Remove redundant fields in PacketBuffer

merge two vectors of the same size into single vector
Remove redundant size_ variable.
Remove redundant variables in the StoredPacket internal struct.
Remove frame_created flags since shortly after it is set, used flag is set to false

Bug: webrtc:10979
Change-Id: Ia37944362abda4e2a6c6741f436f95c45e0f7069
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/157174
Commit-Queue: Danil Chapovalov <danilchap@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29535}
This commit is contained in:
Danil Chapovalov 2019-10-18 11:17:03 +02:00 committed by Commit Bot
parent dbbf413085
commit 4aae11dc46
2 changed files with 96 additions and 134 deletions

View file

@ -36,13 +36,11 @@ PacketBuffer::PacketBuffer(Clock* clock,
size_t max_buffer_size, size_t max_buffer_size,
OnAssembledFrameCallback* assembled_frame_callback) OnAssembledFrameCallback* assembled_frame_callback)
: clock_(clock), : clock_(clock),
size_(start_buffer_size),
max_size_(max_buffer_size), max_size_(max_buffer_size),
first_seq_num_(0), first_seq_num_(0),
first_packet_received_(false), first_packet_received_(false),
is_cleared_to_first_seq_num_(false), is_cleared_to_first_seq_num_(false),
data_buffer_(start_buffer_size), buffer_(start_buffer_size),
sequence_buffer_(start_buffer_size),
assembled_frame_callback_(assembled_frame_callback), assembled_frame_callback_(assembled_frame_callback),
unique_frames_seen_(0), unique_frames_seen_(0),
sps_pps_idr_is_h264_keyframe_( sps_pps_idr_is_h264_keyframe_(
@ -65,7 +63,7 @@ bool PacketBuffer::InsertPacket(VCMPacket* packet) {
OnTimestampReceived(packet->timestamp); OnTimestampReceived(packet->timestamp);
uint16_t seq_num = packet->seqNum; uint16_t seq_num = packet->seqNum;
size_t index = seq_num % size_; size_t index = seq_num % buffer_.size();
if (!first_packet_received_) { if (!first_packet_received_) {
first_seq_num_ = seq_num; first_seq_num_ = seq_num;
@ -82,21 +80,21 @@ bool PacketBuffer::InsertPacket(VCMPacket* packet) {
first_seq_num_ = seq_num; first_seq_num_ = seq_num;
} }
if (sequence_buffer_[index].used) { if (buffer_[index].used) {
// Duplicate packet, just delete the payload. // Duplicate packet, just delete the payload.
if (data_buffer_[index].seqNum == packet->seqNum) { if (buffer_[index].seq_num() == packet->seqNum) {
delete[] packet->dataPtr; delete[] packet->dataPtr;
packet->dataPtr = nullptr; packet->dataPtr = nullptr;
return true; return true;
} }
// The packet buffer is full, try to expand the buffer. // The packet buffer is full, try to expand the buffer.
while (ExpandBufferSize() && sequence_buffer_[seq_num % size_].used) { while (ExpandBufferSize() && buffer_[seq_num % buffer_.size()].used) {
} }
index = seq_num % size_; index = seq_num % buffer_.size();
// Packet buffer is still full since we were unable to expand the buffer. // Packet buffer is still full since we were unable to expand the buffer.
if (sequence_buffer_[index].used) { if (buffer_[index].used) {
// Clear the buffer, delete payload, and return false to signal that a // Clear the buffer, delete payload, and return false to signal that a
// new keyframe is needed. // new keyframe is needed.
RTC_LOG(LS_WARNING) << "Clear PacketBuffer and request key frame."; RTC_LOG(LS_WARNING) << "Clear PacketBuffer and request key frame.";
@ -107,13 +105,10 @@ bool PacketBuffer::InsertPacket(VCMPacket* packet) {
} }
} }
sequence_buffer_[index].frame_begin = packet->is_first_packet_in_frame(); StoredPacket& new_entry = buffer_[index];
sequence_buffer_[index].frame_end = packet->is_last_packet_in_frame(); new_entry.continuous = false;
sequence_buffer_[index].seq_num = packet->seqNum; new_entry.used = true;
sequence_buffer_[index].continuous = false; new_entry.data = *packet;
sequence_buffer_[index].frame_created = false;
sequence_buffer_[index].used = true;
data_buffer_[index] = *packet;
packet->dataPtr = nullptr; packet->dataPtr = nullptr;
UpdateMissingPackets(packet->seqNum); UpdateMissingPackets(packet->seqNum);
@ -148,14 +143,13 @@ void PacketBuffer::ClearTo(uint16_t seq_num) {
// iterations to the |size_| of the buffer. // iterations to the |size_| of the buffer.
