFO) << " TARGET_IPHONE_SIMULATOR is defined";
#endif
RTC_LOG(LS_INFO) << " DeviceIsSimulator: " << DeviceIsSimulator();
}
}
#endif // !defined(NDEBUG)
AudioDeviceIOS::AudioDeviceIOS()
: audio_device_buffer_(nullptr),
audio_unit_(nullptr),
recording_(0),
playing_(0),
initialized_(false),
audio_is_initialized_(false),
is_interrupted_(false),
has_configured_session_(false),
num_detected_playout_glitches_(0),
last_playout_time_(0),
num_playout_callbacks_(0),
last_output_volume_change_time_(0) {
LOGI() << "ctor" << ios::GetCurrentThreadDescription();
io_thread_checker_.DetachFromThread();
thread_ = rtc::Thread::Current();
audio_session_observer_ = [[RTCAudioSessionDelegateAdapter alloc] initWithObserver:this];
}
AudioDeviceIOS::~AudioDeviceIOS() {
LOGI() << "~dtor" << ios::GetCurrentThreadDescription();
audio_session_observer_ = nil;
RTC_DCHECK(thread_checker_.CalledOnValidThread());
Terminate();
}
void AudioDeviceIOS::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) {
LOGI() << "AttachAudioBuffer";
RTC_DCHECK(audioBuffer);
RTC_DCHECK(thread_checker_.CalledOnValidThread());
audio_device_buffer_ = audioBuffer;
}
AudioDeviceGeneric::InitStatus AudioDeviceIOS::Init() {
LOGI() << "Init";
RTC_DCHECK_RUN_ON(&thread_checker_);
if (initialized_) {
return InitStatus::OK;
}
#if !defined(NDEBUG)
LogDeviceInfo();
#endif
// Store the preferred sample rate and preferred number of channels already
// here. They have not been set and confirmed yet since configureForWebRTC
// is not called until audio is about to start. However, it makes sense to
// store the parameters now and then verify at a later stage.
RTCAudioSessionConfiguration* config = [RTCAudioSessionConfiguration webRTCConfiguration];
playout_parameters_.reset(config.sampleRate, config.outputNumberOfChannels);
record_parameters_.reset(config.sampleRate, config.inputNumberOfChannels);
// Ensure that the audio device buffer (ADB) knows about the internal audio
// parameters. Note that, even if we are unable to get a mono audio session,
// we will always tell the I/O audio unit to do a channel format conversion
// to guarantee mono on the "input side" of the audio unit.
UpdateAudioDeviceBuffer();
initialized_ = true;
return InitStatus::OK;
}
int32_t AudioDeviceIOS::Terminate() {
LOGI() << "Terminate";
RTC_DCHECK_RUN_ON(&thread_checker_);
if (!initialized_) {
return 0;
}
StopPlayout();
StopRecording();
initialized_ = false;
return 0;
}
bool AudioDeviceIOS::Initialized() const {
RTC_DCHECK_RUN_ON(&thread_checker_);
return initialized_;
}
int32_t AudioDeviceIOS::InitPlayout() {
LOGI() << "InitPlayout";
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(initialized_);
RTC_DCHECK(!audio_is_initialized_);
RTC_DCHECK(!playing_);
if (!audio_is_initialized_) {
if (!InitPlayOrRecord()) {
RTC_LOG_F(LS_ERROR) << "InitPlayOrRecord failed for InitPlayout!";
return -1;
}
}
audio_is_initialized_ = true;
return 0;
}
bool AudioDeviceIOS::PlayoutIsInitialized() const {
RTC_DCHECK_RUN_ON(&thread_checker_);
return audio_is_initialized_;
}
bool AudioDeviceIOS::RecordingIsInitialized() const {
RTC_DCHECK_RUN_ON(&thread_checker_);
return audio_is_initialized_;
}
int32_t AudioDeviceIOS::InitRecording() {
LOGI() << "InitRecording";
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(initialized_);
RTC_DCHECK(!audio_is_initialized_);
RTC_DCHECK(!recording_);
if (!audio_is_initialized_) {
if (!InitPlayOrRecord()) {
RTC_LOG_F(LS_ERROR) << "InitPlayOrRecord failed for InitRecording!";
return -1;
}
}
audio_is_initialized_ = true;
return 0;
}
int32_t AudioDeviceIOS::StartPlayout() {
LOGI() << "StartPlayout";
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(audio_is_initialized_);
RTC_DCHECK(!playing_);
RTC_DCHECK(audio_unit_);
if (fine_audio_buffer_) {
fine_audio_buffer_->ResetPlayout();
}
if (!recording_ && audio_unit_->GetState() == VoiceProcessingAudioUnit::kInitialized) {
if (!audio_unit_->Start()) {
RTCLogError(@"StartPlayout failed to start audio unit.");
return -1;
}
RTC_LOG(LS_INFO) << "Voice-Processing I/O audio unit is now started";
}
rtc::AtomicOps::ReleaseStore(&playing_, 1);
num_playout_callbacks_ = 0;
num_detected_playout_glitches_ = 0;
return 0;
}
int32_t AudioDeviceIOS::StopPlayout() {
LOGI() << "StopPlayout";
RTC_DCHECK_RUN_ON(&thread_checker_);
if (!audio_is_initialized_ || !playing_) {
return 0;
}
if (!recording_) {
ShutdownPlayOrRecord();
audio_is_initialized_ = false;
}
rtc::AtomicOps::ReleaseStore(&playing_, 0);
// Derive average number of calls to OnGetPlayoutData() between detected
// audio glitches and add the result to a histogram.
int average_number_of_playout_callbacks_between_glitches = 100000;
RTC_DCHECK_GE(num_playout_callbacks_, num_detected_playout_glitches_);
if (num_detected_playout_glitches_ > 0) {
average_number_of_playout_callbacks_between_glitches =
num_playout_callbacks_ / num_detected_playout_glitches_;
}
RTC_HISTOGRAM_COUNTS_100000("WebRTC.Audio.AveragePlayoutCallbacksBetweenGlitches",
average_number_of_playout_callbacks_between_glitches);
RTCLog(@"Average number of playout callbacks between glitches: %d",
average_number_of_playout_callbacks_between_glitches);
return 0;
}
int32_t AudioDeviceIOS::StartRecording() {
LOGI() << "StartRecording";
RTC_DCHECK_RUN_ON(&thread_checker_);
RTC_DCHECK(audio_is_initialized_);
RTC_DCHECK(!recording_);
RTC_DCHECK(audio_unit_);
if (fine_audio_buffer_) {
fine_audio_buffer_->ResetRecord();
}
if (!playing_ && audio_unit_->GetState() == VoiceProcessingAudioUnit::kInitialized) {
if (!audio_unit_->Start()) {
RTCLogError(@"StartRecording failed to start audio unit.");
return -1;
}
RTC_LOG(LS_INFO) << "Voice-Processing I/O audio unit is now started";
}
rtc::AtomicOps::ReleaseStore(&recording_, 1);
return 0;
}
int32_t AudioDeviceIOS::StopRecording() {
LOGI() << "StopRecording";
RTC_DCHECK_RUN_ON(&thread_checker_);
if (!audio_is_initialized_ || !recording_) {
return 0;
}
if (!playing_) {
ShutdownPlayOrRecord();
audio_is_initialized_ = false;
}
rtc::AtomicOps::ReleaseStore(&recording_, 0);
return 0;
}
int32_t AudioDeviceIOS::PlayoutDelay(uint16_t& delayMS) const {
delayMS = kFixedPlayoutDelayEstimate;
return 0;
}
int AudioDeviceIOS::GetPlayoutAudioParameters(AudioParameters* params) const {
LOGI() << "GetPlayoutAudioParameters";
RTC_DCHECK(playout_parameters_.is_valid());
RTC_DCHECK(thread_checker_.CalledOnValidThread());
*params = playout_parameters_;
return 0;
}
int AudioDeviceIOS::GetRecordAudioParameters(AudioParameters* params) const {
LOGI() << "GetRecordAudioParameters";
RTC_DCHECK(record_parameters_.is_valid());
RTC_DCHECK(thread_checker_.CalledOnValidThread());
*params = record_parameters_;
return 0;
}
void AudioDeviceIOS::OnInterruptionBegin() {
RTC_DCHECK(thread_);
LOGI() << "OnInterruptionBegin";
thread_->Post(RTC_FROM_HERE, this, kMessageTypeInterruptionBegin);
}
void AudioDeviceIOS::OnInterruptionEnd() {
RTC_DCHECK(thread_);
LOGI() << "OnInterruptionEnd";
thread_->Post(RTC_FROM_HERE, this, kMessageTypeInterruptionEnd);
}
void AudioDeviceIOS::OnValidRouteChange() {
RTC_DCHECK(thread_);
thread_->Post(RTC_FROM_HERE, this, kMessageTypeValidRouteChange);
}
void AudioDeviceIOS::OnCanPlayOrRecordChange(bool can_play_or_record) {
RTC_DCHECK(thread_);
thread_->Post(RTC_FROM_HERE,
this,
kMessageTypeCanPlayOrRecordChange,
new rtc::TypedMessageData<bool>(can_play_or_record));
}
void AudioDeviceIOS::OnChangedOutputVolume() {
RTC_DCHECK(thread_);
thread_->Post(RTC_FROM_HERE, this, kMessageOutputVolumeChange);
}
OSStatus AudioDeviceIOS::OnDeliverRecordedData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* /* io_data */) {
RTC_DCHECK_RUN_ON(&io_thread_checker_);
OSStatus result = noErr;
// Simply return if recording is not enabled.
if (!rtc::AtomicOps::AcquireLoad(&recording_)) return result;
// Set the size of our own audio buffer and clear it first to avoid copying
// in combination with potential reallocations.
// On real iOS devices, the size will only be set once (at first callback).
record_audio_buffer_.Clear();
record_audio_buffer_.SetSize(num_frames);
// Allocate AudioBuffers to be used as storage for the received audio.
// The AudioBufferList structure works as a placeholder for the
// AudioBuffer structure, which holds a pointer to the actual data buffer
// in |record_audio_buffer_|. Recorded audio will be rendered into this memory
// at each input callback when calling AudioUnitRender().
AudioBufferList audio_buffer_list;
audio_buffer_list.mNumberBuffers = 1;
AudioBuffer* audio_buffer = &audio_buffer_list.mBuffers[0];
audio_buffer->mNumberChannels = record_parameters_.channels();
audio_buffer->mDataByteSize =
record_audio_buffer_.size() * VoiceProcessingAudioUnit::kBytesPerSample;
audio_buffer->mData = reinterpret_cast<int8_t*>(record_audio_buffer_.data());
// Obtain the recorded audio samples by initiating a rendering cycle.
// Since it happens on the input bus, the |io_data| parameter is a reference
// to the preallocated audio buffer list that the audio unit renders into.
// We can make the audio unit provide a buffer instead in io_data, but we
// currently just use our own.
// TODO(henrika): should error handling be improved?
result = audio_unit_->Render(flags, time_stamp, bus_number, num_frames, &audio_buffer_list);
if (result != noErr) {
RTCLogError(@"Failed to render audio.");
return result;
}
// Get a pointer to the recorded audio and send it to the WebRTC ADB.
// Use the FineAudioBuffer instance to convert between native buffer size
// and the 10ms buffer size used by WebRTC.
fine_audio_buffer_->DeliverRecordedData(record_audio_buffer_, kFixedRecordDelayEstimate);
return noErr;
}
OSStatus AudioDeviceIOS::OnGetPlayoutData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) {
RTC_DCHECK_RUN_ON(&io_thread_checker_);
// Verify 16-bit, noninterleaved mono PCM signal format.
RTC_DCHECK_EQ(1, io_data->mNumberBuffers);
AudioBuffer* audio_buffer = &io_data->mBuffers[0];
RTC_DCHECK_EQ(1, audio_buffer->mNumberChannels);
// Produce silence and give audio unit a hint about it if playout is not
// activated.
if (!rtc::AtomicOps::AcquireLoad(&playing_)) {
const size_t size_in_bytes = audio_buffer->mDataByteSize;
RTC_CHECK_EQ(size_in_bytes / VoiceProcessingAudioUnit::kBytesPerSample, num_frames);
*flags |= kAudioUnitRenderAction_OutputIsSilence;
memset(static_cast<int8_t*>(audio_buffer->mData), 0, size_in_bytes);
return noErr;
}
// Measure time since last call to OnGetPlayoutData() and see if it is larger
// than a well defined threshold which depends on the current IO buffer size.
// If so, we have an indication of a glitch in the output audio since the
// core audio layer will most likely run dry in this state.
++num_playout_callbacks_;
const int64_t now_time = rtc::TimeMillis();
if (time_stamp->mSampleTime != num_frames) {
const int64_t delta_time = now_time - last_playout_time_;
const int glitch_threshold = 1.6 * playout_parameters_.GetBufferSizeInMilliseconds();
if (delta_time > glitch_threshold) {
RTCLogWarning(@"Possible playout audio glitch detected.\n"
" Time since last OnGetPlayoutData was %lld ms.\n",
delta_time);
// Exclude extreme delta values since they do most likely not correspond
// to a real glitch. Instead, the most probable cause is that a headset
// has been plugged in or out. There are more direct ways to detect
// audio device changes (see HandleValidRouteChange()) but experiments
// show that using it leads to more complex implementations.
// TODO(henrika): more tests might be needed to come up with an even
// better upper limit.
if (glitch_threshold < 120 && delta_time > 120) {
RTCLog(@"Glitch warning is ignored. Probably caused by device switch.");
} else {
thread_->Post(RTC_FROM_HERE, this, kMessageTypePlayoutGlitchDetected);
}
}
}
last_playout_time_ = now_time;
// Read decoded 16-bit PCM samples from WebRTC (using a size that matches
// the native I/O audio unit) and copy the result to the audio buffer in the
// |io_data| destination.
fine_audio_buffer_->GetPlayoutData(
rtc::ArrayView<int16_t>(static_cast<int16_t*>(audio_buffer->mData), num_frames),
kFixedPlayoutDelayEstimate);
return noErr;
}
void AudioDeviceIOS::OnMessage(rtc::Message* msg) {
switch (msg->message_id) {
case kMessageTypeInterruptionBegin:
HandleInterruptionBegin();
break;
case kMessageTypeInterruptionEnd:
HandleInterruptionEnd();
break;
case kMessageTypeValidRouteChange:
HandleValidRouteChange();
break;
case kMessageTypeCanPlayOrRecordChange: {
rtc::TypedMessageData<bool>* data = static_cast<rtc::TypedMessageData<bool>*>(msg->pdata);
HandleCanPlayOrRecordChange(data->data());
delete data;
break;
}
case kMessageTypePlayoutGlitchDetected:
HandlePlayoutGlitchDetected();
break;
case kMessageOutputVolumeChange:
HandleOutputVolumeChange();
break;
}
}
void AudioDeviceIOS::HandleInterruptionBegin() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Interruption begin. IsInterrupted changed from %d to 1.", is_interrupted_);
if (audio_unit_ && audio_unit_->GetState() == VoiceProcessingAudioUnit::kStarted) {
RTCLog(@"Stopping the audio unit due to interruption begin.");
if (!audio_unit_->Stop()) {
RTCLogError(@"Failed to stop the audio unit for interruption begin.");
} else {
PrepareForNewStart();
}
}
is_interrupted_ = true;
}
void AudioDeviceIOS::HandleInterruptionEnd() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Interruption ended. IsInterrupted changed from %d to 0. "
"Updating audio unit state.",
is_interrupted_);
is_interrupted_ = false;
UpdateAudioUnit([RTCAudioSession sharedInstance].canPlayOrRecord);
}
void AudioDeviceIOS::HandleValidRouteChange() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCAudioSession* session = [RTCAudioSession sharedInstance];
RTCLog(@"%@", session);
HandleSampleRateChange(session.sampleRate);
}
void AudioDeviceIOS::HandleCanPlayOrRecordChange(bool can_play_or_record) {
RTCLog(@"Handling CanPlayOrRecord change to: %d", can_play_or_record);
UpdateAudioUnit(can_play_or_record);
}
