Reland "Updated analysis in videoprocessor."

This is a reland of 1880c7162b
Original change's description:
> Updated analysis in videoprocessor.
>
> - Run analysis after all frames are processed. Before part of it was
> done at bitrate change points;
> - Analysis is done for whole stream as well as for each rate update
> interval;
> - Changed units from number of frames to time units for some metrics
> and thresholds. E.g. 'num frames to hit tagret bitrate' is changed to
> 'time to reach target bitrate, sec';
> - Changed data type of FrameStatistic::max_nalu_length (renamed to
> max_nalu_size_bytes) from rtc::Optional to size_t. There it no need to
> use such advanced data type in such low level data structure.
>
> Bug: webrtc:8524
> Change-Id: Ic9f6eab5b15ee12a80324b1f9c101de1bf3c702f
> Reviewed-on: https://webrtc-review.googlesource.com/31901
> Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
> Reviewed-by: Stefan Holmer <stefan@webrtc.org>
> Reviewed-by: Åsa Persson <asapersson@webrtc.org>
> Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
> Cr-Commit-Position: refs/heads/master@{#21653}

TBR=brandtr@webrtc.org, stefan@webrtc.org

Bug: webrtc:8524
Change-Id: Ie0ad7790689422ffa61da294967fc492a13b75ae
Reviewed-on: https://webrtc-review.googlesource.com/40202
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Reviewed-by: Sergey Silkin <ssilkin@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21668}
This commit is contained in:
Sergey Silkin 2018-01-17 15:11:44 +01:00 committed by Commit Bot
parent e2a931886f
commit 3be2a55e7f
20 changed files with 735 additions and 908 deletions

View file

@ -517,6 +517,7 @@ if (rtc_include_tests) {
"../../test:test_support",
"../../test:video_test_common",
"../../test:video_test_support",
"../rtp_rtcp:rtp_rtcp_format",
]
}
@ -578,6 +579,7 @@ if (rtc_include_tests) {
"../../rtc_base:rtc_base_tests_utils",
"../../system_wrappers",
"../../test:field_trial",
"../../test:test_common",
"../../test:test_support",
"../../test:video_test_common",
"../../test:video_test_support",

View file

@ -24,6 +24,7 @@ EVENT_END = 'OK ] CodecSettings/VideoProcessorIntegrationTestParameterized.'
# Metrics to plot, tuple: (name to parse in file, label to use when plotting).
BITRATE = ('Target bitrate', 'target bitrate (kbps)')
FRAMERATE = ('Target framerate', 'fps')
WIDTH = ('Width', 'width')
HEIGHT = ('Height', 'height')
FILENAME = ('Filename', 'clip')
@ -35,24 +36,22 @@ CORES = ('# CPU cores used', 'CPU cores used')
DENOISING = ('Denoising', 'denoising')
RESILIENCE = ('Resilience', 'resilience')
ERROR_CONCEALMENT = ('Error concealment', 'error concealment')
QP = ('Average QP', 'avg QP')
QP = ('QP', 'QP avg')
CPU_USAGE = ('CPU usage %', 'CPU usage (%)')
PSNR = ('PSNR avg', 'PSNR (dB)')
SSIM = ('SSIM avg', 'SSIM')
PSNR = ('PSNR', 'PSNR (dB)')
SSIM = ('SSIM', 'SSIM')
ENC_BITRATE = ('Encoded bitrate', 'encoded bitrate (kbps)')
FRAMERATE = ('Frame rate', 'fps')
NUM_FRAMES = ('# processed frames', 'num frames')
NUM_FRAMES = ('# input frames', 'num frames')
NUM_DROPPED_FRAMES = ('# dropped frames', 'num dropped frames')
NUM_FRAMES_TO_TARGET = ('# frames to convergence',
'frames to reach target rate')
TIME_TO_TARGET = ('Time to reach target bitrate',
'time to reach target rate (sec)')
ENCODE_TIME = ('Encoding time', 'encode time (us)')
ENCODE_TIME_AVG = ('Encoding time', 'encode time (us) avg')
ENCODE_TIME_AVG = ('Frame encoding time', 'encode time (us) avg')
DECODE_TIME = ('Decoding time', 'decode time (us)')
DECODE_TIME_AVG = ('Decoding time', 'decode time (us) avg')
FRAME_SIZE = ('Frame sizes', 'frame size (bytes)')
FRAME_SIZE_AVG = ('Frame sizes', 'frame size (bytes) avg')
AVG_KEY_FRAME_SIZE = ('Average key frame size', 'avg key frame size (bytes)')
AVG_NON_KEY_FRAME_SIZE = ('Average non-key frame size',
DECODE_TIME_AVG = ('Frame decoding time', 'decode time (us) avg')
FRAME_SIZE = ('Frame size', 'frame size (bytes)')
AVG_KEY_FRAME_SIZE = ('Avg key frame size', 'avg key frame size (bytes)')
AVG_NON_KEY_FRAME_SIZE = ('Avg delta frame size',
'avg non-key frame size (bytes)')
# Settings.
@ -90,7 +89,7 @@ RESULTS = [
SSIM,
ENC_BITRATE,
NUM_DROPPED_FRAMES,
NUM_FRAMES_TO_TARGET,
TIME_TO_TARGET,
ENCODE_TIME_AVG,
DECODE_TIME_AVG,
QP,
@ -235,7 +234,7 @@ def TryFindMetric(parsed, line, settings_file):
found, maximum = GetMetric("Max", settings_file.readline())
if not found:
return
found, average = GetMetric("Average", settings_file.readline())
found, average = GetMetric("Avg", settings_file.readline())
if not found:
return

View file

@ -9,59 +9,35 @@
*/
#include "modules/video_coding/codecs/test/stats.h"
#include <stdio.h>
#include <algorithm>
#include "rtc_base/checks.h"
#include "rtc_base/format_macros.h"
namespace webrtc {
namespace test {
namespace {
bool LessForEncodeTime(const FrameStatistic& s1, const FrameStatistic& s2) {
RTC_DCHECK_NE(s1.frame_number, s2.frame_number);
return s1.encode_time_us < s2.encode_time_us;
std::string FrameStatistic::ToString() const {
std::stringstream ss;
ss << "frame " << frame_number;
ss << " " << decoded_width << "x" << decoded_height;
ss << " sl " << simulcast_svc_idx;
ss << " tl " << temporal_layer_idx;
ss << " type " << frame_type;
ss << " length " << encoded_frame_size_bytes;
ss << " qp " << qp;
ss << " psnr " << psnr;
ss << " ssim " << ssim;
ss << " enc_time_us " << encode_time_us;
ss << " dec_time_us " << decode_time_us;
ss << " rtp_ts " << rtp_timestamp;
ss << " bitrate_kbps " << target_bitrate_kbps;
return ss.str();
}
bool LessForDecodeTime(const FrameStatistic& s1, const FrameStatistic& s2) {
RTC_DCHECK_NE(s1.frame_number, s2.frame_number);
return s1.decode_time_us < s2.decode_time_us;
}
bool LessForEncodedSize(const FrameStatistic& s1, const FrameStatistic& s2) {
RTC_DCHECK_NE(s1.frame_number, s2.frame_number);
return s1.encoded_frame_size_bytes < s2.encoded_frame_size_bytes;
}
bool LessForBitRate(const FrameStatistic& s1, const FrameStatistic& s2) {
RTC_DCHECK_NE(s1.frame_number, s2.frame_number);
return s1.bitrate_kbps < s2.bitrate_kbps;
}
bool LessForPsnr(const FrameStatistic& s1, const FrameStatistic& s2) {
RTC_DCHECK_NE(s1.frame_number, s2.frame_number);
return s1.psnr < s2.psnr;
}
bool LessForSsim(const FrameStatistic& s1, const FrameStatistic& s2) {
RTC_DCHECK_NE(s1.frame_number, s2.frame_number);
return s1.ssim < s2.ssim;
}
} // namespace
FrameStatistic* Stats::AddFrame() {
// We don't expect more frames than what can be stored in an int.
stats_.emplace_back(static_cast<int>(stats_.size()));
stats_.emplace_back(stats_.size());
return &stats_.back();
}
FrameStatistic* Stats::GetFrame(int frame_number) {
RTC_CHECK_GE(frame_number, 0);
FrameStatistic* Stats::GetFrame(size_t frame_number) {
RTC_CHECK_LT(frame_number, stats_.size());
return &stats_[frame_number];
}
@ -70,153 +46,5 @@ size_t Stats::size() const {
return stats_.size();
}
void Stats::PrintSummary() const {
if (stats_.empty()) {
printf("No frame statistics have been logged yet.\n");
return;
}
printf("Encode/decode statistics\n==\n");
// Calculate min, max, average and total encoding time.
int total_encoding_time_us = 0;
int total_decoding_time_us = 0;
size_t total_encoded_frame_size_bytes = 0;
size_t total_encoded_key_frame_size_bytes = 0;
size_t total_encoded_delta_frame_size_bytes = 0;
size_t num_key_frames = 0;
size_t num_delta_frames = 0;
int num_encode_failures = 0;
double total_psnr = 0.0;
double total_ssim = 0.0;
for (const FrameStatistic& stat : stats_) {
total_encoding_time_us += stat.encode_time_us;
total_decoding_time_us += stat.decode_time_us;
total_encoded_frame_size_bytes += stat.encoded_frame_size_bytes;
if (stat.frame_type == webrtc::kVideoFrameKey) {
total_encoded_key_frame_size_bytes += stat.encoded_frame_size_bytes;
++num_key_frames;
} else {
total_encoded_delta_frame_size_bytes += stat.encoded_frame_size_bytes;
++num_delta_frames;
}
if (stat.encode_return_code != 0) {
++num_encode_failures;
}
if (stat.decoding_successful) {
total_psnr += stat.psnr;
total_ssim += stat.ssim;
}
}
// Encoding stats.
printf("# Encoded frame failures: %d\n", num_encode_failures);
printf("Encoding time:\n");
auto frame_it =
std::min_element(stats_.begin(), stats_.end(), LessForEncodeTime);
printf(" Min : %7d us (frame %d)\n", frame_it->encode_time_us,
frame_it->frame_number);
frame_it = std::max_element(stats_.begin(), stats_.end(), LessForEncodeTime);
printf(" Max : %7d us (frame %d)\n", frame_it->encode_time_us,
frame_it->frame_number);
printf(" Average : %7d us\n",
static_cast<int>(total_encoding_time_us / stats_.size()));
// Decoding stats.
printf("Decoding time:\n");
// Only consider successfully decoded frames (packet loss may cause failures).
std::vector<FrameStatistic> decoded_frames;
for (const FrameStatistic& stat : stats_) {
if (stat.decoding_successful) {
decoded_frames.push_back(stat);
}
}
if (decoded_frames.empty()) {
printf("No successfully decoded frames exist in this statistics.\n");
} else {
frame_it = std::min_element(decoded_frames.begin(), decoded_frames.end(),
LessForDecodeTime);
printf(" Min : %7d us (frame %d)\n", frame_it->decode_time_us,
frame_it->frame_number);
frame_it = std::max_element(decoded_frames.begin(), decoded_frames.end(),
LessForDecodeTime);
printf(" Max : %7d us (frame %d)\n", frame_it->decode_time_us,
frame_it->frame_number);
printf(" Average : %7d us\n",
static_cast<int>(total_decoding_time_us / decoded_frames.size()));
printf(" Failures: %d frames failed to decode.\n",
static_cast<int>(stats_.size() - decoded_frames.size()));
}
// Frame size stats.
printf("Frame sizes:\n");
frame_it = std::min_element(stats_.begin(), stats_.end(), LessForEncodedSize);
printf(" Min : %7" PRIuS " bytes (frame %d)\n",
frame_it->encoded_frame_size_bytes, frame_it->frame_number);
frame_it = std::max_element(stats_.begin(), stats_.end(), LessForEncodedSize);
printf(" Max : %7" PRIuS " bytes (frame %d)\n",
frame_it->encoded_frame_size_bytes, frame_it->frame_number);
printf(" Average : %7" PRIuS " bytes\n",
total_encoded_frame_size_bytes / stats_.size());
if (num_key_frames > 0) {
printf(" Average key frame size : %7" PRIuS " bytes (%" PRIuS
" keyframes)\n",
total_encoded_key_frame_size_bytes / num_key_frames, num_key_frames);
}
if (num_delta_frames > 0) {
printf(" Average non-key frame size: %7" PRIuS " bytes (%" PRIuS
" frames)\n",
total_encoded_delta_frame_size_bytes / num_delta_frames,
num_delta_frames);
}
// Bitrate stats.
printf("Bitrates:\n");
frame_it = std::min_element(stats_.begin(), stats_.end(), LessForBitRate);
printf(" Min bitrate: %7d kbps (frame %d)\n", frame_it->bitrate_kbps,
frame_it->frame_number);
frame_it = std::max_element(stats_.begin(), stats_.end(), LessForBitRate);
printf(" Max bitrate: %7d kbps (frame %d)\n", frame_it->bitrate_kbps,
frame_it->frame_number);
// Quality.
printf("Quality:\n");
if (decoded_frames.empty()) {
printf("No successfully decoded frames exist in this statistics.\n");
} else {
frame_it = std::min_element(decoded_frames.begin(), decoded_frames.end(),
LessForPsnr);
printf(" PSNR min: %f (frame %d)\n", frame_it->psnr,
frame_it->frame_number);
printf(" PSNR avg: %f\n", total_psnr / decoded_frames.size());
frame_it = std::min_element(decoded_frames.begin(), decoded_frames.end(),
LessForSsim);
printf(" SSIM min: %f (frame %d)\n", frame_it->ssim,
frame_it->frame_number);
printf(" SSIM avg: %f\n", total_ssim / decoded_frames.size());
}
printf("\n");
printf("Total encoding time : %7d ms.\n", total_encoding_time_us / 1000);
printf("Total decoding time : %7d ms.\n", total_decoding_time_us / 1000);
printf("Total processing time: %7d ms.\n",
(total_encoding_time_us + total_decoding_time_us) / 1000);
// QP stats.
int total_qp = 0;
int total_qp_count = 0;
for (const FrameStatistic& stat : stats_) {
if (stat.qp >= 0) {
total_qp += stat.qp;
++total_qp_count;
}
}
int avg_qp = (total_qp_count > 0) ? (total_qp / total_qp_count) : -1;
printf("Average QP: %d\n", avg_qp);
printf("\n");
}
} // namespace test
} // namespace webrtc