++seq_num; ++seq_num;
size_t diff = ForwardDiff<uint16_t>(first_seq_num_, seq_num); size_t diff = ForwardDiff<uint16_t>(first_seq_num_, seq_num);
size_t iterations = std::min(diff, size_); size_t iterations = std::min(diff, buffer_.size());
for (size_t i = 0; i < iterations; ++i) { for (size_t i = 0; i < iterations; ++i) {
size_t index = first_seq_num_ % size_; size_t index = first_seq_num_ % buffer_.size();
RTC_DCHECK_EQ(data_buffer_[index].seqNum, sequence_buffer_[index].seq_num); if (AheadOf<uint16_t>(seq_num, buffer_[index].seq_num())) {
if (AheadOf<uint16_t>(seq_num, sequence_buffer_[index].seq_num)) { delete[] buffer_[index].data.dataPtr;
delete[] data_buffer_[index].dataPtr; buffer_[index].data.dataPtr = nullptr;
data_buffer_[index].dataPtr = nullptr; buffer_[index].used = false;
sequence_buffer_[index].used = false;
} }
++first_seq_num_; ++first_seq_num_;
} }
@ -175,15 +169,14 @@ void PacketBuffer::ClearTo(uint16_t seq_num) {
void PacketBuffer::ClearInterval(uint16_t start_seq_num, void PacketBuffer::ClearInterval(uint16_t start_seq_num,
uint16_t stop_seq_num) { uint16_t stop_seq_num) {
size_t iterations = ForwardDiff<uint16_t>(start_seq_num, stop_seq_num + 1); size_t iterations = ForwardDiff<uint16_t>(start_seq_num, stop_seq_num + 1);
RTC_DCHECK_LE(iterations, size_); RTC_DCHECK_LE(iterations, buffer_.size());
uint16_t seq_num = start_seq_num; uint16_t seq_num = start_seq_num;
for (size_t i = 0; i < iterations; ++i) { for (size_t i = 0; i < iterations; ++i) {
size_t index = seq_num % size_; size_t index = seq_num % buffer_.size();
RTC_DCHECK_EQ(sequence_buffer_[index].seq_num, seq_num); RTC_DCHECK_EQ(buffer_[index].seq_num(), seq_num);
RTC_DCHECK_EQ(sequence_buffer_[index].seq_num, data_buffer_[index].seqNum); delete[] buffer_[index].data.dataPtr;
delete[] data_buffer_[index].dataPtr; buffer_[index].data.dataPtr = nullptr;
data_buffer_[index].dataPtr = nullptr; buffer_[index].used = false;
sequence_buffer_[index].used = false;
++seq_num; ++seq_num;
} }
@ -191,10 +184,10 @@ void PacketBuffer::ClearInterval(uint16_t start_seq_num,
void PacketBuffer::Clear() { void PacketBuffer::Clear() {
rtc::CritScope lock(&crit_); rtc::CritScope lock(&crit_);
for (size_t i = 0; i < size_; ++i) { for (StoredPacket& entry : buffer_) {
delete[] data_buffer_[i].dataPtr; delete[] entry.data.dataPtr;
data_buffer_[i].dataPtr = nullptr; entry.data.dataPtr = nullptr;
sequence_buffer_[i].used = false; entry.used = false;
} }
first_packet_received_ = false; first_packet_received_ = false;
@ -233,52 +226,43 @@ int PacketBuffer::GetUniqueFramesSeen() const {
} }
bool PacketBuffer::ExpandBufferSize() { bool PacketBuffer::ExpandBufferSize() {
if (size_ == max_size_) { if (buffer_.size() == max_size_) {
RTC_LOG(LS_WARNING) << "PacketBuffer is already at max size (" << max_size_ RTC_LOG(LS_WARNING) << "PacketBuffer is already at max size (" << max_size_
<< "), failed to increase size."; << "), failed to increase size.";
return false; return false;
} }
size_t new_size = std::min(max_size_, 2 * size_); size_t new_size = std::min(max_size_, 2 * buffer_.size());
std::vector<VCMPacket> new_data_buffer(new_size); std::vector<StoredPacket> new_buffer(new_size);
std::vector<ContinuityInfo> new_sequence_buffer(new_size); for (StoredPacket& entry : buffer_) {
for (size_t i = 0; i < size_; ++i) { if (entry.used) {
if (sequence_buffer_[i].used) { new_buffer[entry.seq_num() % new_size] = entry;
size_t index = sequence_buffer_[i].seq_num % new_size;