void AudioDeviceIOS::HandleSampleRateChange(float sample_rate) {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Handling sample rate change to %f.", sample_rate);
// Don't do anything if we're interrupted.
if (is_interrupted_) {
RTCLog(@"Ignoring sample rate change to %f due to interruption.", sample_rate);
return;
}
// If we don't have an audio unit yet, or the audio unit is uninitialized,
// there is no work to do.
if (!audio_unit_ || audio_unit_->GetState() < VoiceProcessingAudioUnit::kInitialized) {
return;
}
// The audio unit is already initialized or started.
// Check to see if the sample rate or buffer size has changed.
RTCAudioSession* session = [RTCAudioSession sharedInstance];
const double session_sample_rate = session.sampleRate;
const NSTimeInterval session_buffer_duration = session.IOBufferDuration;
const size_t session_frames_per_buffer =
static_cast<size_t>(session_sample_rate * session_buffer_duration + .5);
const double current_sample_rate = playout_parameters_.sample_rate();
const size_t current_frames_per_buffer = playout_parameters_.frames_per_buffer();
RTCLog(@"Handling playout sample rate change to: %f\n"
" Session sample rate: %f frames_per_buffer: %lu\n"
" ADM sample rate: %f frames_per_buffer: %lu",
sample_rate,
session_sample_rate,
(unsigned long)session_frames_per_buffer,
current_sample_rate,
(unsigned long)current_frames_per_buffer);
// Sample rate and buffer size are the same, no work to do.
if (std::abs(current_sample_rate - session_sample_rate) <= DBL_EPSILON &&
current_frames_per_buffer == session_frames_per_buffer) {
RTCLog(@"Ignoring sample rate change since audio parameters are intact.");
return;
}
// Extra sanity check to ensure that the new sample rate is valid.
if (session_sample_rate <= 0.0) {
RTCLogError(@"Sample rate is invalid: %f", session_sample_rate);
return;
}
// We need to adjust our format and buffer sizes.
// The stream format is about to be changed and it requires that we first
// stop and uninitialize the audio unit to deallocate its resources.
RTCLog(@"Stopping and uninitializing audio unit to adjust buffers.");
bool restart_audio_unit = false;
if (audio_unit_->GetState() == VoiceProcessingAudioUnit::kStarted) {
audio_unit_->Stop();
restart_audio_unit = true;
PrepareForNewStart();
}
if (audio_unit_->GetState() == VoiceProcessingAudioUnit::kInitialized) {
audio_unit_->Uninitialize();
}
// Allocate new buffers given the new stream format.
SetupAudioBuffersForActiveAudioSession();
// Initialize the audio unit again with the new sample rate.
RTC_DCHECK_EQ(playout_parameters_.sample_rate(), session_sample_rate);
if (!audio_unit_->Initialize(session_sample_rate)) {
RTCLogError(@"Failed to initialize the audio unit with sample rate: %f", session_sample_rate);
return;
}
// Restart the audio unit if it was already running.
if (restart_audio_unit && !audio_unit_->Start()) {
RTCLogError(@"Failed to start audio unit with sample rate: %f", session_sample_rate);
return;
}
RTCLog(@"Successfully handled sample rate change.");
}
void AudioDeviceIOS::HandlePlayoutGlitchDetected() {
RTC_DCHECK_RUN_ON(&thread_checker_);
// Don't update metrics if we're interrupted since a "glitch" is expected
// in this state.
if (is_interrupted_) {
RTCLog(@"Ignoring audio glitch due to interruption.");
return;
}
// Avoid doing glitch detection for two seconds after a volume change
// has been detected to reduce the risk of false alarm.
if (last_output_volume_change_time_ > 0 &&
rtc::TimeSince(last_output_volume_change_time_) < 2000) {
RTCLog(@"Ignoring audio glitch due to recent output volume change.");
return;
}
num_detected_playout_glitches_++;
RTCLog(@"Number of detected playout glitches: %lld", num_detected_playout_glitches_);
int64_t glitch_count = num_detected_playout_glitches_;
dispatch_async(dispatch_get_main_queue(), ^{
RTCAudioSession* session = [RTCAudioSession sharedInstance];
[session notifyDidDetectPlayoutGlitch:glitch_count];
});
}
void AudioDeviceIOS::HandleOutputVolumeChange() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Output volume change detected.");
// Store time of this detection so it can be used to defer detection of
// glitches too close in time to this event.
last_output_volume_change_time_ = rtc::TimeMillis();
}
void AudioDeviceIOS::UpdateAudioDeviceBuffer() {
LOGI() << "UpdateAudioDevicebuffer";
// AttachAudioBuffer() is called at construction by the main class but check
// just in case.
RTC_DCHECK(audio_device_buffer_) << "AttachAudioBuffer must be called first";
RTC_DCHECK_GT(playout_parameters_.sample_rate(), 0);
RTC_DCHECK_GT(record_parameters_.sample_rate(), 0);
RTC_DCHECK_EQ(playout_parameters_.channels(), 1);
RTC_DCHECK_EQ(record_parameters_.channels(), 1);
// Inform the audio device buffer (ADB) about the new audio format.
audio_device_buffer_->SetPlayoutSampleRate(playout_parameters_.sample_rate());
audio_device_buffer_->SetPlayoutChannels(playout_parameters_.channels());
audio_device_buffer_->SetRecordingSampleRate(record_parameters_.sample_rate());
audio_device_buffer_->SetRecordingChannels(record_parameters_.channels());
}
void AudioDeviceIOS::SetupAudioBuffersForActiveAudioSession() {
LOGI() << "SetupAudioBuffersForActiveAudioSession";
// Verify the current values once the audio session has been activated.
RTCAudioSession* session = [RTCAudioSession sharedInstance];
double sample_rate = session.sampleRate;
NSTimeInterval io_buffer_duration = session.IOBufferDuration;
RTCLog(@"%@", session);
// Log a warning message for the case when we are unable to set the preferred
// hardware sample rate but continue and use the non-ideal sample rate after
// reinitializing the audio parameters. Most BT headsets only support 8kHz or
// 16kHz.
RTCAudioSessionConfiguration* webRTCConfig = [RTCAudioSessionConfiguration webRTCConfiguration];
if (sample_rate != webRTCConfig.sampleRate) {
RTC_LOG(LS_WARNING) << "Unable to set the preferred sample rate";
}
// Crash reports indicates that it can happen in rare cases that the reported
// sample rate is less than or equal to zero. If that happens and if a valid
// sample rate has already been set during initialization, the best guess we
// can do is to reuse the current sample rate.
if (sample_rate <= DBL_EPSILON && playout_parameters_.sample_rate() > 0) {
RTCLogError(@"Reported rate is invalid: %f. "
"Using %d as sample rate instead.",
sample_rate, playout_parameters_.sample_rate());
sample_rate = playout_parameters_.sample_rate();
}
// At this stage, we also know the exact IO buffer duration and can add
// that info to the existing audio parameters where it is converted into
// number of audio frames.
// Example: IO buffer size = 0.008 seconds <=> 128 audio frames at 16kHz.
// Hence, 128 is the size we expect to see in upcoming render callbacks.
playout_parameters_.reset(sample_rate, playout_parameters_.channels(), io_buffer_duration);
RTC_DCHECK(playout_parameters_.is_complete());
record_parameters_.reset(sample_rate, record_parameters_.channels(), io_buffer_duration);
RTC_DCHECK(record_parameters_.is_complete());
RTC_LOG(LS_INFO) << " frames per I/O buffer: " << playout_parameters_.frames_per_buffer();
RTC_LOG(LS_INFO) << " bytes per I/O buffer: " << playout_parameters_.GetBytesPerBuffer();
RTC_DCHECK_EQ(playout_parameters_.GetBytesPerBuffer(), record_parameters_.GetBytesPerBuffer());
// Update the ADB parameters since the sample rate might have changed.
UpdateAudioDeviceBuffer();
// Create a modified audio buffer class which allows us to ask for,
// or deliver, any number of samples (and not only multiple of 10ms) to match
// the native audio unit buffer size.
RTC_DCHECK(audio_device_buffer_);
fine_audio_buffer_.reset(new FineAudioBuffer(audio_device_buffer_));
}
bool AudioDeviceIOS::CreateAudioUnit() {
RTC_DCHECK(!audio_unit_);
audio_unit_.reset(new VoiceProcessingAudioUnit(this));
if (!audio_unit_->Init()) {
audio_unit_.reset();
return false;
}
return true;
}
void AudioDeviceIOS::UpdateAudioUnit(bool can_play_or_record) {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Updating audio unit state. CanPlayOrRecord=%d IsInterrupted=%d",
can_play_or_record,
is_interrupted_);
if (is_interrupted_) {
RTCLog(@"Ignoring audio unit update due to interruption.");
return;
}
// If we're not initialized we don't need to do anything. Audio unit will
// be initialized on initialization.
if (!audio_is_initialized_) return;
// If we're initialized, we must have an audio unit.
RTC_DCHECK(audio_unit_);
bool should_initialize_audio_unit = false;
bool should_uninitialize_audio_unit = false;
bool should_start_audio_unit = false;
bool should_stop_audio_unit = false;
switch (audio_unit_->GetState()) {
case VoiceProcessingAudioUnit::kInitRequired:
RTCLog(@"VPAU state: InitRequired");
RTC_NOTREACHED();
break;
case VoiceProcessingAudioUnit::kUninitialized:
RTCLog(@"VPAU state: Uninitialized");
should_initialize_audio_unit = can_play_or_record;
should_start_audio_unit = should_initialize_audio_unit && (playing_ || recording_);
break;
case VoiceProcessingAudioUnit::kInitialized:
RTCLog(@"VPAU state: Initialized");
should_start_audio_unit = can_play_or_record && (playing_ || recording_);
should_uninitialize_audio_unit = !can_play_or_record;
break;
case VoiceProcessingAudioUnit::kStarted:
RTCLog(@"VPAU state: Started");
RTC_DCHECK(playing_ || recording_);
should_stop_audio_unit = !can_play_or_record;
should_uninitialize_audio_unit = should_stop_audio_unit;
break;
}
if (should_initialize_audio_unit) {
RTCLog(@"Initializing audio unit for UpdateAudioUnit");
ConfigureAudioSession();
SetupAudioBuffersForActiveAudioSession();
if (!audio_unit_->Initialize(playout_parameters_.sample_rate())) {
RTCLogError(@"Failed to initialize audio unit.");
return;
}
}
if (should_start_audio_unit) {
RTCLog(@"Starting audio unit for UpdateAudioUnit");
// Log session settings before trying to start audio streaming.
RTCAudioSession* session = [RTCAudioSession sharedInstance];
RTCLog(@"%@", session);
if (!audio_unit_->Start()) {
RTCLogError(@"Failed to start audio unit.");
return;
}
}
if (should_stop_audio_unit) {
RTCLog(@"Stopping audio unit for UpdateAudioUnit");
if (!audio_unit_->Stop()) {
RTCLogError(@"Failed to stop audio unit.");
return;
}
}
if (should_uninitialize_audio_unit) {
RTCLog(@"Uninitializing audio unit for UpdateAudioUnit");
audio_unit_->Uninitialize();
UnconfigureAudioSession();
}
}
bool AudioDeviceIOS::ConfigureAudioSession() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Configuring audio session.");
if (has_configured_session_) {
RTCLogWarning(@"Audio session already configured.");
return false;
}
RTCAudioSession* session = [RTCAudioSession sharedInstance];
[session lockForConfiguration];
bool success = [session configureWebRTCSession:nil];
[session unlockForConfiguration];
if (success) {
has_configured_session_ = true;
RTCLog(@"Configured audio session.");
} else {
RTCLog(@"Failed to configure audio session.");
}
return success;
}
void AudioDeviceIOS::UnconfigureAudioSession() {
RTC_DCHECK_RUN_ON(&thread_checker_);
RTCLog(@"Unconfiguring audio session.");
if (!has_configured_session_) {
RTCLogWarning(@"Audio session already unconfigured.");
return;
}
RTCAudioSession* session = [RTCAudioSession sharedInstance];
[session lockForConfiguration];
[session unconfigureWebRTCSession:nil];
[session unlockForConfiguration];
has_configured_session_ = false;
RTCLog(@"Unconfigured audio session.");
}
bool AudioDeviceIOS::InitPlayOrRecord() {
LOGI() << "InitPlayOrRecord";
RTC_DCHECK_RUN_ON(&thread_checker_);
// There should be no audio unit at this point.
if (!CreateAudioUnit()) {
return false;
}
RTCAudioSession* session = [RTCAudioSession sharedInstance];
// Subscribe to audio session events.
[session pushDelegate:audio_session_observer_];
is_interrupted_ = session.isInterrupted ? true : false;
// Lock the session to make configuration changes.
[session lockForConfiguration];
NSError* error = nil;
if (![session beginWebRTCSession:&error]) {
[session unlockForConfiguration];
RTCLogError(@"Failed to begin WebRTC session: %@", error.localizedDescription);
audio_unit_.reset();
return false;
}
// If we are ready to play or record, and if the audio session can be
// configured, then initialize the audio unit.
if (session.canPlayOrRecord) {
if (!ConfigureAudioSession()) {
// One possible reason for failure is if an attempt was made to use the
// audio session during or after a Media Services failure.
// See AVAudioSessionErrorCodeMediaServicesFailed for details.
[session unlockForConfiguration];
audio_unit_.reset();
return false;
}
SetupAudioBuffersForActiveAudioSession();
audio_unit_->Initialize(playout_parameters_.sample_rate());
}
// Release the lock.
[session unlockForConfiguration];
return true;
}
void AudioDeviceIOS::ShutdownPlayOrRecord() {
LOGI() << "ShutdownPlayOrRecord";
RTC_DCHECK_RUN_ON(&thread_checker_);
// Stop the audio unit to prevent any additional audio callbacks.
audio_unit_->Stop();
// Close and delete the voice-processing I/O unit.
audio_unit_.reset();
// Detach thread checker for the AURemoteIO::IOThread to ensure that the
// next session uses a fresh thread id.
io_thread_checker_.DetachFromThread();
// Remove audio session notification observers.
RTCAudioSession* session = [RTCAudioSession sharedInstance];
[session removeDelegate:audio_session_observer_];
// All I/O should be stopped or paused prior to deactivating the audio
// session, hence we deactivate as last action.
[session lockForConfiguration];
UnconfigureAudioSession();
[session endWebRTCSession:nil];
[session unlockForConfiguration];
}
void AudioDeviceIOS::PrepareForNewStart() {
LOGI() << "PrepareForNewStart";
// The audio unit has been stopped and preparations are needed for an upcoming
// restart. It will result in audio callbacks from a new native I/O thread
// which means that we must detach thread checkers here to be prepared for an
// upcoming new audio stream.
io_thread_checker_.DetachFromThread();
}
} // namespace webrtc