View file

@ -11,6 +11,7 @@
#ifndef MODULES_VIDEO_CODING_CODECS_TEST_STATS_H_
#define MODULES_VIDEO_CODING_CODECS_TEST_STATS_H_
#include <string>
#include <vector>
#include "common_types.h" // NOLINT(build/include)
@ -20,34 +21,42 @@ namespace test {
// Statistics for one processed frame.
struct FrameStatistic {
explicit FrameStatistic(int frame_number) : frame_number(frame_number) {}
const int frame_number = 0;
explicit FrameStatistic(size_t frame_number) : frame_number(frame_number) {}
std::string ToString() const;
size_t frame_number = 0;
size_t rtp_timestamp = 0;
// Encoding.
int64_t encode_start_ns = 0;
int encode_return_code = 0;
bool encoding_successful = false;
int encode_time_us = 0;
int bitrate_kbps = 0;
size_t encode_time_us = 0;
size_t target_bitrate_kbps = 0;
size_t encoded_frame_size_bytes = 0;
webrtc::FrameType frame_type = kVideoFrameDelta;
// Layering.
size_t temporal_layer_idx = 0;
size_t simulcast_svc_idx = 0;
// H264 specific.
rtc::Optional<size_t> max_nalu_length;
size_t max_nalu_size_bytes = 0;
// Decoding.
int64_t decode_start_ns = 0;
int decode_return_code = 0;
bool decoding_successful = false;
int decode_time_us = 0;
int decoded_width = 0;
int decoded_height = 0;
size_t decode_time_us = 0;
size_t decoded_width = 0;
size_t decoded_height = 0;
// Quantization.
int qp = -1;
// How many packets were discarded of the encoded frame data (if any).
int packets_dropped = 0;
size_t packets_dropped = 0;
size_t total_packets = 0;
size_t manipulated_length = 0;
@ -66,13 +75,10 @@ class Stats {
FrameStatistic* AddFrame();
// Returns the FrameStatistic corresponding to |frame_number|.
FrameStatistic* GetFrame(int frame_number);
FrameStatistic* GetFrame(size_t frame_number);
size_t size() const;
// TODO(brandtr): Add output as CSV.
void PrintSummary() const;
private:
std::vector<FrameStatistic> stats_;
};

View file

@ -15,28 +15,21 @@
namespace webrtc {
namespace test {
TEST(StatsTest, TestEmptyObject) {
Stats stats;
stats.PrintSummary(); // Should not crash.
}
TEST(StatsTest, AddSingleFrame) {
Stats stats;
FrameStatistic* frame_stat = stats.AddFrame();
EXPECT_EQ(0, frame_stat->frame_number);
EXPECT_EQ(0ull, frame_stat->frame_number);
EXPECT_EQ(1u, stats.size());
}
TEST(StatsTest, AddMultipleFrames) {
Stats stats;
const int kNumFrames = 1000;
for (int i = 0; i < kNumFrames; ++i) {
const size_t kNumFrames = 1000;
for (size_t i = 0; i < kNumFrames; ++i) {
FrameStatistic* frame_stat = stats.AddFrame();
EXPECT_EQ(i, frame_stat->frame_number);
}
EXPECT_EQ(kNumFrames, static_cast<int>(stats.size()));
stats.PrintSummary(); // Should not crash.
EXPECT_EQ(kNumFrames, stats.size());
}
} // namespace test

View file

@ -27,34 +27,36 @@ std::string CodecSpecificToString(const webrtc::VideoCodec& codec) {
std::stringstream ss;
switch (codec.codecType) {
case kVideoCodecVP8:
ss << "\n Complexity : " << codec.VP8().complexity;
ss << "\n Resilience : " << codec.VP8().resilience;
ss << "\n # temporal layers : "
ss << "\n Complexity : " << codec.VP8().complexity;
ss << "\n Resilience : " << codec.VP8().resilience;
ss << "\n # temporal layers : "
<< static_cast<int>(codec.VP8().numberOfTemporalLayers);
ss << "\n Denoising : " << codec.VP8().denoisingOn;
ss << "\n Error concealment : " << codec.VP8().errorConcealmentOn;
ss << "\n Automatic resize : " << codec.VP8().automaticResizeOn;
ss << "\n Frame dropping : " << codec.VP8().frameDroppingOn;
ss << "\n Key frame interval: " << codec.VP8().keyFrameInterval;
ss << "\n Denoising : " << codec.VP8().denoisingOn;
ss << "\n Error concealment : " << codec.VP8().errorConcealmentOn;
ss << "\n Automatic resize : " << codec.VP8().automaticResizeOn;
ss << "\n Frame dropping : " << codec.VP8().frameDroppingOn;
ss << "\n Key frame interval : " << codec.VP8().keyFrameInterval;
break;
case kVideoCodecVP9:
ss << "\n Complexity : " << codec.VP9().complexity;
ss << "\n Resilience : " << codec.VP9().resilienceOn;
ss << "\n # temporal layers : "
ss << "\n Complexity : " << codec.VP9().complexity;
ss << "\n Resilience : " << codec.VP9().resilienceOn;
ss << "\n # temporal layers : "
<< static_cast<int>(codec.VP9().numberOfTemporalLayers);
ss << "\n Denoising : " << codec.VP9().denoisingOn;
ss << "\n Frame dropping : " << codec.VP9().frameDroppingOn;
ss << "\n Key frame interval: " << codec.VP9().keyFrameInterval;
ss << "\n Adaptive QP mode : " << codec.VP9().adaptiveQpMode;
ss << "\n Automatic resize : " << codec.VP9().automaticResizeOn;
ss << "\n # spatial layers : "
ss << "\n # spatial layers : "
<< static_cast<int>(codec.VP9().numberOfSpatialLayers);
ss << "\n Flexible mode : " << codec.VP9().flexibleMode;
ss << "\n Denoising : " << codec.VP9().denoisingOn;
ss << "\n Frame dropping : " << codec.VP9().frameDroppingOn;
ss << "\n Key frame interval : " << codec.VP9().keyFrameInterval;
ss << "\n Adaptive QP mode : " << codec.VP9().adaptiveQpMode;
ss << "\n Automatic resize : " << codec.VP9().automaticResizeOn;
ss << "\n # spatial layers : "
<< static_cast<int>(codec.VP9().numberOfSpatialLayers);
ss << "\n Flexible mode : " << codec.VP9().flexibleMode;
break;
case kVideoCodecH264:
ss << "\n Frame dropping : " << codec.H264().frameDroppingOn;
ss << "\n Key frame interval: " << codec.H264().keyFrameInterval;
ss << "\n Profile : " << codec.H264().profile;
ss << "\n Frame dropping : " << codec.H264().frameDroppingOn;
ss << "\n Key frame interval : " << codec.H264().keyFrameInterval;
ss << "\n Profile : " << codec.H264().profile;
break;
default:
break;
@ -65,26 +67,27 @@ std::string CodecSpecificToString(const webrtc::VideoCodec& codec) {
} // namespace
void TestConfig::SetCodecSettings(VideoCodecType codec_type,
int num_temporal_layers,
size_t num_temporal_layers,
bool error_concealment_on,
bool denoising_on,
bool frame_dropper_on,
bool spatial_resize_on,
bool resilience_on,
int width,
int height) {
size_t width,
size_t height) {
webrtc::test::CodecSettings(codec_type, &codec_settings);
// TODO(brandtr): Move the setting of |width| and |height| to the tests, and
// DCHECK that they are set before initializing the codec instead.
codec_settings.width = width;
codec_settings.height = height;
codec_settings.width = static_cast<uint16_t>(width);
codec_settings.height = static_cast<uint16_t>(height);
switch (codec_settings.codecType) {
case kVideoCodecVP8:
codec_settings.VP8()->resilience =
resilience_on ? kResilientStream : kResilienceOff;
codec_settings.VP8()->numberOfTemporalLayers = num_temporal_layers;
codec_settings.VP8()->numberOfTemporalLayers =
static_cast<uint8_t>(num_temporal_layers);
codec_settings.VP8()->denoisingOn = denoising_on;
codec_settings.VP8()->errorConcealmentOn = error_concealment_on;
codec_settings.VP8()->automaticResizeOn = spatial_resize_on;
@ -93,7 +96,8 @@ void TestConfig::SetCodecSettings(VideoCodecType codec_type,
break;
case kVideoCodecVP9:
codec_settings.VP9()->resilienceOn = resilience_on;
codec_settings.VP9()->numberOfTemporalLayers = num_temporal_layers;
codec_settings.VP9()->numberOfTemporalLayers =
static_cast<uint8_t>(num_temporal_layers);
codec_settings.VP9()->denoisingOn = denoising_on;
codec_settings.VP9()->frameDroppingOn = frame_dropper_on;
codec_settings.VP9()->keyFrameInterval = kBaseKeyFrameInterval;
@ -109,11 +113,11 @@ void TestConfig::SetCodecSettings(VideoCodecType codec_type,
}
}
int TestConfig::NumberOfCores() const {
size_t TestConfig::NumberOfCores() const {
return use_single_core ? 1 : CpuInfo::DetectNumberOfCores();
}
int TestConfig::NumberOfTemporalLayers() const {
size_t TestConfig::NumberOfTemporalLayers() const {
if (codec_settings.codecType == kVideoCodecVP8) {
return codec_settings.VP8().numberOfTemporalLayers;
} else if (codec_settings.codecType == kVideoCodecVP9) {
@ -123,8 +127,16 @@ int TestConfig::NumberOfTemporalLayers() const {
}
}
int TestConfig::TemporalLayerForFrame(int frame_idx) const {
int tl = -1;
size_t TestConfig::NumberOfSpatialLayers() const {
if (codec_settings.codecType == kVideoCodecVP9) {
return codec_settings.VP9().numberOfSpatialLayers;
} else {
return 1;
}
}
size_t TestConfig::TemporalLayerForFrame(size_t frame_idx) const {
size_t tl = 0;
switch (NumberOfTemporalLayers()) {
case 1:
tl = 0;
@ -153,7 +165,7 @@ int TestConfig::TemporalLayerForFrame(int frame_idx) const {
return tl;
}
std::vector<FrameType> TestConfig::FrameTypeForFrame(int frame_idx) const {
std::vector<FrameType> TestConfig::FrameTypeForFrame(size_t frame_idx) const {
if (keyframe_interval > 0 && (frame_idx % keyframe_interval == 0)) {
return {kVideoFrameKey};
}
@ -163,17 +175,19 @@ std::vector<FrameType> TestConfig::FrameTypeForFrame(int frame_idx) const {
std::string TestConfig::ToString() const {
std::string codec_type = CodecTypeToPayloadString(codec_settings.codecType);
std::stringstream ss;
ss << "\n Filename : " << filename;
ss << "\n # CPU cores used : " << NumberOfCores();
ss << "\n Filename : " << filename;
ss << "\n # CPU cores used : " << NumberOfCores();
ss << "\n General:";
ss << "\n Codec type : " << codec_type;
ss << "\n Start bitrate : " << codec_settings.startBitrate << " kbps";
ss << "\n Max bitrate : " << codec_settings.maxBitrate << " kbps";
ss << "\n Min bitrate : " << codec_settings.minBitrate << " kbps";
ss << "\n Width : " << codec_settings.width;
ss << "\n Height : " << codec_settings.height;
ss << "\n Max frame rate : " << codec_settings.maxFramerate;
ss << "\n QPmax : " << codec_settings.qpMax;
ss << "\n Codec type : " << codec_type;
ss << "\n Start bitrate : " << codec_settings.startBitrate << " kbps";
ss << "\n Max bitrate : " << codec_settings.maxBitrate << " kbps";
ss << "\n Min bitrate : " << codec_settings.minBitrate << " kbps";
ss << "\n Width : " << codec_settings.width;
ss << "\n Height : " << codec_settings.height;
ss << "\n Max frame rate : " << codec_settings.maxFramerate;
ss << "\n QPmax : " << codec_settings.qpMax;
ss << "\n # simulcast streams : "
<< static_cast<int>(codec_settings.numberOfSimulcastStreams);
ss << "\n " << codec_type << " specific: ";
ss << CodecSpecificToString(codec_settings);
return ss.str();

View file

@ -42,19 +42,20 @@ struct TestConfig {
};
void SetCodecSettings(VideoCodecType codec_type,
int num_temporal_layers,
size_t num_temporal_layers,
bool error_concealment_on,
bool denoising_on,
bool frame_dropper_on,
bool spatial_resize_on,
bool resilience_on,
int width,
int height);
size_t width,
size_t height);
int NumberOfCores() const;
int NumberOfTemporalLayers() const;
int TemporalLayerForFrame(int frame_idx) const;
std::vector<FrameType> FrameTypeForFrame(int frame_idx) const;
size_t NumberOfCores() const;
size_t NumberOfTemporalLayers() const;
size_t NumberOfSpatialLayers() const;
size_t TemporalLayerForFrame(size_t frame_idx) const;
std::vector<FrameType> FrameTypeForFrame(size_t frame_idx) const;
std::string ToString() const;
std::string CodecName() const;
std::string FilenameWithParams() const;
@ -70,7 +71,7 @@ struct TestConfig {
std::string output_filename;
// Number of frames to process.
int num_frames = 0;
size_t num_frames = 0;
// Configurations related to networking.
NetworkingConfig networking_config;
@ -96,7 +97,7 @@ struct TestConfig {
// to this setting. Forcing key frames may also affect encoder planning
// optimizations in a negative way, since it will suddenly be forced to
// produce an expensive key frame.
int keyframe_interval = 0;
size_t keyframe_interval = 0;
// Codec settings to use.
webrtc::VideoCodec codec_settings;
@ -118,6 +119,9 @@ struct TestConfig {
// Custom checker that will be called for each frame.
const EncodedFrameChecker* encoded_frame_checker = nullptr;
// Print out frame level stats.
bool print_frame_level_stats = false;
};
} // namespace test