new_sequence_buffer[index] = sequence_buffer_[i];
new_data_buffer[index] = data_buffer_[i];
} }
} }
size_ = new_size; buffer_ = std::move(new_buffer);
sequence_buffer_ = std::move(new_sequence_buffer);
data_buffer_ = std::move(new_data_buffer);
RTC_LOG(LS_INFO) << "PacketBuffer size expanded to " << new_size; RTC_LOG(LS_INFO) << "PacketBuffer size expanded to " << new_size;
return true; return true;
} }
bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const { bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const {
size_t index = seq_num % size_; size_t index = seq_num % buffer_.size();
int prev_index = index > 0 ? index - 1 : size_ - 1; int prev_index = index > 0 ? index - 1 : buffer_.size() - 1;
const StoredPacket& entry = buffer_[index];
const StoredPacket& prev_entry = buffer_[prev_index];
if (!sequence_buffer_[index].used) if (!entry.used)
return false; return false;
if (sequence_buffer_[index].seq_num != seq_num) if (entry.seq_num() != seq_num)
return false; return false;
if (sequence_buffer_[index].frame_created) if (entry.frame_begin())
return false;
if (sequence_buffer_[index].frame_begin)
return true; return true;
if (!sequence_buffer_[prev_index].used) if (!prev_entry.used)
return false; return false;
if (sequence_buffer_[prev_index].frame_created) if (prev_entry.seq_num() != static_cast<uint16_t>(entry.seq_num() - 1))
return false; return false;
if (sequence_buffer_[prev_index].seq_num != if (prev_entry.data.timestamp != entry.data.timestamp)
static_cast<uint16_t>(sequence_buffer_[index].seq_num - 1)) {
return false; return false;
} if (prev_entry.continuous)
if (data_buffer_[prev_index].timestamp != data_buffer_[index].timestamp)
return false;
if (sequence_buffer_[prev_index].continuous)
return true; return true;
return false; return false;
@ -287,28 +271,28 @@ bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const {
std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames( std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames(
uint16_t seq_num) { uint16_t seq_num) {
std::vector<std::unique_ptr<RtpFrameObject>> found_frames; std::vector<std::unique_ptr<RtpFrameObject>> found_frames;
for (size_t i = 0; i < size_ && PotentialNewFrame(seq_num); ++i) { for (size_t i = 0; i < buffer_.size() && PotentialNewFrame(seq_num); ++i) {
size_t index = seq_num % size_; size_t index = seq_num % buffer_.size();
sequence_buffer_[index].continuous = true; buffer_[index].continuous = true;
// If all packets of the frame is continuous, find the first packet of the // If all packets of the frame is continuous, find the first packet of the
// frame and create an RtpFrameObject. // frame and create an RtpFrameObject.
if (sequence_buffer_[index].frame_end) { if (buffer_[index].frame_end()) {
size_t frame_size = 0; size_t frame_size = 0;
int max_nack_count = -1; int max_nack_count = -1;
uint16_t start_seq_num = seq_num; uint16_t start_seq_num = seq_num;
int64_t min_recv_time = data_buffer_[index].packet_info.receive_time_ms(); int64_t min_recv_time = buffer_[index].data.packet_info.receive_time_ms();
int64_t max_recv_time = data_buffer_[index].packet_info.receive_time_ms(); int64_t max_recv_time = buffer_[index].data.packet_info.receive_time_ms();
RtpPacketInfos::vector_type packet_infos; RtpPacketInfos::vector_type packet_infos;
// Find the start index by searching backward until the packet with // Find the start index by searching backward until the packet with
// the |frame_begin| flag is set. // the |frame_begin| flag is set.