View file

@ -1,205 +0,0 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_device/ios/audio_device_ios.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
int32_t AudioDeviceIOS::ActiveAudioLayer(AudioDeviceModule::AudioLayer& audioLayer) const {
audioLayer = AudioDeviceModule::kPlatformDefaultAudio;
return 0;
}
int16_t AudioDeviceIOS::PlayoutDevices() {
// TODO(henrika): improve.
RTC_LOG_F(LS_WARNING) << "Not implemented";
return (int16_t)1;
}
int16_t AudioDeviceIOS::RecordingDevices() {
// TODO(henrika): improve.
RTC_LOG_F(LS_WARNING) << "Not implemented";
return (int16_t)1;
}
int32_t AudioDeviceIOS::InitSpeaker() {
return 0;
}
bool AudioDeviceIOS::SpeakerIsInitialized() const {
return true;
}
int32_t AudioDeviceIOS::SpeakerVolumeIsAvailable(bool& available) {
available = false;
return 0;
}
int32_t AudioDeviceIOS::SetSpeakerVolume(uint32_t volume) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::SpeakerVolume(uint32_t& volume) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::MaxSpeakerVolume(uint32_t& maxVolume) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::MinSpeakerVolume(uint32_t& minVolume) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::SpeakerMuteIsAvailable(bool& available) {
available = false;
return 0;
}
int32_t AudioDeviceIOS::SetSpeakerMute(bool enable) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::SpeakerMute(bool& enabled) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::SetPlayoutDevice(uint16_t index) {
RTC_LOG_F(LS_WARNING) << "Not implemented";
return 0;
}
int32_t AudioDeviceIOS::SetPlayoutDevice(AudioDeviceModule::WindowsDeviceType) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::InitMicrophone() {
return 0;
}
bool AudioDeviceIOS::MicrophoneIsInitialized() const {
return true;
}
int32_t AudioDeviceIOS::MicrophoneMuteIsAvailable(bool& available) {
available = false;
return 0;
}
int32_t AudioDeviceIOS::SetMicrophoneMute(bool enable) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::MicrophoneMute(bool& enabled) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::StereoRecordingIsAvailable(bool& available) {
available = false;
return 0;
}
int32_t AudioDeviceIOS::SetStereoRecording(bool enable) {
RTC_LOG_F(LS_WARNING) << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::StereoRecording(bool& enabled) const {
enabled = false;
return 0;
}
int32_t AudioDeviceIOS::StereoPlayoutIsAvailable(bool& available) {
available = false;
return 0;
}
int32_t AudioDeviceIOS::SetStereoPlayout(bool enable) {
RTC_LOG_F(LS_WARNING) << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::StereoPlayout(bool& enabled) const {
enabled = false;
return 0;
}
int32_t AudioDeviceIOS::MicrophoneVolumeIsAvailable(bool& available) {
available = false;
return 0;
}
int32_t AudioDeviceIOS::SetMicrophoneVolume(uint32_t volume) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::MicrophoneVolume(uint32_t& volume) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::MaxMicrophoneVolume(uint32_t& maxVolume) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::MinMicrophoneVolume(uint32_t& minVolume) const {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::PlayoutDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::RecordingDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::SetRecordingDevice(uint16_t index) {
RTC_LOG_F(LS_WARNING) << "Not implemented";
return 0;
}
int32_t AudioDeviceIOS::SetRecordingDevice(AudioDeviceModule::WindowsDeviceType) {
RTC_NOTREACHED() << "Not implemented";
return -1;
}
int32_t AudioDeviceIOS::PlayoutIsAvailable(bool& available) {
available = true;
return 0;
}
int32_t AudioDeviceIOS::RecordingIsAvailable(bool& available) {
available = true;
return 0;
}
} // namespace webrtc