View file

@ -19,25 +19,25 @@ namespace webrtc {
namespace test {
namespace {
const int kNumTemporalLayers = 2;
const size_t kNumTemporalLayers = 2;
} // namespace
TEST(TestConfig, NumberOfCoresWithUseSingleCore) {
TestConfig config;
config.use_single_core = true;
EXPECT_EQ(1, config.NumberOfCores());
EXPECT_EQ(1u, config.NumberOfCores());
}
TEST(TestConfig, NumberOfCoresWithoutUseSingleCore) {
TestConfig config;
config.use_single_core = false;
EXPECT_GE(config.NumberOfCores(), 1);
EXPECT_GE(config.NumberOfCores(), 1u);
}
TEST(TestConfig, NumberOfTemporalLayersIsOne) {
TestConfig config;
webrtc::test::CodecSettings(kVideoCodecH264, &config.codec_settings);
EXPECT_EQ(1, config.NumberOfTemporalLayers());
EXPECT_EQ(1u, config.NumberOfTemporalLayers());
}
TEST(TestConfig, NumberOfTemporalLayers_Vp8) {
@ -58,33 +58,33 @@ TEST(TestConfig, TemporalLayersForFrame_OneLayer) {
TestConfig config;
webrtc::test::CodecSettings(kVideoCodecVP8, &config.codec_settings);
config.codec_settings.VP8()->numberOfTemporalLayers = 1;
EXPECT_EQ(0, config.TemporalLayerForFrame(0));
EXPECT_EQ(0, config.TemporalLayerForFrame(1));
EXPECT_EQ(0, config.TemporalLayerForFrame(2));
EXPECT_EQ(0u, config.TemporalLayerForFrame(0));
EXPECT_EQ(0u, config.TemporalLayerForFrame(1));
EXPECT_EQ(0u, config.TemporalLayerForFrame(2));
}
TEST(TestConfig, TemporalLayersForFrame_TwoLayers) {
TestConfig config;
webrtc::test::CodecSettings(kVideoCodecVP8, &config.codec_settings);
config.codec_settings.VP8()->numberOfTemporalLayers = 2;
EXPECT_EQ(0, config.TemporalLayerForFrame(0));
EXPECT_EQ(1, config.TemporalLayerForFrame(1));
EXPECT_EQ(0, config.TemporalLayerForFrame(2));
EXPECT_EQ(1, config.TemporalLayerForFrame(3));
EXPECT_EQ(0u, config.TemporalLayerForFrame(0));
EXPECT_EQ(1u, config.TemporalLayerForFrame(1));
EXPECT_EQ(0u, config.TemporalLayerForFrame(2));
EXPECT_EQ(1u, config.TemporalLayerForFrame(3));
}
TEST(TestConfig, TemporalLayersForFrame_ThreeLayers) {
TestConfig config;
webrtc::test::CodecSettings(kVideoCodecVP8, &config.codec_settings);
config.codec_settings.VP8()->numberOfTemporalLayers = 3;
EXPECT_EQ(0, config.TemporalLayerForFrame(0));
EXPECT_EQ(2, config.TemporalLayerForFrame(1));
EXPECT_EQ(1, config.TemporalLayerForFrame(2));
EXPECT_EQ(2, config.TemporalLayerForFrame(3));
EXPECT_EQ(0, config.TemporalLayerForFrame(4));
EXPECT_EQ(2, config.TemporalLayerForFrame(5));
EXPECT_EQ(1, config.TemporalLayerForFrame(6));
EXPECT_EQ(2, config.TemporalLayerForFrame(7));
EXPECT_EQ(0u, config.TemporalLayerForFrame(0));
EXPECT_EQ(2u, config.TemporalLayerForFrame(1));
EXPECT_EQ(1u, config.TemporalLayerForFrame(2));
EXPECT_EQ(2u, config.TemporalLayerForFrame(3));
EXPECT_EQ(0u, config.TemporalLayerForFrame(4));
EXPECT_EQ(2u, config.TemporalLayerForFrame(5));
EXPECT_EQ(1u, config.TemporalLayerForFrame(6));
EXPECT_EQ(2u, config.TemporalLayerForFrame(7));
}
TEST(TestConfig, ForcedKeyFrameIntervalOff) {
@ -126,26 +126,27 @@ TEST(TestConfig, ToString_Vp8) {
config.codec_settings.VP8()->keyFrameInterval = 999;
EXPECT_EQ(
"\n Filename : yuvfile"
"\n # CPU cores used : 1"
"\n Filename : yuvfile"
"\n # CPU cores used : 1"
"\n General:"
"\n Codec type : VP8"
"\n Start bitrate : 400 kbps"
"\n Max bitrate : 500 kbps"
"\n Min bitrate : 70 kbps"
"\n Width : 320"
"\n Height : 180"
"\n Max frame rate : 35"
"\n QPmax : 66"
"\n Codec type : VP8"
"\n Start bitrate : 400 kbps"
"\n Max bitrate : 500 kbps"
"\n Min bitrate : 70 kbps"
"\n Width : 320"
"\n Height : 180"
"\n Max frame rate : 35"
"\n QPmax : 66"
"\n # simulcast streams : 0"
"\n VP8 specific: "
"\n Complexity : 0"
"\n Resilience : 0"
"\n # temporal layers : 2"
"\n Denoising : 0"
"\n Error concealment : 1"
"\n Automatic resize : 1"
"\n Frame dropping : 0"
"\n Key frame interval: 999\n",
"\n Complexity : 0"
"\n Resilience : 0"
"\n # temporal layers : 2"
"\n Denoising : 0"
"\n Error concealment : 1"
"\n Automatic resize : 1"
"\n Frame dropping : 0"
"\n Key frame interval : 999\n",
config.ToString());
}

View file

@ -17,6 +17,7 @@
#include "api/video/i420_buffer.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/h264/h264_common.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
@ -29,8 +30,6 @@ namespace test {
namespace {
const int kRtpClockRateHz = 90000;
std::unique_ptr<VideoBitrateAllocator> CreateBitrateAllocator(
TestConfig* config) {
std::unique_ptr<TemporalLayersFactory> tl_factory;
@ -43,10 +42,10 @@ std::unique_ptr<VideoBitrateAllocator> CreateBitrateAllocator(
std::move(tl_factory)));
}
rtc::Optional<size_t> GetMaxNaluLength(const EncodedImage& encoded_frame,
const TestConfig& config) {
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
const TestConfig& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return rtc::nullopt;
return 0;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
@ -54,11 +53,11 @@ rtc::Optional<size_t> GetMaxNaluLength(const EncodedImage& encoded_frame,
RTC_CHECK(!nalu_indices.empty());
size_t max_length = 0;
size_t max_size = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_length = std::max(max_length, index.payload_size);
max_size = std::max(max_size, index.payload_size);
return max_length;
return max_size;
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
@ -113,13 +112,14 @@ VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
analysis_frame_reader_(analysis_frame_reader),
encoded_frame_writer_(encoded_frame_writer),
decoded_frame_writer_(decoded_frame_writer),
last_inputed_frame_num_(-1),
last_encoded_frame_num_(-1),
last_decoded_frame_num_(-1),
last_inputed_frame_num_(0),
last_encoded_frame_num_(0),
last_decoded_frame_num_(0),
num_encoded_frames_(0),
num_decoded_frames_(0),
first_key_frame_has_been_excluded_(false),
last_decoded_frame_buffer_(analysis_frame_reader->FrameLength()),
stats_(stats),
rate_update_index_(-1) {
stats_(stats) {
RTC_DCHECK(encoder);
RTC_DCHECK(decoder);
RTC_DCHECK(packet_manipulator);
@ -134,12 +134,13 @@ VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
// Initialize the encoder and decoder.
RTC_CHECK_EQ(
encoder_->InitEncode(&config_.codec_settings, config_.NumberOfCores(),
encoder_->InitEncode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores()),
config_.networking_config.max_payload_size_in_bytes),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(
decoder_->InitDecode(&config_.codec_settings, config_.NumberOfCores()),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder_->InitDecode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores())),
WEBRTC_VIDEO_CODEC_OK);
}
VideoProcessor::~VideoProcessor() {
@ -154,7 +155,7 @@ VideoProcessor::~VideoProcessor() {
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
const int frame_number = ++last_inputed_frame_num_;
const size_t frame_number = last_inputed_frame_num_++;
// Get frame from file.
rtc::scoped_refptr<I420BufferInterface> buffer(
@ -163,18 +164,20 @@ void VideoProcessor::ProcessFrame() {
// Use the frame number as the basis for timestamp to identify frames. Let the
// first timestamp be non-zero, to not make the IvfFileWriter believe that we
// want to use capture timestamps in the IVF files.
const uint32_t rtp_timestamp = (frame_number + 1) * kRtpClockRateHz /
config_.codec_settings.maxFramerate;
const size_t rtp_timestamp = (frame_number + 1) * kVideoPayloadTypeFrequency /
config_.codec_settings.maxFramerate;
const int64_t render_time_ms = (frame_number + 1) * rtc::kNumMillisecsPerSec /
config_.codec_settings.maxFramerate;
rtp_timestamp_to_frame_num_[rtp_timestamp] = frame_number;
input_frames_[frame_number] = rtc::MakeUnique<VideoFrame>(
buffer, rtp_timestamp, render_time_ms, webrtc::kVideoRotation_0);
input_frames_[frame_number] =
rtc::MakeUnique<VideoFrame>(buffer, static_cast<uint32_t>(rtp_timestamp),
render_time_ms, webrtc::kVideoRotation_0);
std::vector<FrameType> frame_types = config_.FrameTypeForFrame(frame_number);
// Create frame statistics object used for aggregation at end of test run.
FrameStatistic* frame_stat = stats_->AddFrame();
frame_stat->rtp_timestamp = rtp_timestamp;
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
@ -183,27 +186,16 @@ void VideoProcessor::ProcessFrame() {
encoder_->Encode(*input_frames_[frame_number], nullptr, &frame_types);
}
void VideoProcessor::SetRates(int bitrate_kbps, int framerate_fps) {
void VideoProcessor::SetRates(size_t bitrate_kbps, size_t framerate_fps) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
config_.codec_settings.maxFramerate = framerate_fps;
int set_rates_result = encoder_->SetRateAllocation(
bitrate_allocator_->GetAllocation(bitrate_kbps * 1000, framerate_fps),
framerate_fps);
config_.codec_settings.maxFramerate = static_cast<uint32_t>(framerate_fps);
bitrate_allocation_ = bitrate_allocator_->GetAllocation(
static_cast<uint32_t>(bitrate_kbps * 1000),
static_cast<uint32_t>(framerate_fps));
const int set_rates_result = encoder_->SetRateAllocation(
bitrate_allocation_, static_cast<uint32_t>(framerate_fps));
RTC_DCHECK_GE(set_rates_result, 0)
<< "Failed to update encoder with new rate " << bitrate_kbps << ".";
++rate_update_index_;
num_dropped_frames_.push_back(0);
num_spatial_resizes_.push_back(0);
}
std::vector<int> VideoProcessor::NumberDroppedFramesPerRateUpdate() const {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
return num_dropped_frames_;
}
std::vector<int> VideoProcessor::NumberSpatialResizesPerRateUpdate() const {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
return num_spatial_resizes_;
}
void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec,
@ -218,20 +210,17 @@ void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec,
config_.encoded_frame_checker->CheckEncodedFrame(codec, encoded_image);
}
const int frame_number =
const size_t frame_number =
rtp_timestamp_to_frame_num_[encoded_image._timeStamp];
// Ensure strict monotonicity.
RTC_CHECK_GT(frame_number, last_encoded_frame_num_);
if (num_encoded_frames_ > 0) {
RTC_CHECK_GT(frame_number, last_encoded_frame_num_);
}
// Check for dropped frames.
bool last_frame_missing = false;
if (frame_number > 0) {
int num_dropped_from_last_encode =
frame_number - last_encoded_frame_num_ - 1;
RTC_DCHECK_GE(num_dropped_from_last_encode, 0);
RTC_CHECK_GE(rate_update_index_, 0);
num_dropped_frames_[rate_update_index_] += num_dropped_from_last_encode;
const FrameStatistic* last_encoded_frame_stat =
stats_->GetFrame(last_encoded_frame_num_);
last_frame_missing = (last_encoded_frame_stat->manipulated_length == 0);
@ -245,13 +234,14 @@ void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec,
frame_stat->encoding_successful = true;
frame_stat->encoded_frame_size_bytes = encoded_image._length;
frame_stat->frame_type = encoded_image._frameType;
frame_stat->temporal_layer_idx = config_.TemporalLayerForFrame(frame_number);
frame_stat->qp = encoded_image.qp_;
frame_stat->bitrate_kbps = static_cast<int>(
encoded_image._length * config_.codec_settings.maxFramerate * 8 / 1000);
frame_stat->target_bitrate_kbps =
bitrate_allocation_.GetSpatialLayerSum(0) / 1000;
frame_stat->total_packets =
encoded_image._length / config_.networking_config.packet_size_in_bytes +
1;
frame_stat->max_nalu_length = GetMaxNaluLength(encoded_image, config_);
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
// Make a raw copy of |encoded_image| to feed to the decoder.
size_t copied_buffer_size = encoded_image._length +
@ -278,6 +268,8 @@ void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec,
if (encoded_frame_writer_) {
RTC_CHECK(encoded_frame_writer_->WriteFrame(encoded_image, codec));
}
++num_encoded_frames_;
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
@ -288,7 +280,7 @@ void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
int64_t decode_stop_ns = rtc::TimeNanos();
// Update frame statistics.
const int frame_number =
const size_t frame_number =
rtp_timestamp_to_frame_num_[decoded_frame.timestamp()];
FrameStatistic* frame_stat = stats_->GetFrame(frame_number);
frame_stat->decoded_width = decoded_frame.width();
@ -298,26 +290,21 @@ void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
frame_stat->decoding_successful = true;
// Ensure strict monotonicity.
RTC_CHECK_GT(frame_number, last_decoded_frame_num_);
if (num_decoded_frames_ > 0) {
RTC_CHECK_GT(frame_number, last_decoded_frame_num_);
}
// Check if the codecs have resized the frame since previously decoded frame.
if (frame_number > 0) {
if (decoded_frame_writer_ && last_decoded_frame_num_ >= 0) {
if (decoded_frame_writer_ && num_decoded_frames_ > 0) {
// For dropped/lost frames, write out the last decoded frame to make it
// look like a freeze at playback.
const int num_dropped_frames = frame_number - last_decoded_frame_num_;
for (int i = 0; i < num_dropped_frames; i++) {
const size_t num_dropped_frames =
frame_number - last_decoded_frame_num_ - 1;
for (size_t i = 0; i < num_dropped_frames; i++) {
WriteDecodedFrameToFile(&last_decoded_frame_buffer_);
}
}
// TODO(ssilkin): move to FrameEncoded when webm:1474 is implemented.
const FrameStatistic* last_decoded_frame_stat =
stats_->GetFrame(last_decoded_frame_num_);
if (decoded_frame.width() != last_decoded_frame_stat->decoded_width ||
decoded_frame.height() != last_decoded_frame_stat->decoded_height) {
RTC_CHECK_GE(rate_update_index_, 0);
++num_spatial_resizes_[rate_update_index_];
}
}
last_decoded_frame_num_ = frame_number;
@ -331,10 +318,8 @@ void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
// Delay erasing of input frames by one frame. The current frame might
// still be needed for other simulcast stream or spatial layer.
const int frame_number_to_erase = frame_number - 1;
if (frame_number_to_erase >= 0) {
auto input_frame_erase_to =
input_frames_.lower_bound(frame_number_to_erase);
if (frame_number > 0) {
auto input_frame_erase_to = input_frames_.lower_bound(frame_number - 1);
input_frames_.erase(input_frames_.begin(), input_frame_erase_to);
}
@ -344,6 +329,8 @@ void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
&last_decoded_frame_buffer_);
WriteDecodedFrameToFile(&last_decoded_frame_buffer_);
}
++num_decoded_frames_;
}
void VideoProcessor::WriteDecodedFrameToFile(rtc::Buffer* buffer) {

View file

@ -76,13 +76,7 @@ class VideoProcessor {
void ProcessFrame();
// Updates the encoder with target rates. Must be called at least once.
void SetRates(int bitrate_kbps, int framerate_fps);
// Returns the number of dropped frames.
std::vector<int> NumberDroppedFramesPerRateUpdate() const;
// Returns the number of spatial resizes.
std::vector<int> NumberSpatialResizesPerRateUpdate() const;
void SetRates(size_t bitrate_kbps, size_t framerate_fps);
private:
class VideoProcessorEncodeCompleteCallback
@ -190,6 +184,7 @@ class VideoProcessor {
webrtc::VideoEncoder* const encoder_;
webrtc::VideoDecoder* const decoder_;
const std::unique_ptr<VideoBitrateAllocator> bitrate_allocator_;
BitrateAllocation bitrate_allocation_ RTC_GUARDED_BY(sequence_checker_);
// Adapters for the codec callbacks.
VideoProcessorEncodeCompleteCallback encode_callback_;
@ -202,7 +197,7 @@ class VideoProcessor {
// Async codecs might queue frames. To handle that we keep input frame
// and release it after corresponding coded frame is decoded and quality
// measurement is done.
std::map<int, std::unique_ptr<VideoFrame>> input_frames_
std::map<size_t, std::unique_ptr<VideoFrame>> input_frames_
RTC_GUARDED_BY(sequence_checker_);
// These (mandatory) file manipulators are used for, e.g., objective PSNR and
@ -217,13 +212,15 @@ class VideoProcessor {
FrameWriter* const decoded_frame_writer_;
// Keep track of inputed/encoded/decoded frames, so we can detect frame drops.
int last_inputed_frame_num_ RTC_GUARDED_BY(sequence_checker_);
int last_encoded_frame_num_ RTC_GUARDED_BY(sequence_checker_);
int last_decoded_frame_num_ RTC_GUARDED_BY(sequence_checker_);
size_t last_inputed_frame_num_ RTC_GUARDED_BY(sequence_checker_);
size_t last_encoded_frame_num_ RTC_GUARDED_BY(sequence_checker_);
size_t last_decoded_frame_num_ RTC_GUARDED_BY(sequence_checker_);
size_t num_encoded_frames_ RTC_GUARDED_BY(sequence_checker_);
size_t num_decoded_frames_ RTC_GUARDED_BY(sequence_checker_);
// Store an RTP timestamp -> frame number map, since the timestamps are
// based off of the frame rate, which can change mid-test.
std::map<uint32_t, int> rtp_timestamp_to_frame_num_
std::map<size_t, size_t> rtp_timestamp_to_frame_num_
RTC_GUARDED_BY(sequence_checker_);
// Keep track of if we have excluded the first key frame from packet loss.
@ -235,9 +232,6 @@ class VideoProcessor {
// Statistics.
Stats* stats_;
std::vector<int> num_dropped_frames_ RTC_GUARDED_BY(sequence_checker_);
std::vector<int> num_spatial_resizes_ RTC_GUARDED_BY(sequence_checker_);
int rate_update_index_ RTC_GUARDED_BY(sequence_checker_);
rtc::SequencedTaskChecker sequence_checker_;