View file

@ -1,877 +0,0 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <limits>
#include <list>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "api/scoped_refptr.h"
#include "modules/audio_device/audio_device_impl.h"
#include "modules/audio_device/include/audio_device.h"
#include "modules/audio_device/include/mock_audio_transport.h"
#include "modules/audio_device/ios/audio_device_ios.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/event.h"
#include "rtc_base/format_macros.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
#import "sdk/objc/components/audio/RTCAudioSession+Private.h"
#import "sdk/objc/components/audio/RTCAudioSession.h"
using std::cout;
using std::endl;
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Gt;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::NotNull;
using ::testing::Return;
// #define ENABLE_DEBUG_PRINTF
#ifdef ENABLE_DEBUG_PRINTF
#define PRINTD(...) fprintf(stderr, __VA_ARGS__);
#else
#define PRINTD(...) ((void)0)
#endif
#define PRINT(...) fprintf(stderr, __VA_ARGS__);
namespace webrtc {
// Number of callbacks (input or output) the tests waits for before we set
// an event indicating that the test was OK.
static const size_t kNumCallbacks = 10;
// Max amount of time we wait for an event to be set while counting callbacks.
static const int kTestTimeOutInMilliseconds = 10 * 1000;
// Number of bits per PCM audio sample.
static const size_t kBitsPerSample = 16;
// Number of bytes per PCM audio sample.
static const size_t kBytesPerSample = kBitsPerSample / 8;
// Average number of audio callbacks per second assuming 10ms packet size.
static const size_t kNumCallbacksPerSecond = 100;
// Play out a test file during this time (unit is in seconds).
static const int kFilePlayTimeInSec = 15;
// Run the full-duplex test during this time (unit is in seconds).
// Note that first |kNumIgnoreFirstCallbacks| are ignored.
static const int kFullDuplexTimeInSec = 10;
// Wait for the callback sequence to stabilize by ignoring this amount of the
// initial callbacks (avoids initial FIFO access).
// Only used in the RunPlayoutAndRecordingInFullDuplex test.
static const size_t kNumIgnoreFirstCallbacks = 50;
// Sets the number of impulses per second in the latency test.
// TODO(henrika): fine tune this setting for iOS.
static const int kImpulseFrequencyInHz = 1;
// Length of round-trip latency measurements. Number of transmitted impulses
// is kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1.
// TODO(henrika): fine tune this setting for iOS.
static const int kMeasureLatencyTimeInSec = 5;
// Utilized in round-trip latency measurements to avoid capturing noise samples.
// TODO(henrika): fine tune this setting for iOS.
static const int kImpulseThreshold = 50;
static const char kTag[] = "[..........] ";
enum TransportType {
kPlayout = 0x1,
kRecording = 0x2,
};
// Interface for processing the audio stream. Real implementations can e.g.
// run audio in loopback, read audio from a file or perform latency
// measurements.
class AudioStreamInterface {
public:
virtual void Write(const void* source, size_t num_frames) = 0;
virtual void Read(void* destination, size_t num_frames) = 0;
protected:
virtual ~AudioStreamInterface() {}
};
// Reads audio samples from a PCM file where the file is stored in memory at
// construction.
class FileAudioStream : public AudioStreamInterface {
public:
FileAudioStream(size_t num_callbacks,
const std::string& file_name,
int sample_rate)
: file_size_in_bytes_(0), sample_rate_(sample_rate), file_pos_(0) {
file_size_in_bytes_ = test::GetFileSize(file_name);
sample_rate_ = sample_rate;
EXPECT_GE(file_size_in_callbacks(), num_callbacks)
<< "Size of test file is not large enough to last during the test.";
const size_t num_16bit_samples =
test::GetFileSize(file_name) / kBytesPerSample;
file_.reset(new int16_t[num_16bit_samples]);
FILE* audio_file = fopen(file_name.c_str(), "rb");
EXPECT_NE(audio_file, nullptr);
size_t num_samples_read =
fread(file_.get(), sizeof(int16_t), num_16bit_samples, audio_file);
EXPECT_EQ(num_samples_read, num_16bit_samples);
fclose(audio_file);
}
// AudioStreamInterface::Write() is not implemented.
void Write(const void* source, size_t num_frames) override {}
// Read samples from file stored in memory (at construction) and copy
// |num_frames| (<=> 10ms) to the |destination| byte buffer.
void Read(void* destination, size_t num_frames) override {
memcpy(destination, static_cast<int16_t*>(&file_[file_pos_]),
num_frames * sizeof(int16_t));
file_pos_ += num_frames;
}
int file_size_in_seconds() const {
return static_cast<int>(
file_size_in_bytes_ / (kBytesPerSample * sample_rate_));
}
size_t file_size_in_callbacks() const {
return file_size_in_seconds() * kNumCallbacksPerSecond;
}
private:
size_t file_size_in_bytes_;
int sample_rate_;
std::unique_ptr<int16_t[]> file_;
size_t file_pos_;
};
// Simple first in first out (FIFO) class that wraps a list of 16-bit audio
// buffers of fixed size and allows Write and Read operations. The idea is to
// store recorded audio buffers (using Write) and then read (using Read) these
// stored buffers with as short delay as possible when the audio layer needs
// data to play out. The number of buffers in the FIFO will stabilize under
// normal conditions since there will be a balance between Write and Read calls.
// The container is a std::list container and access is protected with a lock
// since both sides (playout and recording) are driven by its own thread.
class FifoAudioStream : public AudioStreamInterface {
public:
explicit FifoAudioStream(size_t frames_per_buffer)
: frames_per_buffer_(frames_per_buffer),
bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
fifo_(new AudioBufferList),
largest_size_(0),
total_written_elements_(0),
write_count_(0) {
EXPECT_NE(fifo_.get(), nullptr);
}
~FifoAudioStream() { Flush(); }
// Allocate new memory, copy |num_frames| samples from |source| into memory
// and add pointer to the memory location to end of the list.
// Increases the size of the FIFO by one element.
void Write(const void* source, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
PRINTD("+");
if (write_count_++ < kNumIgnoreFirstCallbacks) {
return;
}
int16_t* memory = new int16_t[frames_per_buffer_];
memcpy(static_cast<int16_t*>(&memory[0]), source, bytes_per_buffer_);
rtc::CritScope lock(&lock_);
fifo_->push_back(memory);
const size_t size = fifo_->size();
if (size > largest_size_) {
largest_size_ = size;
PRINTD("(%" PRIuS ")", largest_size_);
}
total_written_elements_ += size;
}
// Read pointer to data buffer from front of list, copy |num_frames| of stored
// data into |destination| and delete the utilized memory allocation.
// Decreases the size of the FIFO by one element.
void Read(void* destination, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
PRINTD("-");
rtc::CritScope lock(&lock_);
if (fifo_->empty()) {
memset(destination, 0, bytes_per_buffer_);
} else {
int16_t* memory = fifo_->front();
fifo_->pop_front();
memcpy(destination, static_cast<int16_t*>(&memory[0]), bytes_per_buffer_);
delete memory;
}
}
size_t size() const { return fifo_->size(); }
size_t largest_size() const { return largest_size_; }
size_t average_size() const {
return (total_written_elements_ == 0)
? 0.0
: 0.5 +
static_cast<float>(total_written_elements_) /
(write_count_ - kNumIgnoreFirstCallbacks);
}
private:
void Flush() {
for (auto it = fifo_->begin(); it != fifo_->end(); ++it) {
delete *it;
}
fifo_->clear();
}
using AudioBufferList = std::list<int16_t*>;
rtc::CriticalSection lock_;
const size_t frames_per_buffer_;
const size_t bytes_per_buffer_;
std::unique_ptr<AudioBufferList> fifo_;
size_t largest_size_;
size_t total_written_elements_;
size_t write_count_;
};
// Inserts periodic impulses and measures the latency between the time of
// transmission and time of receiving the same impulse.
// Usage requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
class LatencyMeasuringAudioStream : public AudioStreamInterface {
public:
explicit LatencyMeasuringAudioStream(size_t frames_per_buffer)
: frames_per_buffer_(frames_per_buffer),
bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
play_count_(0),
rec_count_(0),
pulse_time_(0) {}
// Insert periodic impulses in first two samples of |destination|.
void Read(void* destination, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
if (play_count_ == 0) {
PRINT("[");
}
play_count_++;
memset(destination, 0, bytes_per_buffer_);
if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) {
if (pulse_time_ == 0) {
pulse_time_ = rtc::TimeMillis();
}
PRINT(".");
const int16_t impulse = std::numeric_limits<int16_t>::max();
int16_t* ptr16 = static_cast<int16_t*>(destination);
for (size_t i = 0; i < 2; ++i) {
ptr16[i] = impulse;
}
}
}
// Detect received impulses in |source|, derive time between transmission and
// detection and add the calculated delay to list of latencies.
void Write(const void* source, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
rec_count_++;
if (pulse_time_ == 0) {
// Avoid detection of new impulse response until a new impulse has
// been transmitted (sets |pulse_time_| to value larger than zero).
return;
}
const int16_t* ptr16 = static_cast<const int16_t*>(source);
std::vector<int16_t> vec(ptr16, ptr16 + num_frames);
// Find max value in the audio buffer.
int max = *std::max_element(vec.begin(), vec.end());
// Find index (element position in vector) of the max element.
int index_of_max =
std::distance(vec.begin(), std::find(vec.begin(), vec.end(), max));
if (max > kImpulseThreshold) {
PRINTD("(%d,%d)", max, index_of_max);
int64_t now_time = rtc::TimeMillis();
int extra_delay = IndexToMilliseconds(static_cast<double>(index_of_max));
PRINTD("[%d]", static_cast<int>(now_time - pulse_time_));
PRINTD("[%d]", extra_delay);
// Total latency is the difference between transmit time and detection
// tome plus the extra delay within the buffer in which we detected the
// received impulse. It is transmitted at sample 0 but can be received
// at sample N where N > 0. The term |extra_delay| accounts for N and it
// is a value between 0 and 10ms.
latencies_.push_back(now_time - pulse_time_ + extra_delay);
pulse_time_ = 0;
} else {
PRINTD("-");
}
}
size_t num_latency_values() const { return latencies_.size(); }
int min_latency() const {
if (latencies_.empty())
return 0;
return *std::min_element(latencies_.begin(), latencies_.end());
}
int max_latency() const {
if (latencies_.empty())
return 0;
return *std::max_element(latencies_.begin(), latencies_.end());
}
int average_latency() const {
if (latencies_.empty())
return 0;
return 0.5 +
static_cast<double>(
std::accumulate(latencies_.begin(), latencies_.end(), 0)) /
latencies_.size();
}
void PrintResults() const {
PRINT("] ");
for (auto it = latencies_.begin(); it != latencies_.end(); ++it) {
PRINT("%d ", *it);
}
PRINT("\n");
PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag, min_latency(),
max_latency(), average_latency());
}
int IndexToMilliseconds(double index) const {
return 10.0 * (index / frames_per_buffer_) + 0.5;
}
private:
const size_t frames_per_buffer_;
const size_t bytes_per_buffer_;
size_t play_count_;
size_t rec_count_;
int64_t pulse_time_;
std::vector<int> latencies_;
};
// Mocks the AudioTransport object and proxies actions for the two callbacks
// (RecordedDataIsAvailable and NeedMorePlayData) to different implementations
// of AudioStreamInterface.
class MockAudioTransportIOS : public test::MockAudioTransport {
public:
explicit MockAudioTransportIOS(int type)
: num_callbacks_(0),
type_(type),
play_count_(0),
rec_count_(0),
audio_stream_(nullptr) {}
virtual ~MockAudioTransportIOS() {}
// Set default actions of the mock object. We are delegating to fake
// implementations (of AudioStreamInterface) here.
void HandleCallbacks(rtc::Event* test_is_done,
AudioStreamInterface* audio_stream,
size_t num_callbacks) {
test_is_done_ = test_is_done;
audio_stream_ = audio_stream;
num_callbacks_ = num_callbacks;
if (play_mode()) {
ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransportIOS::RealNeedMorePlayData));
}
if (rec_mode()) {
ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _))
.WillByDefault(Invoke(
this, &MockAudioTransportIOS::RealRecordedDataIsAvailable));
}
}
int32_t RealRecordedDataIsAvailable(const void* audioSamples,
const size_t nSamples,
const size_t nBytesPerSample,
const size_t nChannels,
const uint32_t samplesPerSec,
const uint32_t totalDelayMS,
const int32_t clockDrift,
const uint32_t currentMicLevel,
const bool keyPressed,
uint32_t& newMicLevel) {
EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks.";
rec_count_++;
// Process the recorded audio stream if an AudioStreamInterface
// implementation exists.
if (audio_stream_) {
audio_stream_->Write(audioSamples, nSamples);
}
if (ReceivedEnoughCallbacks()) {
if (test_is_done_) {
test_is_done_->Set();
}
}
return 0;
}
int32_t RealNeedMorePlayData(const size_t nSamples,
const size_t nBytesPerSample,
const size_t nChannels,
const uint32_t samplesPerSec,
void* audioSamples,
size_t& nSamplesOut,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) {
EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks.";
play_count_++;
nSamplesOut = nSamples;
// Read (possibly processed) audio stream samples to be played out if an
// AudioStreamInterface implementation exists.
if (audio_stream_) {
audio_stream_->Read(audioSamples, nSamples);
} else {
memset(audioSamples, 0, nSamples * nBytesPerSample);
}
if (ReceivedEnoughCallbacks()) {
if (test_is_done_) {
test_is_done_->Set();
}
}
return 0;
}
bool ReceivedEnoughCallbacks() {
bool recording_done = false;
if (rec_mode())
recording_done = rec_count_ >= num_callbacks_;
else
recording_done = true;
bool playout_done = false;
if (play_mode())
playout_done = play_count_ >= num_callbacks_;
else
playout_done = true;
return recording_done && playout_done;
}
bool play_mode() const { return type_ & kPlayout; }
bool rec_mode() const { return type_ & kRecording; }
private:
rtc::Event* test_is_done_;
size_t num_callbacks_;
int type_;
size_t play_count_;
size_t rec_count_;
AudioStreamInterface* audio_stream_;
};
// AudioDeviceTest test fixture.
class AudioDeviceTest : public ::testing::Test {
protected:
AudioDeviceTest() {
old_sev_ = rtc::LogMessage::GetLogToDebug();
// Set suitable logging level here. Change to rtc::LS_INFO for more verbose
// output. See webrtc/rtc_base/logging.h for complete list of options.
rtc::LogMessage::LogToDebug(rtc::LS_INFO);
// Add extra logging fields here (timestamps and thread id).
// rtc::LogMessage::LogTimestamps();
rtc::LogMessage::LogThreads();
// Creates an audio device using a default audio layer.
audio_device_ = CreateAudioDevice(AudioDeviceModule::kPlatformDefaultAudio);
EXPECT_NE(audio_device_.get(), nullptr);
EXPECT_EQ(0, audio_device_->Init());
EXPECT_EQ(0,
audio_device()->GetPlayoutAudioParameters(&playout_parameters_));