View file

@ -37,6 +37,7 @@
#include "rtc_base/file.h"
#include "rtc_base/ptr_util.h"
#include "system_wrappers/include/sleep.h"
#include "test/statistics.h"
#include "test/testsupport/fileutils.h"
#include "test/testsupport/metrics/video_metrics.h"
@ -45,12 +46,9 @@ namespace test {
namespace {
const int kMaxBitrateMismatchPercent = 20;
const int kRtpClockRateHz = 90000;
// Parameters from VP8 wrapper, which control target size of key frames.
const float kInitialBufferSize = 0.5f;
const float kOptimalBufferSize = 0.6f;
const float kScaleKeyFrameSize = 0.5f;
const int kMaxBitrateMismatchPercent = 20;
bool RunEncodeInRealTime(const TestConfig& config) {
if (config.measure_cpu) {
@ -173,118 +171,210 @@ VideoProcessorIntegrationTest::~VideoProcessorIntegrationTest() = default;
void VideoProcessorIntegrationTest::ProcessFramesAndMaybeVerify(
const std::vector<RateProfile>& rate_profiles,
const std::vector<RateControlThresholds>* rc_thresholds,
const QualityThresholds* quality_thresholds,
const std::vector<QualityThresholds>* quality_thresholds,
const BitstreamThresholds* bs_thresholds,
const VisualizationParams* visualization_params) {
RTC_DCHECK(!rate_profiles.empty());
// The Android HW codec needs to be run on a task queue, so we simply always
// run the test on a task queue.
rtc::TaskQueue task_queue("VidProc TQ");
rtc::Event sync_event(false, false);
SetUpAndInitObjects(&task_queue, rate_profiles[0].target_kbps,
rate_profiles[0].input_fps, visualization_params);
SetUpAndInitObjects(
&task_queue, static_cast<const int>(rate_profiles[0].target_kbps),
static_cast<const int>(rate_profiles[0].input_fps), visualization_params);
PrintSettings();
ProcessAllFrames(&task_queue, rate_profiles);
ReleaseAndCloseObjects(&task_queue);
AnalyzeAllFrames(rate_profiles, rc_thresholds, quality_thresholds,
bs_thresholds);
}
void VideoProcessorIntegrationTest::ProcessAllFrames(
rtc::TaskQueue* task_queue,
const std::vector<RateProfile>& rate_profiles) {
// Process all frames.
size_t rate_update_index = 0;
// Set initial rates.
int rate_update_index = 0;
task_queue.PostTask([this, &rate_profiles, rate_update_index] {
task_queue->PostTask([this, &rate_profiles, rate_update_index] {
processor_->SetRates(rate_profiles[rate_update_index].target_kbps,
rate_profiles[rate_update_index].input_fps);
});
cpu_process_time_->Start();
// Process all frames.
int frame_number = 0;
const int num_frames = config_.num_frames;
RTC_DCHECK_GE(num_frames, 1);
while (frame_number < num_frames) {
if (RunEncodeInRealTime(config_)) {
// Roughly pace the frames.
SleepMs(rtc::kNumMillisecsPerSec /
rate_profiles[rate_update_index].input_fps);
}
task_queue.PostTask([this] { processor_->ProcessFrame(); });
++frame_number;
for (size_t frame_number = 0; frame_number < config_.num_frames;
++frame_number) {
if (frame_number ==
rate_profiles[rate_update_index].frame_index_rate_update) {
++rate_update_index;
RTC_DCHECK_GT(rate_profiles.size(), rate_update_index);
task_queue.PostTask([this, &rate_profiles, rate_update_index] {
task_queue->PostTask([this, &rate_profiles, rate_update_index] {
processor_->SetRates(rate_profiles[rate_update_index].target_kbps,
rate_profiles[rate_update_index].input_fps);
});
}
task_queue->PostTask([this] { processor_->ProcessFrame(); });
if (RunEncodeInRealTime(config_)) {
// Roughly pace the frames.
size_t frame_duration_ms =
rtc::kNumMillisecsPerSec / rate_profiles[rate_update_index].input_fps;
SleepMs(static_cast<int>(frame_duration_ms));
}
}
rtc::Event sync_event(false, false);
task_queue->PostTask([&sync_event] { sync_event.Set(); });
sync_event.Wait(rtc::Event::kForever);
// Give the VideoProcessor pipeline some time to process the last frame,
// and then release the codecs.
if (config_.hw_encoder || config_.hw_decoder) {
SleepMs(1 * rtc::kNumMillisecsPerSec);
}
cpu_process_time_->Stop();
}
std::vector<int> num_dropped_frames;
std::vector<int> num_spatial_resizes;
sync_event.Reset();
task_queue.PostTask(
[this, &num_dropped_frames, &num_spatial_resizes, &sync_event]() {
num_dropped_frames = processor_->NumberDroppedFramesPerRateUpdate();
num_spatial_resizes = processor_->NumberSpatialResizesPerRateUpdate();
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
void VideoProcessorIntegrationTest::AnalyzeAllFrames(
const std::vector<RateProfile>& rate_profiles,
const std::vector<RateControlThresholds>* rc_thresholds,
const std::vector<QualityThresholds>* quality_thresholds,
const BitstreamThresholds* bs_thresholds) {
const bool is_svc = config_.NumberOfSpatialLayers() > 1;
const size_t number_of_simulcast_or_spatial_layers =
std::max(std::size_t{1},
std::max(config_.NumberOfSpatialLayers(),
static_cast<size_t>(
config_.codec_settings.numberOfSimulcastStreams)));
const size_t number_of_temporal_layers = config_.NumberOfTemporalLayers();
printf("Rate control statistics\n==\n");
for (size_t rate_update_index = 0; rate_update_index < rate_profiles.size();
++rate_update_index) {
const size_t first_frame_number =
(rate_update_index == 0)
? 0
: rate_profiles[rate_update_index - 1].frame_index_rate_update;
const size_t last_frame_number =
rate_profiles[rate_update_index].frame_index_rate_update - 1;
RTC_CHECK(last_frame_number >= first_frame_number);
const size_t number_of_frames = last_frame_number - first_frame_number + 1;
const float input_duration_sec =
1.0 * number_of_frames / rate_profiles[rate_update_index].input_fps;
ReleaseAndCloseObjects(&task_queue);
std::vector<FrameStatistic> overall_stats =
ExtractLayerStats(number_of_simulcast_or_spatial_layers - 1,
number_of_temporal_layers - 1, first_frame_number,
last_frame_number, true);
// Calculate and print rate control statistics.
rate_update_index = 0;
frame_number = 0;
quality_ = QualityMetrics();
ResetRateControlMetrics(rate_update_index, rate_profiles);
while (frame_number < num_frames) {
UpdateRateControlMetrics(frame_number);
printf("Rate update #%zu:\n", rate_update_index);
if (quality_thresholds) {
UpdateQualityMetrics(frame_number);
const RateControlThresholds* rc_threshold =
rc_thresholds ? &(*rc_thresholds)[rate_update_index] : nullptr;
const QualityThresholds* quality_threshold =
quality_thresholds ? &(*quality_thresholds)[rate_update_index]
: nullptr;
AnalyzeAndPrintStats(
overall_stats, rate_profiles[rate_update_index].target_kbps,
rate_profiles[rate_update_index].input_fps, input_duration_sec,
rc_threshold, quality_threshold, bs_thresholds);
if (config_.print_frame_level_stats) {
PrintFrameLevelStats(overall_stats);
}
if (bs_thresholds) {
VerifyBitstream(frame_number, *bs_thresholds);
}
for (size_t spatial_layer_number = 0;
spatial_layer_number < number_of_simulcast_or_spatial_layers;
++spatial_layer_number) {
for (size_t temporal_layer_number = 0;
temporal_layer_number < number_of_temporal_layers;
++temporal_layer_number) {
std::vector<FrameStatistic> layer_stats =
ExtractLayerStats(spatial_layer_number, temporal_layer_number,
first_frame_number, last_frame_number, is_svc);
++frame_number;
const size_t target_bitrate_kbps = layer_stats[0].target_bitrate_kbps;
const float target_framerate_fps =
1.0 * rate_profiles[rate_update_index].input_fps /
(1 << (number_of_temporal_layers - temporal_layer_number - 1));
if (frame_number ==
rate_profiles[rate_update_index].frame_index_rate_update) {
PrintRateControlMetrics(rate_update_index, num_dropped_frames,
num_spatial_resizes);
VerifyRateControlMetrics(rate_update_index, rc_thresholds,
num_dropped_frames, num_spatial_resizes);
++rate_update_index;
ResetRateControlMetrics(rate_update_index, rate_profiles);
printf("Spatial %zu temporal %zu:\n", spatial_layer_number,
temporal_layer_number);
AnalyzeAndPrintStats(layer_stats, target_bitrate_kbps,
target_framerate_fps, input_duration_sec, nullptr,
nullptr, nullptr);
if (config_.print_frame_level_stats) {
PrintFrameLevelStats(layer_stats);
}
}
}
}
PrintRateControlMetrics(rate_update_index, num_dropped_frames,
num_spatial_resizes);
VerifyRateControlMetrics(rate_update_index, rc_thresholds, num_dropped_frames,
num_spatial_resizes);
if (quality_thresholds) {
VerifyQualityMetrics(*quality_thresholds);
}
// Calculate and print other statistics.
EXPECT_EQ(num_frames, static_cast<int>(stats_.size()));
stats_.PrintSummary();
cpu_process_time_->Print();
}
std::vector<FrameStatistic> VideoProcessorIntegrationTest::ExtractLayerStats(
size_t target_spatial_layer_number,
size_t target_temporal_layer_number,
size_t first_frame_number,
size_t last_frame_number,
bool combine_layers_stats) {
size_t target_bitrate_kbps = 0;
std::vector<FrameStatistic> layer_stats;
for (size_t frame_number = first_frame_number;
frame_number <= last_frame_number; ++frame_number) {
// TODO(ssilkin): Add layering support
// FrameStatistic superframe_stat =
// *stats_[target_spatial_layer_number].GetFrame(frame_number);
FrameStatistic superframe_stat = *stats_.GetFrame(frame_number);
const size_t tl_idx = superframe_stat.temporal_layer_idx;
if (tl_idx <= target_temporal_layer_number) {
if (combine_layers_stats) {
for (size_t spatial_layer_number = 0;
spatial_layer_number < target_spatial_layer_number;
++spatial_layer_number) {
// TODO(ssilkin): Add layering support
// const FrameStatistic* frame_stat =
// stats_[spatial_layer_number].GetFrame(frame_number);
const FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
superframe_stat.encoded_frame_size_bytes +=
frame_stat->encoded_frame_size_bytes;
superframe_stat.encode_time_us = std::max(
superframe_stat.encode_time_us, frame_stat->encode_time_us);
superframe_stat.decode_time_us = std::max(
superframe_stat.decode_time_us, frame_stat->decode_time_us);
}
}
target_bitrate_kbps =
std::max(target_bitrate_kbps, superframe_stat.target_bitrate_kbps);
if (superframe_stat.encoding_successful) {
RTC_CHECK(superframe_stat.target_bitrate_kbps <= target_bitrate_kbps ||
tl_idx == target_temporal_layer_number);
RTC_CHECK(superframe_stat.target_bitrate_kbps == target_bitrate_kbps ||
tl_idx < target_temporal_layer_number);
}
layer_stats.push_back(superframe_stat);
}
}
for (auto& frame_stat : layer_stats) {
frame_stat.target_bitrate_kbps = target_bitrate_kbps;
}
return layer_stats;
}
void VideoProcessorIntegrationTest::CreateEncoderAndDecoder() {
std::unique_ptr<VideoEncoderFactory> encoder_factory;
if (config_.hw_encoder) {
@ -436,139 +526,10 @@ void VideoProcessorIntegrationTest::ReleaseAndCloseObjects(
}
}
// For every encoded frame, update the rate control metrics.
void VideoProcessorIntegrationTest::UpdateRateControlMetrics(int frame_number) {
RTC_CHECK_GE(frame_number, 0);
const int tl_idx = config_.TemporalLayerForFrame(frame_number);
++actual_.num_frames_layer[tl_idx];
++actual_.num_frames;
const FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
FrameType frame_type = frame_stat->frame_type;
float framesize_kbits = frame_stat->encoded_frame_size_bytes * 8.0f / 1000.0f;
// Update rate mismatch relative to per-frame bandwidth.
if (frame_type == kVideoFrameDelta) {
// TODO(marpan): Should we count dropped (zero size) frames in mismatch?
actual_.sum_delta_framesize_mismatch_layer[tl_idx] +=
fabs(framesize_kbits - target_.framesize_kbits_layer[tl_idx]) /
target_.framesize_kbits_layer[tl_idx];
} else {
float key_framesize_kbits = (frame_number == 0)
? target_.key_framesize_kbits_initial
: target_.key_framesize_kbits;
actual_.sum_key_framesize_mismatch +=
fabs(framesize_kbits - key_framesize_kbits) / key_framesize_kbits;
++actual_.num_key_frames;
}
actual_.sum_framesize_kbits += framesize_kbits;
actual_.sum_framesize_kbits_layer[tl_idx] += framesize_kbits;
// Encoded bitrate: from the start of the update/run to current frame.
actual_.kbps = actual_.sum_framesize_kbits * target_.fps / actual_.num_frames;
actual_.kbps_layer[tl_idx] = actual_.sum_framesize_kbits_layer[tl_idx] *
target_.fps_layer[tl_idx] /
actual_.num_frames_layer[tl_idx];
// Number of frames to hit target bitrate.
if (actual_.BitrateMismatchPercent(target_.kbps) <
kMaxBitrateMismatchPercent) {
actual_.num_frames_to_hit_target =
std::min(actual_.num_frames, actual_.num_frames_to_hit_target);
}
}
// Verify expected behavior of rate control.
void VideoProcessorIntegrationTest::VerifyRateControlMetrics(
int rate_update_index,
const std::vector<RateControlThresholds>* rc_thresholds,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_spatial_resizes) const {
if (!rc_thresholds)
return;
const RateControlThresholds& rc_threshold =
(*rc_thresholds)[rate_update_index];
EXPECT_LE(num_dropped_frames[rate_update_index],
rc_threshold.max_num_dropped_frames);
EXPECT_EQ(rc_threshold.num_spatial_resizes,
num_spatial_resizes[rate_update_index]);
EXPECT_LE(actual_.num_frames_to_hit_target,
rc_threshold.max_num_frames_to_hit_target);
EXPECT_EQ(rc_threshold.num_key_frames, actual_.num_key_frames);
EXPECT_LE(actual_.KeyFrameSizeMismatchPercent(),
rc_threshold.max_key_framesize_mismatch_percent);
EXPECT_LE(actual_.BitrateMismatchPercent(target_.kbps),
rc_threshold.max_bitrate_mismatch_percent);
const int num_temporal_layers = config_.NumberOfTemporalLayers();
for (int i = 0; i < num_temporal_layers; ++i) {
EXPECT_LE(actual_.DeltaFrameSizeMismatchPercent(i),
rc_threshold.max_delta_framesize_mismatch_percent);
EXPECT_LE(actual_.BitrateMismatchPercent(i, target_.kbps_layer[i]),
rc_threshold.max_bitrate_mismatch_percent);
}
}
void VideoProcessorIntegrationTest::UpdateQualityMetrics(int frame_number) {
FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
if (frame_stat->decoding_successful) {
++quality_.num_decoded_frames;
quality_.total_psnr += frame_stat->psnr;
quality_.total_ssim += frame_stat->ssim;
if (frame_stat->psnr < quality_.min_psnr)
quality_.min_psnr = frame_stat->psnr;
if (frame_stat->ssim < quality_.min_ssim)
quality_.min_ssim = frame_stat->ssim;
}
}
void VideoProcessorIntegrationTest::PrintRateControlMetrics(
int rate_update_index,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_spatial_resizes) const {
if (rate_update_index == 0) {
printf("Rate control statistics\n==\n");
}
printf("Rate update #%d:\n", rate_update_index);
printf(" Target bitrate : %d\n", target_.kbps);
printf(" Encoded bitrate : %f\n", actual_.kbps);
printf(" Frame rate : %d\n", target_.fps);
printf(" # processed frames : %d\n", actual_.num_frames);
printf(" # frames to convergence : %d\n", actual_.num_frames_to_hit_target);
printf(" # dropped frames : %d\n",
num_dropped_frames[rate_update_index]);
printf(" # spatial resizes : %d\n",
num_spatial_resizes[rate_update_index]);
printf(" # key frames : %d\n", actual_.num_key_frames);
printf(" Key frame rate mismatch : %d\n",
actual_.KeyFrameSizeMismatchPercent());
const int num_temporal_layers = config_.NumberOfTemporalLayers();
for (int i = 0; i < num_temporal_layers; ++i) {
printf(" Temporal layer #%d:\n", i);
printf(" TL%d target bitrate : %f\n", i, target_.kbps_layer[i]);
printf(" TL%d encoded bitrate : %f\n", i, actual_.kbps_layer[i]);
printf(" TL%d frame rate : %f\n", i, target_.fps_layer[i]);
printf(" TL%d # processed frames : %d\n", i,
actual_.num_frames_layer[i]);
printf(" TL%d frame size %% mismatch : %d\n", i,
actual_.DeltaFrameSizeMismatchPercent(i));
printf(" TL%d bitrate %% mismatch : %d\n", i,
actual_.BitrateMismatchPercent(i, target_.kbps_layer[i]));
printf(" TL%d per-frame bitrate : %f\n", i,
target_.framesize_kbits_layer[i]);
}
printf("\n");
}
void VideoProcessorIntegrationTest::PrintSettings() const {
printf("VideoProcessor settings\n==\n");
printf(" Total # of frames: %d", analysis_frame_reader_->NumberOfFrames());
printf(" Total # of frames : %d",
analysis_frame_reader_->NumberOfFrames());
printf("%s\n", config_.ToString().c_str());
printf("VideoProcessorIntegrationTest settings\n==\n");
@ -577,87 +538,192 @@ void VideoProcessorIntegrationTest::PrintSettings() const {
const char* decoder_name = decoder_->ImplementationName();
printf(" Decoder implementation name: %s\n", decoder_name);
if (strcmp(encoder_name, decoder_name) == 0) {
printf(" Codec implementation name : %s_%s\n", config_.CodecName().c_str(),
printf(" Codec implementation name : %s_%s\n", config_.CodecName().c_str(),
encoder_name);
}
printf("\n");
}
void VideoProcessorIntegrationTest::VerifyBitstream(
int frame_number,
const BitstreamThresholds& bs_thresholds) {
RTC_CHECK_GE(frame_number, 0);
const FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
EXPECT_LE(*(frame_stat->max_nalu_length), bs_thresholds.max_nalu_length);
}
void VideoProcessorIntegrationTest::AnalyzeAndPrintStats(
const std::vector<FrameStatistic>& stats,
const float target_bitrate_kbps,
const float target_framerate_fps,
const float input_duration_sec,
const RateControlThresholds* rc_thresholds,
const QualityThresholds* quality_thresholds,
const BitstreamThresholds* bs_thresholds) {
const size_t num_input_frames = stats.size();
size_t num_dropped_frames = 0;
size_t num_decoded_frames = 0;
size_t num_spatial_resizes = 0;
size_t num_key_frames = 0;
size_t max_nalu_size_bytes = 0;
void VideoProcessorIntegrationTest::VerifyQualityMetrics(
const QualityThresholds& quality_thresholds) {
EXPECT_GT(quality_.num_decoded_frames, 0);
EXPECT_GT(quality_.total_psnr / quality_.num_decoded_frames,
quality_thresholds.min_avg_psnr);
EXPECT_GT(quality_.min_psnr, quality_thresholds.min_min_psnr);
EXPECT_GT(quality_.total_ssim / quality_.num_decoded_frames,
quality_thresholds.min_avg_ssim);
EXPECT_GT(quality_.min_ssim, quality_thresholds.min_min_ssim);
}
size_t encoded_bytes = 0;
float buffer_level_kbits = 0.0;
float time_to_reach_target_bitrate_sec = -1.0;
// Reset quantities before each encoder rate update.
void VideoProcessorIntegrationTest::ResetRateControlMetrics(
int rate_update_index,
const std::vector<RateProfile>& rate_profiles) {
RTC_DCHECK_GT(rate_profiles.size(), rate_update_index);
// Set new rates.
target_.kbps = rate_profiles[rate_update_index].target_kbps;
target_.fps = rate_profiles[rate_update_index].input_fps;
SetRatesPerTemporalLayer();
Statistics buffer_level_sec;
Statistics key_frame_size_bytes;
Statistics delta_frame_size_bytes;
// Set key frame target sizes.
if (rate_update_index == 0) {
target_.key_framesize_kbits_initial =
0.5 * kInitialBufferSize * target_.kbps_layer[0];
}
Statistics encoding_time_us;
Statistics decoding_time_us;
Statistics psnr;
Statistics ssim;
// Set maximum size of key frames, following setting in the VP8 wrapper.
float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * target_.fps;
// We don't know exact target size of the key frames (except for first one),
// but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is
// set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average
// as reference for mismatch. Note key frames always correspond to base
// layer frame in this test.
target_.key_framesize_kbits =
0.5 * (3 + max_key_size) * target_.framesize_kbits_layer[0];
Statistics qp;
// Reset rate control metrics.
actual_ = TestResults();
actual_.num_frames_to_hit_target = // Set to max number of frames.
rate_profiles[rate_update_index].frame_index_rate_update;
}
FrameStatistic last_successfully_decoded_frame(0);
for (size_t frame_idx = 0; frame_idx < stats.size(); ++frame_idx) {
const FrameStatistic& frame_stat = stats[frame_idx];
void VideoProcessorIntegrationTest::SetRatesPerTemporalLayer() {
const int num_temporal_layers = config_.NumberOfTemporalLayers();
RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers);
const float time_since_first_input_sec =
frame_idx == 0
? 0.0
: 1.0 * (frame_stat.rtp_timestamp - stats[0].rtp_timestamp) /
kRtpClockRateHz;
const float time_since_last_input_sec =
frame_idx == 0 ? 0.0
: 1.0 *
(frame_stat.rtp_timestamp -
stats[frame_idx - 1].rtp_timestamp) /
kRtpClockRateHz;
for (int i = 0; i < num_temporal_layers; ++i) {
float bitrate_ratio;
if (i > 0) {
bitrate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i] -
kVp8LayerRateAlloction[num_temporal_layers - 1][i - 1];
// Testing framework uses constant input framerate. This guarantees even
// sampling, which is important, of buffer level.
buffer_level_kbits -= time_since_last_input_sec * target_bitrate_kbps;
buffer_level_kbits = std::max(0.0f, buffer_level_kbits);
buffer_level_kbits += 8.0 * frame_stat.encoded_frame_size_bytes / 1000;
buffer_level_sec.AddSample(buffer_level_kbits / target_bitrate_kbps);
encoded_bytes += frame_stat.encoded_frame_size_bytes;
if (frame_stat.encoded_frame_size_bytes == 0) {
++num_dropped_frames;
} else {
bitrate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i];
if (frame_stat.frame_type == kVideoFrameKey) {
key_frame_size_bytes.AddSample(frame_stat.encoded_frame_size_bytes);
++num_key_frames;
} else {
delta_frame_size_bytes.AddSample(frame_stat.encoded_frame_size_bytes);
}
encoding_time_us.AddSample(frame_stat.encode_time_us);
qp.AddSample(frame_stat.qp);
max_nalu_size_bytes =
std::max(max_nalu_size_bytes, frame_stat.max_nalu_size_bytes);
}
if (frame_stat.decoding_successful) {
psnr.AddSample(frame_stat.psnr);
ssim.AddSample(frame_stat.ssim);
if (num_decoded_frames > 0) {
if (last_successfully_decoded_frame.decoded_width !=
frame_stat.decoded_width ||
last_successfully_decoded_frame.decoded_height !=
frame_stat.decoded_height) {
++num_spatial_resizes;
}
}
decoding_time_us.AddSample(frame_stat.decode_time_us);
last_successfully_decoded_frame = frame_stat;
++num_decoded_frames;
}
if (time_to_reach_target_bitrate_sec < 0 && frame_idx > 0) {
const float curr_bitrate_kbps =
(8.0 * encoded_bytes / 1000) / time_since_first_input_sec;
const float bitrate_mismatch_percent =
100 * std::fabs(curr_bitrate_kbps - target_bitrate_kbps) /
target_bitrate_kbps;
if (bitrate_mismatch_percent < kMaxBitrateMismatchPercent) {
time_to_reach_target_bitrate_sec = time_since_first_input_sec;
}
}
target_.kbps_layer[i] = target_.kbps * bitrate_ratio;
target_.fps_layer[i] =
target_.fps / static_cast<float>(1 << (num_temporal_layers - 1));
}
if (num_temporal_layers == 3) {
target_.fps_layer[2] = target_.fps / 2.0f;
}
// Update layer per-frame-bandwidth.
for (int i = 0; i < num_temporal_layers; ++i) {
target_.framesize_kbits_layer[i] =
target_.kbps_layer[i] / target_.fps_layer[i];
const float encoded_bitrate_kbps =
8 * encoded_bytes / input_duration_sec / 1000;
const float bitrate_mismatch_percent =
100 * std::fabs(encoded_bitrate_kbps - target_bitrate_kbps) /
target_bitrate_kbps;
const size_t num_encoded_frames = num_input_frames - num_dropped_frames;
const float encoded_framerate_fps = num_encoded_frames / input_duration_sec;
const float decoded_framerate_fps = num_decoded_frames / input_duration_sec;
const float framerate_mismatch_percent =
100 * std::fabs(decoded_framerate_fps - target_framerate_fps) /
target_framerate_fps;
const float max_key_frame_delay_sec =
8 * key_frame_size_bytes.Max() / 1000 / target_bitrate_kbps;
const float max_delta_frame_delay_sec =
8 * delta_frame_size_bytes.Max() / 1000 / target_bitrate_kbps;
printf("Target bitrate : %f kbps\n", target_bitrate_kbps);
printf("Encoded bitrate : %f kbps\n", encoded_bitrate_kbps);
printf("Bitrate mismatch : %f %%\n", bitrate_mismatch_percent);
printf("Time to reach target bitrate : %f sec\n",
time_to_reach_target_bitrate_sec);
printf("Target framerate : %f fps\n", target_framerate_fps);
printf("Encoding framerate : %f fps\n", encoded_framerate_fps);
printf("Decoding framerate : %f fps\n", decoded_framerate_fps);
printf("Frame encoding time : %f us\n", encoding_time_us.Mean());
printf("Frame decoding time : %f us\n", decoding_time_us.Mean());
printf("Framerate mismatch percent : %f %%\n",
framerate_mismatch_percent);
printf("Avg buffer level : %f sec\n", buffer_level_sec.Mean());
printf("Max key frame delay : %f sec\n", max_key_frame_delay_sec);
printf("Max delta frame delay : %f sec\n",
max_delta_frame_delay_sec);
printf("Avg key frame size : %f bytes\n",
key_frame_size_bytes.Mean());
printf("Avg delta frame size : %f bytes\n",
delta_frame_size_bytes.Mean());
printf("Avg QP : %f\n", qp.Mean());
printf("Avg PSNR : %f dB\n", psnr.Mean());
printf("Min PSNR : %f dB\n", psnr.Min());
printf("Avg SSIM : %f\n", ssim.Mean());
printf("Min SSIM : %f\n", ssim.Min());
printf("# input frames : %zu\n", num_input_frames);
printf("# encoded frames : %zu\n", num_encoded_frames);
printf("# decoded frames : %zu\n", num_decoded_frames);
printf("# dropped frames : %zu\n", num_dropped_frames);
printf("# key frames : %zu\n", num_key_frames);
printf("# encoded bytes : %zu\n", encoded_bytes);
printf("# spatial resizes : %zu\n", num_spatial_resizes);
if (rc_thresholds) {
EXPECT_LE(bitrate_mismatch_percent,
rc_thresholds->max_avg_bitrate_mismatch_percent);
EXPECT_LE(time_to_reach_target_bitrate_sec,
rc_thresholds->max_time_to_reach_target_bitrate_sec);
EXPECT_LE(framerate_mismatch_percent,
rc_thresholds->max_avg_framerate_mismatch_percent);
EXPECT_LE(buffer_level_sec.Mean(), rc_thresholds->max_avg_buffer_level_sec);
EXPECT_LE(max_key_frame_delay_sec,
rc_thresholds->max_max_key_frame_delay_sec);
EXPECT_LE(max_delta_frame_delay_sec,
rc_thresholds->max_max_delta_frame_delay_sec);
EXPECT_LE(num_spatial_resizes, rc_thresholds->max_num_spatial_resizes);
EXPECT_LE(num_key_frames, rc_thresholds->max_num_key_frames);
}
if (quality_thresholds) {
EXPECT_GT(psnr.Mean(), quality_thresholds->min_avg_psnr);
EXPECT_GT(psnr.Min(), quality_thresholds->min_min_psnr);
EXPECT_GT(ssim.Mean(), quality_thresholds->min_avg_ssim);
EXPECT_GT(ssim.Min(), quality_thresholds->min_min_ssim);
}
if (bs_thresholds) {
EXPECT_LE(max_nalu_size_bytes, bs_thresholds->max_max_nalu_size_bytes);
}
}
void VideoProcessorIntegrationTest::PrintFrameLevelStats(
const std::vector<FrameStatistic>& stats) const {
for (auto& frame_stat : stats) {
printf("%s\n", frame_stat.ToString().c_str());
}
}