EXPECT_EQ(0, audio_device()->GetRecordAudioParameters(&record_parameters_));
}
virtual ~AudioDeviceTest() {
EXPECT_EQ(0, audio_device_->Terminate());
rtc::LogMessage::LogToDebug(old_sev_);
}
int playout_sample_rate() const { return playout_parameters_.sample_rate(); }
int record_sample_rate() const { return record_parameters_.sample_rate(); }
int playout_channels() const { return playout_parameters_.channels(); }
int record_channels() const { return record_parameters_.channels(); }
size_t playout_frames_per_10ms_buffer() const {
return playout_parameters_.frames_per_10ms_buffer();
}
size_t record_frames_per_10ms_buffer() const {
return record_parameters_.frames_per_10ms_buffer();
}
rtc::scoped_refptr<AudioDeviceModule> audio_device() const {
return audio_device_;
}
AudioDeviceModuleImpl* audio_device_impl() const {
return static_cast<AudioDeviceModuleImpl*>(audio_device_.get());
}
AudioDeviceBuffer* audio_device_buffer() const {
return audio_device_impl()->GetAudioDeviceBuffer();
}
rtc::scoped_refptr<AudioDeviceModule> CreateAudioDevice(
AudioDeviceModule::AudioLayer audio_layer) {
rtc::scoped_refptr<AudioDeviceModule> module(AudioDeviceModule::Create(audio_layer));
return module;
}
// Returns file name relative to the resource root given a sample rate.
std::string GetFileName(int sample_rate) {
EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100 ||
sample_rate == 16000);
char fname[64];
snprintf(fname, sizeof(fname), "audio_device/audio_short%d",
sample_rate / 1000);
std::string file_name(webrtc::test::ResourcePath(fname, "pcm"));
EXPECT_TRUE(test::FileExists(file_name));
#ifdef ENABLE_DEBUG_PRINTF
PRINTD("file name: %s\n", file_name.c_str());
const size_t bytes = test::GetFileSize(file_name);
PRINTD("file size: %" PRIuS " [bytes]\n", bytes);
PRINTD("file size: %" PRIuS " [samples]\n", bytes / kBytesPerSample);
const int seconds =
static_cast<int>(bytes / (sample_rate * kBytesPerSample));
PRINTD("file size: %d [secs]\n", seconds);
PRINTD("file size: %" PRIuS " [callbacks]\n",
seconds * kNumCallbacksPerSecond);
#endif
return file_name;
}
void StartPlayout() {
EXPECT_FALSE(audio_device()->Playing());
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_TRUE(audio_device()->Playing());
}
void StopPlayout() {
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->Playing());
}
void StartRecording() {
EXPECT_FALSE(audio_device()->Recording());
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
EXPECT_EQ(0, audio_device()->StartRecording());
EXPECT_TRUE(audio_device()->Recording());
}
void StopRecording() {
EXPECT_EQ(0, audio_device()->StopRecording());
EXPECT_FALSE(audio_device()->Recording());
}
rtc::Event test_is_done_;
rtc::scoped_refptr<AudioDeviceModule> audio_device_;
AudioParameters playout_parameters_;
AudioParameters record_parameters_;
rtc::LoggingSeverity old_sev_;
};
TEST_F(AudioDeviceTest, ConstructDestruct) {
// Using the test fixture to create and destruct the audio device module.
}
TEST_F(AudioDeviceTest, InitTerminate) {
// Initialization is part of the test fixture.
EXPECT_TRUE(audio_device()->Initialized());
EXPECT_EQ(0, audio_device()->Terminate());
EXPECT_FALSE(audio_device()->Initialized());
}
// Tests that playout can be initiated, started and stopped. No audio callback
// is registered in this test.
// Failing when running on real iOS devices: bugs.webrtc.org/6889.
TEST_F(AudioDeviceTest, DISABLED_StartStopPlayout) {
StartPlayout();
StopPlayout();
StartPlayout();
StopPlayout();
}
// Tests that recording can be initiated, started and stopped. No audio callback
// is registered in this test.
// Can sometimes fail when running on real devices: bugs.webrtc.org/7888.
TEST_F(AudioDeviceTest, DISABLED_StartStopRecording) {
StartRecording();
StopRecording();
StartRecording();
StopRecording();
}
// Verify that calling StopPlayout() will leave us in an uninitialized state
// which will require a new call to InitPlayout(). This test does not call
// StartPlayout() while being uninitialized since doing so will hit a
// RTC_DCHECK.
TEST_F(AudioDeviceTest, StopPlayoutRequiresInitToRestart) {
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
}
// Verify that we can create two ADMs and start playing on the second ADM.
// Only the first active instance shall activate an audio session and the
// last active instance shall deactivate the audio session. The test does not
// explicitly verify correct audio session calls but instead focuses on
// ensuring that audio starts for both ADMs.
// Failing when running on real iOS devices: bugs.webrtc.org/6889.
TEST_F(AudioDeviceTest, DISABLED_StartPlayoutOnTwoInstances) {
// Create and initialize a second/extra ADM instance. The default ADM is
// created by the test harness.
rtc::scoped_refptr<AudioDeviceModule> second_audio_device =
CreateAudioDevice(AudioDeviceModule::kPlatformDefaultAudio);
EXPECT_NE(second_audio_device.get(), nullptr);
EXPECT_EQ(0, second_audio_device->Init());
// Start playout for the default ADM but don't wait here. Instead use the
// upcoming second stream for that. We set the same expectation on number
// of callbacks as for the second stream.
NiceMock<MockAudioTransportIOS> mock(kPlayout);
mock.HandleCallbacks(nullptr, nullptr, 0);
EXPECT_CALL(
mock, NeedMorePlayData(playout_frames_per_10ms_buffer(), kBytesPerSample,
playout_channels(), playout_sample_rate(),
NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
// Initialize playout for the second ADM. If all is OK, the second ADM shall
// reuse the audio session activated when the first ADM started playing.
// This call will also ensure that we avoid a problem related to initializing
// two different audio unit instances back to back (see webrtc:5166 for
// details).
EXPECT_EQ(0, second_audio_device->InitPlayout());
EXPECT_TRUE(second_audio_device->PlayoutIsInitialized());
// Start playout for the second ADM and verify that it starts as intended.
// Passing this test ensures that initialization of the second audio unit
// has been done successfully and that there is no conflict with the already
// playing first ADM.
MockAudioTransportIOS mock2(kPlayout);
mock2.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(
mock2, NeedMorePlayData(playout_frames_per_10ms_buffer(), kBytesPerSample,
playout_channels(), playout_sample_rate(),
NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, second_audio_device->RegisterAudioCallback(&mock2));
EXPECT_EQ(0, second_audio_device->StartPlayout());
EXPECT_TRUE(second_audio_device->Playing());
test_is_done_.Wait(kTestTimeOutInMilliseconds);
EXPECT_EQ(0, second_audio_device->StopPlayout());
EXPECT_FALSE(second_audio_device->Playing());
EXPECT_FALSE(second_audio_device->PlayoutIsInitialized());
EXPECT_EQ(0, second_audio_device->Terminate());
}
// Start playout and verify that the native audio layer starts asking for real
// audio samples to play out using the NeedMorePlayData callback.
TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) {
MockAudioTransportIOS mock(kPlayout);
mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(),
kBytesPerSample, playout_channels(),
playout_sample_rate(), NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// Start recording and verify that the native audio layer starts feeding real
// audio samples via the RecordedDataIsAvailable callback.
TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) {
MockAudioTransportIOS mock(kRecording);
mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(mock,
RecordedDataIsAvailable(
NotNull(), record_frames_per_10ms_buffer(), kBytesPerSample,
record_channels(), record_sample_rate(),
_, // TODO(henrika): fix delay
0, 0, false, _)).Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopRecording();
}
// Start playout and recording (full-duplex audio) and verify that audio is
// active in both directions.
TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) {
MockAudioTransportIOS mock(kPlayout | kRecording);
mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(),
kBytesPerSample, playout_channels(),
playout_sample_rate(), NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_CALL(mock,
RecordedDataIsAvailable(
NotNull(), record_frames_per_10ms_buffer(), kBytesPerSample,
record_channels(), record_sample_rate(),
_, // TODO(henrika): fix delay
0, 0, false, _)).Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
StartRecording();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopRecording();
StopPlayout();
}
// Start playout and read audio from an external PCM file when the audio layer
// asks for data to play out. Real audio is played out in this test but it does
// not contain any explicit verification that the audio quality is perfect.
TEST_F(AudioDeviceTest, RunPlayoutWithFileAsSource) {
// TODO(henrika): extend test when mono output is supported.
EXPECT_EQ(1, playout_channels());
NiceMock<MockAudioTransportIOS> mock(kPlayout);
const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond;
std::string file_name = GetFileName(playout_sample_rate());
std::unique_ptr<FileAudioStream> file_audio_stream(
new FileAudioStream(num_callbacks, file_name, playout_sample_rate()));
mock.HandleCallbacks(&test_is_done_, file_audio_stream.get(), num_callbacks);
// SetMaxPlayoutVolume();
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
TEST_F(AudioDeviceTest, Devices) {
// Device enumeration is not supported. Verify fixed values only.
EXPECT_EQ(1, audio_device()->PlayoutDevices());
EXPECT_EQ(1, audio_device()->RecordingDevices());
}
// Start playout and recording and store recorded data in an intermediate FIFO
// buffer from which the playout side then reads its samples in the same order
// as they were stored. Under ideal circumstances, a callback sequence would
// look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-'
// means 'packet played'. Under such conditions, the FIFO would only contain
// one packet on average. However, under more realistic conditions, the size
// of the FIFO will vary more due to an unbalance between the two sides.
// This test tries to verify that the device maintains a balanced callback-
// sequence by running in loopback for ten seconds while measuring the size
// (max and average) of the FIFO. The size of the FIFO is increased by the
// recording side and decreased by the playout side.
// TODO(henrika): tune the final test parameters after running tests on several
// different devices.
TEST_F(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) {
EXPECT_EQ(record_channels(), playout_channels());
EXPECT_EQ(record_sample_rate(), playout_sample_rate());
NiceMock<MockAudioTransportIOS> mock(kPlayout | kRecording);
std::unique_ptr<FifoAudioStream> fifo_audio_stream(
new FifoAudioStream(playout_frames_per_10ms_buffer()));
mock.HandleCallbacks(
&test_is_done_, fifo_audio_stream.get(), kFullDuplexTimeInSec * kNumCallbacksPerSecond);
// SetMaxPlayoutVolume();
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
StartPlayout();
test_is_done_.Wait(std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec));
StopPlayout();
StopRecording();
EXPECT_LE(fifo_audio_stream->average_size(), 10u);
EXPECT_LE(fifo_audio_stream->largest_size(), 20u);
}
// Measures loopback latency and reports the min, max and average values for
// a full duplex audio session.
// The latency is measured like so:
// - Insert impulses periodically on the output side.
// - Detect the impulses on the input side.
// - Measure the time difference between the transmit time and receive time.
// - Store time differences in a vector and calculate min, max and average.
// This test requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) {
EXPECT_EQ(record_channels(), playout_channels());
EXPECT_EQ(record_sample_rate(), playout_sample_rate());
NiceMock<MockAudioTransportIOS> mock(kPlayout | kRecording);
std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream(
new LatencyMeasuringAudioStream(playout_frames_per_10ms_buffer()));
mock.HandleCallbacks(&test_is_done_,
latency_audio_stream.get(),
kMeasureLatencyTimeInSec * kNumCallbacksPerSecond);
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
// SetMaxPlayoutVolume();
// DisableBuiltInAECIfAvailable();
StartRecording();
StartPlayout();
test_is_done_.Wait(std::max(kTestTimeOutInMilliseconds, 1000 * kMeasureLatencyTimeInSec));
StopPlayout();
StopRecording();
// Verify that the correct number of transmitted impulses are detected.
EXPECT_EQ(latency_audio_stream->num_latency_values(),
static_cast<size_t>(
kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1));
latency_audio_stream->PrintResults();
}
// Verifies that the AudioDeviceIOS is_interrupted_ flag is reset correctly
// after an iOS AVAudioSessionInterruptionTypeEnded notification event.
// AudioDeviceIOS listens to RTCAudioSession interrupted notifications by:
// - In AudioDeviceIOS.InitPlayOrRecord registers its audio_session_observer_
// callback with RTCAudioSession's delegate list.
// - When RTCAudioSession receives an iOS audio interrupted notification, it
// passes the notification to callbacks in its delegate list which sets
// AudioDeviceIOS's is_interrupted_ flag to true.
// - When AudioDeviceIOS.ShutdownPlayOrRecord is called, its
// audio_session_observer_ callback is removed from RTCAudioSessions's
// delegate list.
// So if RTCAudioSession receives an iOS end audio interruption notification,
// AudioDeviceIOS is not notified as its callback is not in RTCAudioSession's
// delegate list. This causes AudioDeviceIOS's is_interrupted_ flag to be in
// the wrong (true) state and the audio session will ignore audio changes.
// As RTCAudioSession keeps its own interrupted state, the fix is to initialize
// AudioDeviceIOS's is_interrupted_ flag to RTCAudioSession's isInterrupted
// flag in AudioDeviceIOS.InitPlayOrRecord.
TEST_F(AudioDeviceTest, testInterruptedAudioSession) {
RTCAudioSession *session = [RTCAudioSession sharedInstance];
std::unique_ptr<webrtc::AudioDeviceIOS> audio_device;
audio_device.reset(new webrtc::AudioDeviceIOS());
std::unique_ptr<webrtc::AudioDeviceBuffer> audio_buffer;
audio_buffer.reset(new webrtc::AudioDeviceBuffer());
audio_device->AttachAudioBuffer(audio_buffer.get());
audio_device->Init();
audio_device->InitPlayout();
// Force interruption.
[session notifyDidBeginInterruption];
// Wait for notification to propagate.
rtc::MessageQueueManager::ProcessAllMessageQueuesForTesting();
EXPECT_TRUE(audio_device->is_interrupted_);
// Force it for testing.
audio_device->playing_ = false;
audio_device->ShutdownPlayOrRecord();
// Force it for testing.
audio_device->audio_is_initialized_ = false;
[session notifyDidEndInterruptionWithShouldResumeSession:YES];
// Wait for notification to propagate.
rtc::MessageQueueManager::ProcessAllMessageQueuesForTesting();
EXPECT_TRUE(audio_device->is_interrupted_);
audio_device->Init();
audio_device->InitPlayout();
EXPECT_FALSE(audio_device->is_interrupted_);
}
} // namespace webrtc