View file

@ -36,35 +36,24 @@ namespace test {
// Rates for the encoder and the frame number when to change profile.
struct RateProfile {
int target_kbps;
int input_fps;
int frame_index_rate_update;
size_t target_kbps;
size_t input_fps;
size_t frame_index_rate_update;
};
// Thresholds for the rate control metrics. The thresholds are defined for each
// rate update sequence. |max_num_frames_to_hit_target| is defined as number of
// frames, after a rate update is made to the encoder, for the encoder to reach
// |kMaxBitrateMismatchPercent| of new target rate.
struct RateControlThresholds {
int max_num_dropped_frames;
int max_key_framesize_mismatch_percent;
int max_delta_framesize_mismatch_percent;
int max_bitrate_mismatch_percent;
int max_num_frames_to_hit_target;
int num_spatial_resizes;
int num_key_frames;
double max_avg_bitrate_mismatch_percent;
double max_time_to_reach_target_bitrate_sec;
// TODO(ssilkin): Use absolute threshold for framerate.
double max_avg_framerate_mismatch_percent;
double max_avg_buffer_level_sec;
double max_max_key_frame_delay_sec;
double max_max_delta_frame_delay_sec;
size_t max_num_spatial_resizes;
size_t max_num_key_frames;
};
// Thresholds for the quality metrics.
struct QualityThresholds {
QualityThresholds(double min_avg_psnr,
double min_min_psnr,
double min_avg_ssim,
double min_min_ssim)
: min_avg_psnr(min_avg_psnr),
min_min_psnr(min_min_psnr),
min_avg_ssim(min_avg_ssim),
min_min_ssim(min_min_ssim) {}
double min_avg_psnr;
double min_min_psnr;
double min_avg_ssim;
@ -72,9 +61,7 @@ struct QualityThresholds {
};
struct BitstreamThresholds {
explicit BitstreamThresholds(size_t max_nalu_length)
: max_nalu_length(max_nalu_length) {}
size_t max_nalu_length;
size_t max_max_nalu_size_bytes;
};
// Should video files be saved persistently to disk for post-run visualization?
@ -83,15 +70,10 @@ struct VisualizationParams {
bool save_decoded_y4m;
};
// Integration test for video processor. Encodes+decodes a clip and
// writes it to the output directory. After completion, quality metrics
// (PSNR and SSIM) and rate control metrics are computed and compared to given
// thresholds, to verify that the quality and encoder response is acceptable.
// The rate control tests allow us to verify the behavior for changing bit rate,
// changing frame rate, frame dropping/spatial resize, and temporal layers.
// The thresholds for the rate control metrics are set to be fairly
// conservative, so failure should only happen when some significant regression
// or breakdown occurs.
// Integration test for video processor. It does rate control and frame quality
// analysis using frame statistics collected by video processor and logs the
// results. If thresholds are specified it checks that corresponding metrics
// are in desirable range.
class VideoProcessorIntegrationTest : public testing::Test {
protected:
// Verifies that all H.264 keyframes contain SPS/PPS/IDR NALUs.
@ -107,7 +89,7 @@ class VideoProcessorIntegrationTest : public testing::Test {
void ProcessFramesAndMaybeVerify(
const std::vector<RateProfile>& rate_profiles,
const std::vector<RateControlThresholds>* rc_thresholds,
const QualityThresholds* quality_thresholds,
const std::vector<QualityThresholds>* quality_thresholds,
const BitstreamThresholds* bs_thresholds,
const VisualizationParams* visualization_params);
@ -119,54 +101,6 @@ class VideoProcessorIntegrationTest : public testing::Test {
private:
class CpuProcessTime;
static const int kMaxNumTemporalLayers = 3;
struct TestResults {
int KeyFrameSizeMismatchPercent() const {
if (num_key_frames == 0) {
return -1;
}
return 100 * sum_key_framesize_mismatch / num_key_frames;
}
int DeltaFrameSizeMismatchPercent(int i) const {
return 100 * sum_delta_framesize_mismatch_layer[i] / num_frames_layer[i];
}
int BitrateMismatchPercent(float target_kbps) const {
return 100 * std::fabs(kbps - target_kbps) / target_kbps;
}
int BitrateMismatchPercent(int i, float target_kbps_layer) const {
return 100 * std::fabs(kbps_layer[i] - target_kbps_layer) /
target_kbps_layer;
}
int num_frames = 0;
int num_frames_layer[kMaxNumTemporalLayers] = {0};
int num_key_frames = 0;
int num_frames_to_hit_target = 0;
float sum_framesize_kbits = 0.0f;
float sum_framesize_kbits_layer[kMaxNumTemporalLayers] = {0};
float kbps = 0.0f;
float kbps_layer[kMaxNumTemporalLayers] = {0};
float sum_key_framesize_mismatch = 0.0f;
float sum_delta_framesize_mismatch_layer[kMaxNumTemporalLayers] = {0};
};
struct TargetRates {
int kbps;
int fps;
float kbps_layer[kMaxNumTemporalLayers];
float fps_layer[kMaxNumTemporalLayers];
float framesize_kbits_layer[kMaxNumTemporalLayers];
float key_framesize_kbits_initial;
float key_framesize_kbits;
};
struct QualityMetrics {
int num_decoded_frames = 0;
double total_psnr = 0.0;
double total_ssim = 0.0;
double min_psnr = std::numeric_limits<double>::max();
double min_ssim = std::numeric_limits<double>::max();
};
void CreateEncoderAndDecoder();
void DestroyEncoderAndDecoder();
@ -176,26 +110,29 @@ class VideoProcessorIntegrationTest : public testing::Test {
const VisualizationParams* visualization_params);
void ReleaseAndCloseObjects(rtc::TaskQueue* task_queue);
// Rate control metrics.
void ResetRateControlMetrics(int rate_update_index,
const std::vector<RateProfile>& rate_profiles);
void SetRatesPerTemporalLayer();
void UpdateRateControlMetrics(int frame_number);
void PrintRateControlMetrics(
int rate_update_index,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_spatial_resizes) const;
void VerifyRateControlMetrics(
int rate_update_index,
void ProcessAllFrames(rtc::TaskQueue* task_queue,
const std::vector<RateProfile>& rate_profiles);
void AnalyzeAllFrames(
const std::vector<RateProfile>& rate_profiles,
const std::vector<RateControlThresholds>* rc_thresholds,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_spatial_resizes) const;
const std::vector<QualityThresholds>* quality_thresholds,
const BitstreamThresholds* bs_thresholds);
void VerifyBitstream(int frame_number,
const BitstreamThresholds& bs_thresholds);
std::vector<FrameStatistic> ExtractLayerStats(
size_t target_spatial_layer_number,
size_t target_temporal_layer_number,
size_t first_frame_number,
size_t last_frame_number,
bool combine_layers);
void UpdateQualityMetrics(int frame_number);
void VerifyQualityMetrics(const QualityThresholds& quality_thresholds);
void AnalyzeAndPrintStats(const std::vector<FrameStatistic>& stats,
float target_bitrate_kbps,
float target_framerate_fps,
float input_duration_sec,
const RateControlThresholds* rc_thresholds,
const QualityThresholds* quality_thresholds,
const BitstreamThresholds* bs_thresholds);
void PrintFrameLevelStats(const std::vector<FrameStatistic>& stats) const;
void PrintSettings() const;
@ -213,14 +150,6 @@ class VideoProcessorIntegrationTest : public testing::Test {
Stats stats_;
std::unique_ptr<VideoProcessor> processor_;
std::unique_ptr<CpuProcessTime> cpu_process_time_;
// Quantities updated for every encoded frame.
TestResults actual_;
// Rates set for every encoder rate update.
TargetRates target_;
QualityMetrics quality_;
};
} // namespace test