View file

@ -1,42 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_DEVICE_IOS_AUDIO_SESSION_OBSERVER_H_
#define MODULES_AUDIO_DEVICE_IOS_AUDIO_SESSION_OBSERVER_H_
#include "rtc_base/async_invoker.h"
#include "rtc_base/thread.h"
namespace webrtc {
// Observer interface for listening to AVAudioSession events.
class AudioSessionObserver {
public:
// Called when audio session interruption begins.
virtual void OnInterruptionBegin() = 0;
// Called when audio session interruption ends.
virtual void OnInterruptionEnd() = 0;
// Called when audio route changes.
virtual void OnValidRouteChange() = 0;
// Called when the ability to play or record changes.
virtual void OnCanPlayOrRecordChange(bool can_play_or_record) = 0;
virtual void OnChangedOutputVolume() = 0;
protected:
virtual ~AudioSessionObserver() {}
};
} // namespace webrtc
#endif // MODULES_AUDIO_DEVICE_IOS_AUDIO_SESSION_OBSERVER_H_

View file

@ -1,11 +0,0 @@
/*
* Copyright 2017 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#import "sdk/objc/components/audio/RTCAudioSession.h"

View file

@ -1,11 +0,0 @@
/*
* Copyright 2017 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#import "sdk/objc/components/audio/RTCAudioSessionConfiguration.h"

View file

@ -1,29 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#import "sdk/objc/components/audio/RTCAudioSession.h"
namespace webrtc {
class AudioSessionObserver;
}
/** Adapter that forwards RTCAudioSessionDelegate calls to the appropriate
* methods on the AudioSessionObserver.
*/
@interface RTCAudioSessionDelegateAdapter : NSObject <RTCAudioSessionDelegate>
- (instancetype)init NS_UNAVAILABLE;
/** |observer| is a raw pointer and should be kept alive
* for this object's lifetime.
*/
- (instancetype)initWithObserver:(webrtc::AudioSessionObserver *)observer NS_DESIGNATED_INITIALIZER;
@end