View file

@ -75,110 +75,96 @@ class VideoProcessorIntegrationTestLibvpx
#if !defined(WEBRTC_IOS)
#if !defined(RTC_DISABLE_VP9)
// VP9: Run with no packet loss and fixed bitrate. Quality should be very high.
// One key frame (first frame only) in sequence.
TEST_F(VideoProcessorIntegrationTestLibvpx, Process0PercentPacketLossVP9) {
TEST_F(VideoProcessorIntegrationTestLibvpx, HighBitrateVP9) {
config_.SetCodecSettings(kVideoCodecVP9, 1, false, false, true, false,
kResilienceOn, kCifWidth, kCifHeight);
config_.num_frames = kNumFramesShort;
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFramesShort + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFramesShort}};
std::vector<RateControlThresholds> rc_thresholds = {
{0, 40, 20, 10, 20, 0, 1}};
{5, 1, 0, 0.1, 0.3, 0.1, 0, 1}};
QualityThresholds quality_thresholds(37.0, 36.0, 0.93, 0.92);
std::vector<QualityThresholds> quality_thresholds = {{37, 36, 0.94, 0.92}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
kNoVisualizationParams);
}
// VP9: Run with no packet loss, with varying bitrate (3 rate updates):
// low to high to medium. Check that quality and encoder response to the new
// target rate/per-frame bandwidth (for each rate update) is within limits.
// One key frame (first frame only) in sequence.
TEST_F(VideoProcessorIntegrationTestLibvpx, ProcessNoLossChangeBitRateVP9) {
TEST_F(VideoProcessorIntegrationTestLibvpx, ChangeBitrateVP9) {
config_.SetCodecSettings(kVideoCodecVP9, 1, false, false, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {
{200, 30, 100}, // target_kbps, input_fps, frame_index_rate_update
{700, 30, 200},
{500, 30, kNumFramesLong + 1}};
{500, 30, kNumFramesLong}};
std::vector<RateControlThresholds> rc_thresholds = {{0, 35, 20, 20, 35, 0, 1},
{2, 0, 20, 20, 60, 0, 0},
{0, 0, 25, 20, 40, 0, 0}};
std::vector<RateControlThresholds> rc_thresholds = {
{5, 1, 0, 0.15, 0.5, 0.1, 0, 1},
{15, 2, 0, 0.2, 0.5, 0.1, 0, 0},
{10, 1, 0, 0.3, 0.5, 0.1, 0, 0}};
QualityThresholds quality_thresholds(35.5, 30.0, 0.90, 0.85);
std::vector<QualityThresholds> quality_thresholds = {
{34, 33, 0.90, 0.88}, {38, 35, 0.95, 0.91}, {35, 34, 0.93, 0.90}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
kNoVisualizationParams);
}
// VP9: Run with no packet loss, with an update (decrease) in frame rate.
// Lower frame rate means higher per-frame-bandwidth, so easier to encode.
// At the low bitrate in this test, this means better rate control after the
// update(s) to lower frame rate. So expect less frame drops, and max values
// for the rate control metrics can be lower. One key frame (first frame only).
// Note: quality after update should be higher but we currently compute quality
// metrics averaged over whole sequence run.
TEST_F(VideoProcessorIntegrationTestLibvpx,
ProcessNoLossChangeFrameRateFrameDropVP9) {
TEST_F(VideoProcessorIntegrationTestLibvpx, ChangeFramerateVP9) {
config_.SetCodecSettings(kVideoCodecVP9, 1, false, false, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {
{100, 24, 100}, // target_kbps, input_fps, frame_index_rate_update
{100, 15, 200},
{100, 10, kNumFramesLong + 1}};
{100, 10, kNumFramesLong}};
// Framerate mismatch should be lower for lower framerate.
std::vector<RateControlThresholds> rc_thresholds = {
{45, 50, 95, 15, 45, 0, 1},
{20, 0, 50, 10, 30, 0, 0},
{5, 0, 30, 5, 25, 0, 0}};
{10, 2, 40, 0.4, 0.5, 0.2, 0, 1},
{8, 2, 5, 0.2, 0.5, 0.2, 0, 0},
{5, 2, 0, 0.2, 0.5, 0.3, 0, 0}};
QualityThresholds quality_thresholds(31.5, 18.0, 0.80, 0.43);
// Quality should be higher for lower framerates for the same content.
std::vector<QualityThresholds> quality_thresholds = {
{33, 32, 0.89, 0.87}, {33.5, 32, 0.90, 0.86}, {33.5, 31.5, 0.90, 0.85}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
kNoVisualizationParams);
}
// VP9: Run with no packet loss and denoiser on. One key frame (first frame).
TEST_F(VideoProcessorIntegrationTestLibvpx, ProcessNoLossDenoiserOnVP9) {
TEST_F(VideoProcessorIntegrationTestLibvpx, DenoiserOnVP9) {
config_.SetCodecSettings(kVideoCodecVP9, 1, false, true, true, false,
kResilienceOn, kCifWidth, kCifHeight);
config_.num_frames = kNumFramesShort;
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFramesShort + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFramesShort}};
std::vector<RateControlThresholds> rc_thresholds = {
{0, 40, 20, 10, 20, 0, 1}};
{5, 1, 0, 0.1, 0.3, 0.1, 0, 1}};
QualityThresholds quality_thresholds(36.8, 35.8, 0.92, 0.91);
std::vector<QualityThresholds> quality_thresholds = {{37.5, 36, 0.94, 0.93}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
kNoVisualizationParams);
}
// Run with no packet loss, at low bitrate.
// spatial_resize is on, for this low bitrate expect one resize in sequence.
// Resize happens on delta frame. Expect only one key frame (first frame).
TEST_F(VideoProcessorIntegrationTestLibvpx,
DISABLED_ProcessNoLossSpatialResizeFrameDropVP9) {
TEST_F(VideoProcessorIntegrationTestLibvpx, VeryLowBitrateVP9) {
config_.SetCodecSettings(kVideoCodecVP9, 1, false, false, true, true,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {{50, 30, kNumFramesLong + 1}};
std::vector<RateProfile> rate_profiles = {{50, 30, kNumFramesLong}};
std::vector<RateControlThresholds> rc_thresholds = {
{228, 70, 160, 15, 80, 1, 1}};
{15, 3, 75, 1.0, 0.5, 0.4, 1, 1}};
QualityThresholds quality_thresholds(24.0, 13.0, 0.65, 0.37);
std::vector<QualityThresholds> quality_thresholds = {{28, 25, 0.80, 0.65}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
@ -190,20 +176,20 @@ TEST_F(VideoProcessorIntegrationTestLibvpx,
#endif // !defined(RTC_DISABLE_VP9)
// VP8: Run with no packet loss and fixed bitrate. Quality should be very high.
// One key frame (first frame only) in sequence. Setting |key_frame_interval|
// to -1 below means no periodic key frames in test.
TEST_F(VideoProcessorIntegrationTestLibvpx, ProcessZeroPacketLoss) {
TEST_F(VideoProcessorIntegrationTestLibvpx, HighBitrateVP8) {
config_.SetCodecSettings(kVideoCodecVP8, 1, false, true, true, false,
kResilienceOn, kCifWidth, kCifHeight);
config_.num_frames = kNumFramesShort;
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFramesShort + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFramesShort}};
std::vector<RateControlThresholds> rc_thresholds = {
{0, 40, 20, 10, 15, 0, 1}};
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(34.95, 33.0, 0.90, 0.89);
// std::vector<QualityThresholds> quality_thresholds = {{37, 35, 0.93, 0.91}};
// TODO(webrtc:8757): AMR VP8 encoder's quality is significantly worse
// than quality of x86 version. Use lower thresholds for now.
std::vector<QualityThresholds> quality_thresholds = {{35, 33, 0.91, 0.89}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
@ -221,10 +207,6 @@ TEST_F(VideoProcessorIntegrationTestLibvpx, ProcessZeroPacketLoss) {
// disabled on Android. Some quality parameter in the above test has been
// adjusted to also pass for |cpu_speed| <= 12.
// VP8: Run with no packet loss, with varying bitrate (3 rate updates):
// low to high to medium. Check that quality and encoder response to the new
// target rate/per-frame bandwidth (for each rate update) is within limits.
// One key frame (first frame only) in sequence.
// Too slow to finish before timeout on iOS. See webrtc:4755.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_ProcessNoLossChangeBitRateVP8 \
@ -232,34 +214,32 @@ TEST_F(VideoProcessorIntegrationTestLibvpx, ProcessZeroPacketLoss) {
#else
#define MAYBE_ProcessNoLossChangeBitRateVP8 ProcessNoLossChangeBitRateVP8
#endif
TEST_F(VideoProcessorIntegrationTestLibvpx,
MAYBE_ProcessNoLossChangeBitRateVP8) {
TEST_F(VideoProcessorIntegrationTestLibvpx, MAYBE_ChangeBitrateVP8) {
config_.SetCodecSettings(kVideoCodecVP8, 1, false, true, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {
{200, 30, 100}, // target_kbps, input_fps, frame_index_rate_update
{800, 30, 200},
{500, 30, kNumFramesLong + 1}};
{500, 30, kNumFramesLong}};
std::vector<RateControlThresholds> rc_thresholds = {{0, 45, 20, 10, 15, 0, 1},
{0, 0, 25, 20, 10, 0, 0},
{0, 0, 25, 15, 10, 0, 0}};
std::vector<RateControlThresholds> rc_thresholds = {
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1},
{15, 1, 0, 0.1, 0.2, 0.1, 0, 0},
{15, 1, 0, 0.3, 0.2, 0.1, 0, 0}};
QualityThresholds quality_thresholds(34.0, 32.0, 0.85, 0.80);
// std::vector<QualityThresholds> quality_thresholds = {
// {33, 32, 0.89, 0.88}, {38, 36, 0.94, 0.93}, {35, 34, 0.92, 0.91}};
// TODO(webrtc:8757): AMR VP8 encoder's quality is significantly worse
// than quality of x86 version. Use lower thresholds for now.
std::vector<QualityThresholds> quality_thresholds = {
{31.8, 31, 0.86, 0.85}, {36, 34.8, 0.92, 0.90}, {33.5, 32, 0.90, 0.88}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
kNoVisualizationParams);
}
// VP8: Run with no packet loss, with an update (decrease) in frame rate.
// Lower frame rate means higher per-frame-bandwidth, so easier to encode.
// At the bitrate in this test, this means better rate control after the
// update(s) to lower frame rate. So expect less frame drops, and max values
// for the rate control metrics can be lower. One key frame (first frame only).
// Note: quality after update should be higher but we currently compute quality
// metrics averaged over whole sequence run.
// Too slow to finish before timeout on iOS. See webrtc:4755.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_ProcessNoLossChangeFrameRateFrameDropVP8 \
@ -268,33 +248,38 @@ TEST_F(VideoProcessorIntegrationTestLibvpx,
#define MAYBE_ProcessNoLossChangeFrameRateFrameDropVP8 \
ProcessNoLossChangeFrameRateFrameDropVP8
#endif
TEST_F(VideoProcessorIntegrationTestLibvpx,
MAYBE_ProcessNoLossChangeFrameRateFrameDropVP8) {
TEST_F(VideoProcessorIntegrationTestLibvpx, MAYBE_ChangeFramerateVP8) {
config_.SetCodecSettings(kVideoCodecVP8, 1, false, true, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {
{80, 24, 100}, // target_kbps, input_fps, frame_index_rate_update
{80, 15, 200},
{80, 10, kNumFramesLong + 1}};
{80, 10, kNumFramesLong}};
// std::vector<RateControlThresholds> rc_thresholds = {
// {10, 2, 20, 0.4, 0.3, 0.1, 0, 1},
// {5, 2, 5, 0.3, 0.3, 0.1, 0, 0},
// {4, 2, 1, 0.2, 0.3, 0.2, 0, 0}};
// TODO(webrtc:8757): AMR VP8 drops more frames than x86 version. Use lower
// thresholds for now.
std::vector<RateControlThresholds> rc_thresholds = {
{40, 20, 75, 15, 60, 0, 1},
{10, 0, 25, 10, 35, 0, 0},
{0, 0, 20, 10, 15, 0, 0}};
{10, 2, 60, 0.5, 0.3, 0.3, 0, 1},
{10, 2, 30, 0.3, 0.3, 0.3, 0, 0},
{10, 2, 10, 0.2, 0.3, 0.2, 0, 0}};
QualityThresholds quality_thresholds(31.0, 22.0, 0.80, 0.65);
// std::vector<QualityThresholds> quality_thresholds = {
// {31, 30, 0.87, 0.86}, {32, 31, 0.89, 0.86}, {32, 30, 0.87, 0.82}};
// TODO(webrtc:8757): AMR VP8 encoder's quality is significantly worse
// than quality of x86 version. Use lower thresholds for now.
std::vector<QualityThresholds> quality_thresholds = {
{31, 30, 0.85, 0.84}, {31.5, 30.5, 0.86, 0.84}, {30.5, 29, 0.83, 0.78}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
kNoVisualizationParams);
}
// VP8: Run with no packet loss, with 3 temporal layers, with a rate update in
// the middle of the sequence. The max values for the frame size mismatch and
// encoding rate mismatch are applied to each layer.
// No dropped frames in this test, and internal spatial resizer is off.
// One key frame (first frame only) in sequence, so no spatial resizing.
// Too slow to finish before timeout on iOS. See webrtc:4755.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_ProcessNoLossTemporalLayersVP8 \
@ -302,18 +287,27 @@ TEST_F(VideoProcessorIntegrationTestLibvpx,
#else
#define MAYBE_ProcessNoLossTemporalLayersVP8 ProcessNoLossTemporalLayersVP8
#endif
TEST_F(VideoProcessorIntegrationTestLibvpx,
MAYBE_ProcessNoLossTemporalLayersVP8) {
TEST_F(VideoProcessorIntegrationTestLibvpx, MAYBE_TemporalLayersVP8) {
config_.SetCodecSettings(kVideoCodecVP8, 3, false, true, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {{200, 30, 150},
{400, 30, kNumFramesLong + 1}};
{400, 30, kNumFramesLong}};
std::vector<RateControlThresholds> rc_thresholds = {{0, 20, 30, 10, 10, 0, 1},
{0, 0, 30, 15, 10, 0, 0}};
// std::vector<RateControlThresholds> rc_thresholds = {
// {5, 1, 0, 0.1, 0.2, 0.1, 0, 1}, {10, 2, 0, 0.1, 0.2, 0.1, 0, 1}};
// TODO(webrtc:8757): AMR VP8 drops more frames than x86 version. Use lower
// thresholds for now.
std::vector<RateControlThresholds> rc_thresholds = {
{10, 1, 2, 0.3, 0.2, 0.1, 0, 1}, {12, 2, 3, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(32.5, 30.0, 0.85, 0.80);
// Min SSIM drops because of high motion scene with complex backgound (trees).
// std::vector<QualityThresholds> quality_thresholds = {{32, 30, 0.88, 0.85},
// {33, 30, 0.89, 0.83}};
// TODO(webrtc:8757): AMR VP8 encoder's quality is significantly worse
// than quality of x86 version. Use lower thresholds for now.
std::vector<QualityThresholds> quality_thresholds = {{31, 30, 0.85, 0.84},
{31, 28, 0.85, 0.75}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,