View file

@ -1,89 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#import "modules/audio_device/ios/objc/RTCAudioSessionDelegateAdapter.h"
#include "modules/audio_device/ios/audio_session_observer.h"
#import "sdk/objc/base/RTCLogging.h"
@implementation RTCAudioSessionDelegateAdapter {
webrtc::AudioSessionObserver *_observer;
}
- (instancetype)initWithObserver:(webrtc::AudioSessionObserver *)observer {
NSParameterAssert(observer);
if (self = [super init]) {
_observer = observer;
}
return self;
}
#pragma mark - RTCAudioSessionDelegate
- (void)audioSessionDidBeginInterruption:(RTCAudioSession *)session {
_observer->OnInterruptionBegin();
}
- (void)audioSessionDidEndInterruption:(RTCAudioSession *)session
shouldResumeSession:(BOOL)shouldResumeSession {
_observer->OnInterruptionEnd();
}
- (void)audioSessionDidChangeRoute:(RTCAudioSession *)session
reason:(AVAudioSessionRouteChangeReason)reason
previousRoute:(AVAudioSessionRouteDescription *)previousRoute {
switch (reason) {
case AVAudioSessionRouteChangeReasonUnknown:
case AVAudioSessionRouteChangeReasonNewDeviceAvailable:
case AVAudioSessionRouteChangeReasonOldDeviceUnavailable:
case AVAudioSessionRouteChangeReasonCategoryChange:
// It turns out that we see a category change (at least in iOS 9.2)
// when making a switch from a BT device to e.g. Speaker using the
// iOS Control Center and that we therefore must check if the sample
// rate has changed. And if so is the case, restart the audio unit.
case AVAudioSessionRouteChangeReasonOverride:
case AVAudioSessionRouteChangeReasonWakeFromSleep:
case AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory:
_observer->OnValidRouteChange();
break;
case AVAudioSessionRouteChangeReasonRouteConfigurationChange:
// The set of input and output ports has not changed, but their
// configuration has, e.g., a ports selected data source has
// changed. Ignore this type of route change since we are focusing
// on detecting headset changes.
RTCLog(@"Ignoring RouteConfigurationChange");
break;
}
}
- (void)audioSessionMediaServerTerminated:(RTCAudioSession *)session {
}
- (void)audioSessionMediaServerReset:(RTCAudioSession *)session {
}
- (void)audioSession:(RTCAudioSession *)session
didChangeCanPlayOrRecord:(BOOL)canPlayOrRecord {
_observer->OnCanPlayOrRecordChange(canPlayOrRecord);
}
- (void)audioSessionDidStartPlayOrRecord:(RTCAudioSession *)session {
}
- (void)audioSessionDidStopPlayOrRecord:(RTCAudioSession *)session {
}
- (void)audioSession:(RTCAudioSession *)audioSession
didChangeOutputVolume:(float)outputVolume {
_observer->OnChangedOutputVolume();
}
@end

View file

@ -1,137 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_DEVICE_IOS_VOICE_PROCESSING_AUDIO_UNIT_H_
#define MODULES_AUDIO_DEVICE_IOS_VOICE_PROCESSING_AUDIO_UNIT_H_
#include <AudioUnit/AudioUnit.h>
namespace webrtc {
class VoiceProcessingAudioUnitObserver {
public:
// Callback function called on a real-time priority I/O thread from the audio
// unit. This method is used to signal that recorded audio is available.
virtual OSStatus OnDeliverRecordedData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) = 0;
// Callback function called on a real-time priority I/O thread from the audio
// unit. This method is used to provide audio samples to the audio unit.
virtual OSStatus OnGetPlayoutData(AudioUnitRenderActionFlags* io_action_flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) = 0;
protected:
~VoiceProcessingAudioUnitObserver() {}
};
// Convenience class to abstract away the management of a Voice Processing
// I/O Audio Unit. The Voice Processing I/O unit has the same characteristics
// as the Remote I/O unit (supports full duplex low-latency audio input and
// output) and adds AEC for for two-way duplex communication. It also adds AGC,
// adjustment of voice-processing quality, and muting. Hence, ideal for
// VoIP applications.
class VoiceProcessingAudioUnit {
public:
explicit VoiceProcessingAudioUnit(VoiceProcessingAudioUnitObserver* observer);
~VoiceProcessingAudioUnit();
// TODO(tkchin): enum for state and state checking.
enum State : int32_t {
// Init() should be called.
kInitRequired,
// Audio unit created but not initialized.
kUninitialized,
// Initialized but not started. Equivalent to stopped.
kInitialized,
// Initialized and started.
kStarted,
};
// Number of bytes per audio sample for 16-bit signed integer representation.
static const UInt32 kBytesPerSample;
// Initializes this class by creating the underlying audio unit instance.
// Creates a Voice-Processing I/O unit and configures it for full-duplex
// audio. The selected stream format is selected to avoid internal resampling
// and to match the 10ms callback rate for WebRTC as well as possible.
// Does not intialize the audio unit.
bool Init();
VoiceProcessingAudioUnit::State GetState() const;
// Initializes the underlying audio unit with the given sample rate.
bool Initialize(Float64 sample_rate);
// Starts the underlying audio unit.
bool Start();
// Stops the underlying audio unit.
bool Stop();
// Uninitializes the underlying audio unit.
bool Uninitialize();
// Calls render on the underlying audio unit.
OSStatus Render(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 output_bus_number,
UInt32 num_frames,
AudioBufferList* io_data);
private:
// The C API used to set callbacks requires static functions. When these are
// called, they will invoke the relevant instance method by casting
// in_ref_con to VoiceProcessingAudioUnit*.
static OSStatus OnGetPlayoutData(void* in_ref_con,
AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data);
static OSStatus OnDeliverRecordedData(void* in_ref_con,
AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data);
// Notifies observer that samples are needed for playback.
OSStatus NotifyGetPlayoutData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data);
// Notifies observer that recorded samples are available for render.
OSStatus NotifyDeliverRecordedData(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data);
// Returns the predetermined format with a specific sample rate. See
// implementation file for details on format.
AudioStreamBasicDescription GetFormat(Float64 sample_rate) const;
// Deletes the underlying audio unit.
void DisposeAudioUnit();
VoiceProcessingAudioUnitObserver* observer_;
AudioUnit vpio_unit_;
VoiceProcessingAudioUnit::State state_;
};
} // namespace webrtc
#endif // MODULES_AUDIO_DEVICE_IOS_VOICE_PROCESSING_AUDIO_UNIT_H_