View file

@ -44,15 +44,15 @@ TEST_F(VideoProcessorIntegrationTestMediaCodec, ForemanCif500kbpsVp8) {
config_.SetCodecSettings(kVideoCodecVP8, 1, false, false, false, false, false,
352, 288);
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames}};
// The thresholds below may have to be tweaked to let even poor MediaCodec
// implementations pass. If this test fails on the bots, disable it and
// ping brandtr@.
std::vector<RateControlThresholds> rc_thresholds = {
{20, 95, 22, 11, 50, 0, 1}};
{10, 1, 1, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(30.0, 14.0, 0.86, 0.39);
std::vector<QualityThresholds> quality_thresholds = {{36, 31, 0.92, 0.86}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
@ -64,15 +64,15 @@ TEST_F(VideoProcessorIntegrationTestMediaCodec, ForemanCif500kbpsH264CBP) {
config_.SetCodecSettings(kVideoCodecH264, 1, false, false, false, false,
false, 352, 288);
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames}};
// The thresholds below may have to be tweaked to let even poor MediaCodec
// implementations pass. If this test fails on the bots, disable it and
// ping brandtr@.
std::vector<RateControlThresholds> rc_thresholds = {
{20, 95, 22, 11, 20, 0, 1}};
{10, 1, 1, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(30.0, 14.0, 0.86, 0.39);
std::vector<QualityThresholds> quality_thresholds = {{36, 31, 0.92, 0.86}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
@ -90,14 +90,15 @@ TEST_F(VideoProcessorIntegrationTestMediaCodec,
config_.SetCodecSettings(kVideoCodecH264, 1, false, false, false, false,
false, 352, 288);
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames}};
// The thresholds below may have to be tweaked to let even poor MediaCodec
// implementations pass. If this test fails on the bots, disable it and
// ping brandtr@.
std::vector<RateControlThresholds> rc_thresholds = {{5, 60, 20, 5, 15, 0, 1}};
std::vector<RateControlThresholds> rc_thresholds = {
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(33.0, 30.0, 0.90, 0.85);
std::vector<QualityThresholds> quality_thresholds = {{37, 35, 0.93, 0.91}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,

View file

@ -49,21 +49,16 @@ class VideoProcessorIntegrationTestOpenH264
}
};
// H264: Run with no packet loss and fixed bitrate. Quality should be very high.
// Note(hbos): The PacketManipulatorImpl code used to simulate packet loss in
// these unittests appears to drop "packets" in a way that is not compatible
// with H264. Therefore ProcessXPercentPacketLossH264, X != 0, unittests have
// not been added.
TEST_F(VideoProcessorIntegrationTestOpenH264, Process0PercentPacketLoss) {
TEST_F(VideoProcessorIntegrationTestOpenH264, ConstantHighBitrate) {
config_.SetCodecSettings(kVideoCodecH264, 1, false, false, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFrames}};
std::vector<RateControlThresholds> rc_thresholds = {
{2, 60, 20, 10, 20, 0, 1}};
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(35.0, 25.0, 0.93, 0.70);
std::vector<QualityThresholds> quality_thresholds = {{37, 35, 0.93, 0.91}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
@ -72,22 +67,22 @@ TEST_F(VideoProcessorIntegrationTestOpenH264, Process0PercentPacketLoss) {
// H264: Enable SingleNalUnit packetization mode. Encoder should split
// large frames into multiple slices and limit length of NAL units.
TEST_F(VideoProcessorIntegrationTestOpenH264, ProcessNoLossSingleNalUnit) {
TEST_F(VideoProcessorIntegrationTestOpenH264, SingleNalUnit) {
config_.h264_codec_settings.packetization_mode =
H264PacketizationMode::SingleNalUnit;
config_.networking_config.max_payload_size_in_bytes = 500;
config_.SetCodecSettings(kVideoCodecH264, 1, false, false, true, false,
kResilienceOn, kCifWidth, kCifHeight);
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kNumFrames}};
std::vector<RateControlThresholds> rc_thresholds = {
{2, 60, 30, 10, 20, 0, 1}};
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(35.0, 25.0, 0.93, 0.70);
std::vector<QualityThresholds> quality_thresholds = {{37, 35, 0.93, 0.91}};
BitstreamThresholds bs_thresholds(
config_.networking_config.max_payload_size_in_bytes);
BitstreamThresholds bs_thresholds = {
config_.networking_config.max_payload_size_in_bytes};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, &bs_thresholds,

View file

@ -18,13 +18,13 @@ namespace test {
namespace {
// Loop variables.
const int kBitrates[] = {500};
const size_t kBitrates[] = {500};
const VideoCodecType kVideoCodecType[] = {kVideoCodecVP8};
const bool kHwCodec[] = {false};
// Codec settings.
const bool kResilienceOn = false;
const int kNumTemporalLayers = 1;
const bool kResilienceOn = kNumTemporalLayers > 1;
const bool kDenoisingOn = false;
const bool kErrorConcealmentOn = false;
const bool kSpatialResizeOn = false;
@ -46,7 +46,7 @@ const int kNumFrames = 30;
class VideoProcessorIntegrationTestParameterized
: public VideoProcessorIntegrationTest,
public ::testing::WithParamInterface<
::testing::tuple<int, VideoCodecType, bool>> {
::testing::tuple<size_t, VideoCodecType, bool>> {
protected:
VideoProcessorIntegrationTestParameterized()
: bitrate_(::testing::get<0>(GetParam())),
@ -54,9 +54,9 @@ class VideoProcessorIntegrationTestParameterized
hw_codec_(::testing::get<2>(GetParam())) {}
~VideoProcessorIntegrationTestParameterized() override = default;
void RunTest(int width,
int height,
int framerate,
void RunTest(size_t width,
size_t height,
size_t framerate,
const std::string& filename) {
config_.filename = filename;
config_.input_filename = ResourcePath(filename, "yuv");
@ -72,13 +72,13 @@ class VideoProcessorIntegrationTestParameterized
kSpatialResizeOn, kResilienceOn, width, height);
std::vector<RateProfile> rate_profiles = {
{bitrate_, framerate, kNumFrames + 1}};
{bitrate_, framerate, kNumFrames}};
ProcessFramesAndMaybeVerify(rate_profiles, nullptr, nullptr, nullptr,
&kVisualizationParams);
}
const int bitrate_;
const size_t bitrate_;
const VideoCodecType codec_type_;
const bool hw_codec_;
};

View file

@ -48,12 +48,12 @@ TEST_F(VideoProcessorIntegrationTestVideoToolbox,
config_.SetCodecSettings(kVideoCodecH264, 1, false, false, false, false,
false, 352, 288);
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames}};
std::vector<RateControlThresholds> rc_thresholds = {
{20, 95, 60, 60, 10, 0, 1}};
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(30.0, 14.0, 0.86, 0.39);
std::vector<QualityThresholds> quality_thresholds = {{37, 35, 0.93, 0.91}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,
@ -68,11 +68,12 @@ TEST_F(VideoProcessorIntegrationTestVideoToolbox,
config_.SetCodecSettings(kVideoCodecH264, 1, false, false, false, false,
false, 352, 288);
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames + 1}};
std::vector<RateProfile> rate_profiles = {{500, 30, kForemanNumFrames}};
std::vector<RateControlThresholds> rc_thresholds = {{5, 75, 65, 60, 6, 0, 1}};
std::vector<RateControlThresholds> rc_thresholds = {
{5, 1, 0, 0.1, 0.2, 0.1, 0, 1}};
QualityThresholds quality_thresholds(30.0, 14.0, 0.86, 0.39);
std::vector<QualityThresholds> quality_thresholds = {{37, 35, 0.93, 0.91}};
ProcessFramesAndMaybeVerify(rate_profiles, &rc_thresholds,
&quality_thresholds, nullptr,

View file

@ -151,10 +151,6 @@ TEST_F(VideoProcessorTest, SetRates) {
kFramerateFps))
.Times(1);
video_processor_->SetRates(kBitrateKbps, kFramerateFps);
EXPECT_THAT(video_processor_->NumberDroppedFramesPerRateUpdate(),
ElementsAre(0));
EXPECT_THAT(video_processor_->NumberSpatialResizesPerRateUpdate(),
ElementsAre(0));
const int kNewBitrateKbps = 456;
const int kNewFramerateFps = 34;
@ -164,10 +160,6 @@ TEST_F(VideoProcessorTest, SetRates) {
kNewFramerateFps))
.Times(1);
video_processor_->SetRates(kNewBitrateKbps, kNewFramerateFps);
EXPECT_THAT(video_processor_->NumberDroppedFramesPerRateUpdate(),
ElementsAre(0, 0));
EXPECT_THAT(video_processor_->NumberSpatialResizesPerRateUpdate(),
ElementsAre(0, 0));
ExpectRelease();
}

View file

@ -11,23 +11,40 @@
#include <math.h>
#include <algorithm>
namespace webrtc {
namespace test {
Statistics::Statistics() : sum_(0.0), sum_squared_(0.0), count_(0) {}
Statistics::Statistics()
: sum_(0.0),
sum_squared_(0.0),
max_(std::numeric_limits<double>::min()),
min_(std::numeric_limits<double>::max()),
count_(0) {}
void Statistics::AddSample(double sample) {
sum_ += sample;
sum_squared_ += sample * sample;
max_ = std::max(max_, sample);
min_ = std::min(min_, sample);
++count_;
}
double Statistics::Max() const {
return max_;
}
double Statistics::Mean() const {
if (count_ == 0)
return 0.0;
return sum_ / count_;
}
double Statistics::Min() const {
return min_;
}
double Statistics::Variance() const {
if (count_ == 0)
return 0.0;

View file

@ -21,13 +21,17 @@ class Statistics {
void AddSample(double sample);
double Max() const;
double Mean() const;
double Min() const;
double Variance() const;
double StandardDeviation() const;
private:
double sum_;
double sum_squared_;
double max_;
double min_;
uint64_t count_;
};
} // namespace test