View file

@ -1,468 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#import "modules/audio_device/ios/voice_processing_audio_unit.h"
#include "rtc_base/checks.h"
#include "rtc_base/system/fallthrough.h"
#include "system_wrappers/include/metrics.h"
#import "sdk/objc/base//RTCLogging.h"
#import "sdk/objc/components/audio/RTCAudioSessionConfiguration.h"
#if !defined(NDEBUG)
static void LogStreamDescription(AudioStreamBasicDescription description) {
char formatIdString[5];
UInt32 formatId = CFSwapInt32HostToBig(description.mFormatID);
bcopy(&formatId, formatIdString, 4);
formatIdString[4] = '\0';
RTCLog(@"AudioStreamBasicDescription: {\n"
" mSampleRate: %.2f\n"
" formatIDString: %s\n"
" mFormatFlags: 0x%X\n"
" mBytesPerPacket: %u\n"
" mFramesPerPacket: %u\n"
" mBytesPerFrame: %u\n"
" mChannelsPerFrame: %u\n"
" mBitsPerChannel: %u\n"
" mReserved: %u\n}",
description.mSampleRate, formatIdString,
static_cast<unsigned int>(description.mFormatFlags),
static_cast<unsigned int>(description.mBytesPerPacket),
static_cast<unsigned int>(description.mFramesPerPacket),
static_cast<unsigned int>(description.mBytesPerFrame),
static_cast<unsigned int>(description.mChannelsPerFrame),
static_cast<unsigned int>(description.mBitsPerChannel),
static_cast<unsigned int>(description.mReserved));
}
#endif
namespace webrtc {
// Calls to AudioUnitInitialize() can fail if called back-to-back on different
// ADM instances. A fall-back solution is to allow multiple sequential calls
// with as small delay between each. This factor sets the max number of allowed
// initialization attempts.
static const int kMaxNumberOfAudioUnitInitializeAttempts = 5;
// A VP I/O unit's bus 1 connects to input hardware (microphone).
static const AudioUnitElement kInputBus = 1;
// A VP I/O unit's bus 0 connects to output hardware (speaker).
static const AudioUnitElement kOutputBus = 0;
// Returns the automatic gain control (AGC) state on the processed microphone
// signal. Should be on by default for Voice Processing audio units.
static OSStatus GetAGCState(AudioUnit audio_unit, UInt32* enabled) {
RTC_DCHECK(audio_unit);
UInt32 size = sizeof(*enabled);
OSStatus result = AudioUnitGetProperty(audio_unit,
kAUVoiceIOProperty_VoiceProcessingEnableAGC,
kAudioUnitScope_Global,
kInputBus,
enabled,
&size);
RTCLog(@"VPIO unit AGC: %u", static_cast<unsigned int>(*enabled));
return result;
}
VoiceProcessingAudioUnit::VoiceProcessingAudioUnit(
VoiceProcessingAudioUnitObserver* observer)
: observer_(observer), vpio_unit_(nullptr), state_(kInitRequired) {
RTC_DCHECK(observer);
}
VoiceProcessingAudioUnit::~VoiceProcessingAudioUnit() {
DisposeAudioUnit();
}
const UInt32 VoiceProcessingAudioUnit::kBytesPerSample = 2;
bool VoiceProcessingAudioUnit::Init() {
RTC_DCHECK_EQ(state_, kInitRequired);
// Create an audio component description to identify the Voice Processing
// I/O audio unit.
AudioComponentDescription vpio_unit_description;
vpio_unit_description.componentType = kAudioUnitType_Output;
vpio_unit_description.componentSubType = kAudioUnitSubType_VoiceProcessingIO;
vpio_unit_description.componentManufacturer = kAudioUnitManufacturer_Apple;
vpio_unit_description.componentFlags = 0;
vpio_unit_description.componentFlagsMask = 0;
// Obtain an audio unit instance given the description.
AudioComponent found_vpio_unit_ref =
AudioComponentFindNext(nullptr, &vpio_unit_description);
// Create a Voice Processing IO audio unit.
OSStatus result = noErr;
result = AudioComponentInstanceNew(found_vpio_unit_ref, &vpio_unit_);
if (result != noErr) {
vpio_unit_ = nullptr;
RTCLogError(@"AudioComponentInstanceNew failed. Error=%ld.", (long)result);
return false;
}
// Enable input on the input scope of the input element.
UInt32 enable_input = 1;
result = AudioUnitSetProperty(vpio_unit_, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Input, kInputBus, &enable_input,
sizeof(enable_input));
if (result != noErr) {
DisposeAudioUnit();
RTCLogError(@"Failed to enable input on input scope of input element. "
"Error=%ld.",
(long)result);
return false;
}
// Enable output on the output scope of the output element.
UInt32 enable_output = 1;
result = AudioUnitSetProperty(vpio_unit_, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Output, kOutputBus,
&enable_output, sizeof(enable_output));
if (result != noErr) {
DisposeAudioUnit();
RTCLogError(@"Failed to enable output on output scope of output element. "
"Error=%ld.",
(long)result);
return false;
}
// Specify the callback function that provides audio samples to the audio
// unit.
AURenderCallbackStruct render_callback;
render_callback.inputProc = OnGetPlayoutData;
render_callback.inputProcRefCon = this;
result = AudioUnitSetProperty(
vpio_unit_, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input,
kOutputBus, &render_callback, sizeof(render_callback));
if (result != noErr) {
DisposeAudioUnit();
RTCLogError(@"Failed to specify the render callback on the output bus. "
"Error=%ld.",
(long)result);
return false;
}
// Disable AU buffer allocation for the recorder, we allocate our own.
// TODO(henrika): not sure that it actually saves resource to make this call.
UInt32 flag = 0;
result = AudioUnitSetProperty(
vpio_unit_, kAudioUnitProperty_ShouldAllocateBuffer,
kAudioUnitScope_Output, kInputBus, &flag, sizeof(flag));
if (result != noErr) {
DisposeAudioUnit();
RTCLogError(@"Failed to disable buffer allocation on the input bus. "
"Error=%ld.",
(long)result);
return false;
}
// Specify the callback to be called by the I/O thread to us when input audio
// is available. The recorded samples can then be obtained by calling the
// AudioUnitRender() method.
AURenderCallbackStruct input_callback;
input_callback.inputProc = OnDeliverRecordedData;
input_callback.inputProcRefCon = this;
result = AudioUnitSetProperty(vpio_unit_,
kAudioOutputUnitProperty_SetInputCallback,
kAudioUnitScope_Global, kInputBus,
&input_callback, sizeof(input_callback));
if (result != noErr) {
DisposeAudioUnit();
RTCLogError(@"Failed to specify the input callback on the input bus. "
"Error=%ld.",
(long)result);
return false;
}
state_ = kUninitialized;
return true;
}
VoiceProcessingAudioUnit::State VoiceProcessingAudioUnit::GetState() const {
return state_;
}
bool VoiceProcessingAudioUnit::Initialize(Float64 sample_rate) {
RTC_DCHECK_GE(state_, kUninitialized);
RTCLog(@"Initializing audio unit with sample rate: %f", sample_rate);
OSStatus result = noErr;
AudioStreamBasicDescription format = GetFormat(sample_rate);
UInt32 size = sizeof(format);
#if !defined(NDEBUG)
LogStreamDescription(format);
#endif
// Set the format on the output scope of the input element/bus.
result =
AudioUnitSetProperty(vpio_unit_, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Output, kInputBus, &format, size);
if (result != noErr) {
RTCLogError(@"Failed to set format on output scope of input bus. "
"Error=%ld.",
(long)result);
return false;
}
// Set the format on the input scope of the output element/bus.
result =
AudioUnitSetProperty(vpio_unit_, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input, kOutputBus, &format, size);
if (result != noErr) {
RTCLogError(@"Failed to set format on input scope of output bus. "
"Error=%ld.",
(long)result);
return false;
}
// Initialize the Voice Processing I/O unit instance.
// Calls to AudioUnitInitialize() can fail if called back-to-back on
// different ADM instances. The error message in this case is -66635 which is
// undocumented. Tests have shown that calling AudioUnitInitialize a second
// time, after a short sleep, avoids this issue.
// See webrtc:5166 for details.
int failed_initalize_attempts = 0;
result = AudioUnitInitialize(vpio_unit_);
while (result != noErr) {
RTCLogError(@"Failed to initialize the Voice Processing I/O unit. "
"Error=%ld.",
(long)result);
++failed_initalize_attempts;
if (failed_initalize_attempts == kMaxNumberOfAudioUnitInitializeAttempts) {
// Max number of initialization attempts exceeded, hence abort.
RTCLogError(@"Too many initialization attempts.");
return false;
}
RTCLog(@"Pause 100ms and try audio unit initialization again...");
[NSThread sleepForTimeInterval:0.1f];
result = AudioUnitInitialize(vpio_unit_);
}
if (result == noErr) {
RTCLog(@"Voice Processing I/O unit is now initialized.");
}
// AGC should be enabled by default for Voice Processing I/O units but it is
// checked below and enabled explicitly if needed. This scheme is used
// to be absolutely sure that the AGC is enabled since we have seen cases
// where only zeros are recorded and a disabled AGC could be one of the
// reasons why it happens.
int agc_was_enabled_by_default = 0;
UInt32 agc_is_enabled = 0;
result = GetAGCState(vpio_unit_, &agc_is_enabled);
if (result != noErr) {
RTCLogError(@"Failed to get AGC state (1st attempt). "
"Error=%ld.",
(long)result);
// Example of error code: kAudioUnitErr_NoConnection (-10876).
// All error codes related to audio units are negative and are therefore
// converted into a postive value to match the UMA APIs.
RTC_HISTOGRAM_COUNTS_SPARSE_100000(
"WebRTC.Audio.GetAGCStateErrorCode1", (-1) * result);
} else if (agc_is_enabled) {
// Remember that the AGC was enabled by default. Will be used in UMA.
agc_was_enabled_by_default = 1;
} else {
// AGC was initially disabled => try to enable it explicitly.
UInt32 enable_agc = 1;
result =
AudioUnitSetProperty(vpio_unit_,
kAUVoiceIOProperty_VoiceProcessingEnableAGC,
kAudioUnitScope_Global, kInputBus, &enable_agc,
sizeof(enable_agc));
if (result != noErr) {
RTCLogError(@"Failed to enable the built-in AGC. "
"Error=%ld.",
(long)result);
RTC_HISTOGRAM_COUNTS_SPARSE_100000(
"WebRTC.Audio.SetAGCStateErrorCode", (-1) * result);
}
result = GetAGCState(vpio_unit_, &agc_is_enabled);
if (result != noErr) {
RTCLogError(@"Failed to get AGC state (2nd attempt). "
"Error=%ld.",
(long)result);
RTC_HISTOGRAM_COUNTS_SPARSE_100000(
"WebRTC.Audio.GetAGCStateErrorCode2", (-1) * result);
}
}
// Track if the built-in AGC was enabled by default (as it should) or not.
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.BuiltInAGCWasEnabledByDefault",
agc_was_enabled_by_default);
RTCLog(@"WebRTC.Audio.BuiltInAGCWasEnabledByDefault: %d",
agc_was_enabled_by_default);
// As a final step, add an UMA histogram for tracking the AGC state.
// At this stage, the AGC should be enabled, and if it is not, more work is
// needed to find out the root cause.
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.BuiltInAGCIsEnabled", agc_is_enabled);
RTCLog(@"WebRTC.Audio.BuiltInAGCIsEnabled: %u",
static_cast<unsigned int>(agc_is_enabled));
state_ = kInitialized;
return true;
}
bool VoiceProcessingAudioUnit::Start() {
RTC_DCHECK_GE(state_, kUninitialized);
RTCLog(@"Starting audio unit.");
OSStatus result = AudioOutputUnitStart(vpio_unit_);
if (result != noErr) {
RTCLogError(@"Failed to start audio unit. Error=%ld", (long)result);
return false;
} else {
RTCLog(@"Started audio unit");
}
state_ = kStarted;
return true;
}
bool VoiceProcessingAudioUnit::Stop() {
RTC_DCHECK_GE(state_, kUninitialized);
RTCLog(@"Stopping audio unit.");
OSStatus result = AudioOutputUnitStop(vpio_unit_);
if (result != noErr) {
RTCLogError(@"Failed to stop audio unit. Error=%ld", (long)result);
return false;
} else {
RTCLog(@"Stopped audio unit");
}
state_ = kInitialized;
return true;
}
bool VoiceProcessingAudioUnit::Uninitialize() {
RTC_DCHECK_GE(state_, kUninitialized);
RTCLog(@"Unintializing audio unit.");
OSStatus result = AudioUnitUninitialize(vpio_unit_);
if (result != noErr) {
RTCLogError(@"Failed to uninitialize audio unit. Error=%ld", (long)result);
return false;
} else {
RTCLog(@"Uninitialized audio unit.");
}
state_ = kUninitialized;
return true;
}
OSStatus VoiceProcessingAudioUnit::Render(AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 output_bus_number,
UInt32 num_frames,
AudioBufferList* io_data) {
RTC_DCHECK(vpio_unit_) << "Init() not called.";
OSStatus result = AudioUnitRender(vpio_unit_, flags, time_stamp,
output_bus_number, num_frames, io_data);
if (result != noErr) {
RTCLogError(@"Failed to render audio unit. Error=%ld", (long)result);
}
return result;
}
OSStatus VoiceProcessingAudioUnit::OnGetPlayoutData(
void* in_ref_con,
AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) {
VoiceProcessingAudioUnit* audio_unit =
static_cast<VoiceProcessingAudioUnit*>(in_ref_con);
return audio_unit->NotifyGetPlayoutData(flags, time_stamp, bus_number,
num_frames, io_data);
}
OSStatus VoiceProcessingAudioUnit::OnDeliverRecordedData(
void* in_ref_con,
AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) {
VoiceProcessingAudioUnit* audio_unit =
static_cast<VoiceProcessingAudioUnit*>(in_ref_con);
return audio_unit->NotifyDeliverRecordedData(flags, time_stamp, bus_number,
num_frames, io_data);
}
OSStatus VoiceProcessingAudioUnit::NotifyGetPlayoutData(
AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) {
return observer_->OnGetPlayoutData(flags, time_stamp, bus_number, num_frames,
io_data);
}
OSStatus VoiceProcessingAudioUnit::NotifyDeliverRecordedData(
AudioUnitRenderActionFlags* flags,
const AudioTimeStamp* time_stamp,
UInt32 bus_number,
UInt32 num_frames,
AudioBufferList* io_data) {
return observer_->OnDeliverRecordedData(flags, time_stamp, bus_number,
num_frames, io_data);
}
AudioStreamBasicDescription VoiceProcessingAudioUnit::GetFormat(
Float64 sample_rate) const {
// Set the application formats for input and output:
// - use same format in both directions
// - avoid resampling in the I/O unit by using the hardware sample rate
// - linear PCM => noncompressed audio data format with one frame per packet
// - no need to specify interleaving since only mono is supported
AudioStreamBasicDescription format;
RTC_DCHECK_EQ(1, kRTCAudioSessionPreferredNumberOfChannels);
format.mSampleRate = sample_rate;
format.mFormatID = kAudioFormatLinearPCM;
format.mFormatFlags =
kLinearPCMFormatFlagIsSignedInteger | kLinearPCMFormatFlagIsPacked;
format.mBytesPerPacket = kBytesPerSample;
format.mFramesPerPacket = 1; // uncompressed.
format.mBytesPerFrame = kBytesPerSample;
format.mChannelsPerFrame = kRTCAudioSessionPreferredNumberOfChannels;
format.mBitsPerChannel = 8 * kBytesPerSample;
return format;
}
void VoiceProcessingAudioUnit::DisposeAudioUnit() {
if (vpio_unit_) {
switch (state_) {
case kStarted:
Stop();
// Fall through.
RTC_FALLTHROUGH();
case kInitialized:
Uninitialize();
break;
case kUninitialized:
RTC_FALLTHROUGH();
case kInitRequired:
break;
}
RTCLog(@"Disposing audio unit.");
OSStatus result = AudioComponentInstanceDispose(vpio_unit_);
if (result != noErr) {
RTCLogError(@"AudioComponentInstanceDispose failed. Error=%ld.",
(long)result);
}
vpio_unit_ = nullptr;
}
}
} // namespace webrtc