int start_index = index; int start_index = index;
size_t tested_packets = 0; size_t tested_packets = 0;
int64_t frame_timestamp = data_buffer_[start_index].timestamp; int64_t frame_timestamp = buffer_[start_index].data.timestamp;
// Identify H.264 keyframes by means of SPS, PPS, and IDR. // Identify H.264 keyframes by means of SPS, PPS, and IDR.
bool is_h264 = data_buffer_[start_index].codec() == kVideoCodecH264; bool is_h264 = buffer_[start_index].data.codec() == kVideoCodecH264;
bool has_h264_sps = false; bool has_h264_sps = false;
bool has_h264_pps = false; bool has_h264_pps = false;
bool has_h264_idr = false; bool has_h264_idr = false;
@ -317,29 +301,28 @@ std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames(
int idr_height = -1; int idr_height = -1;
while (true) { while (true) {
++tested_packets; ++tested_packets;
frame_size += data_buffer_[start_index].sizeBytes; frame_size += buffer_[start_index].data.sizeBytes;
max_nack_count = max_nack_count =
std::max(max_nack_count, data_buffer_[start_index].timesNacked); std::max(max_nack_count, buffer_[start_index].data.timesNacked);
sequence_buffer_[start_index].frame_created = true;
min_recv_time = min_recv_time =
std::min(min_recv_time, std::min(min_recv_time,
data_buffer_[start_index].packet_info.receive_time_ms()); buffer_[start_index].data.packet_info.receive_time_ms());
max_recv_time = max_recv_time =
std::max(max_recv_time, std::max(max_recv_time,
data_buffer_[start_index].packet_info.receive_time_ms()); buffer_[start_index].data.packet_info.receive_time_ms());
// Should use |push_front()| since the loop traverses backwards. But // Should use |push_front()| since the loop traverses backwards. But
// it's too inefficient to do so on a vector so we'll instead fix the // it's too inefficient to do so on a vector so we'll instead fix the
// order afterwards. // order afterwards.
packet_infos.push_back(data_buffer_[start_index].packet_info); packet_infos.push_back(buffer_[start_index].data.packet_info);
if (!is_h264 && sequence_buffer_[start_index].frame_begin) if (!is_h264 && buffer_[start_index].frame_begin())
break; break;
if (is_h264) { if (is_h264) {
const auto* h264_header = absl::get_if<RTPVideoHeaderH264>( const auto* h264_header = absl::get_if<RTPVideoHeaderH264>(
&data_buffer_[start_index].video_header.video_type_header); &buffer_[start_index].data.video_header.video_type_header);
if (!h264_header || h264_header->nalus_length >= kMaxNalusPerPacket) if (!h264_header || h264_header->nalus_length >= kMaxNalusPerPacket)
return found_frames; return found_frames;
@ -360,18 +343,18 @@ std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames(
// smallest index and valid resolution; typically its IDR or SPS // smallest index and valid resolution; typically its IDR or SPS
// packet; there may be packet preceeding this packet, IDR's // packet; there may be packet preceeding this packet, IDR's
// resolution will be applied to them. // resolution will be applied to them.
if (data_buffer_[start_index].width() > 0 && if (buffer_[start_index].data.width() > 0 &&
data_buffer_[start_index].height() > 0) { buffer_[start_index].data.height() > 0) {
idr_width = data_buffer_[start_index].width(); idr_width = buffer_[start_index].data.width();
idr_height = data_buffer_[start_index].height(); idr_height = buffer_[start_index].data.height();
} }
} }
} }
if (tested_packets == size_) if (tested_packets == buffer_.size())
break; break;
start_index = start_index > 0 ? start_index - 1 : size_ - 1; start_index = start_index > 0 ? start_index - 1 : buffer_.size() - 1;
// In the case of H264 we don't have a frame_begin bit (yes, // In the case of H264 we don't have a frame_begin bit (yes,
// |frame_begin| might be set to true but that is a lie). So instead // |frame_begin| might be set to true but that is a lie). So instead
@ -380,8 +363,8 @@ std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames(
// the PacketBuffer to hand out incomplete frames. // the PacketBuffer to hand out incomplete frames.
// See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7106 // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7106
if (is_h264 && if (is_h264 &&
(!sequence_buffer_[start_index].used || (!buffer_[start_index].used ||
data_buffer_[start_index].timestamp != frame_timestamp)) { buffer_[start_index].data.timestamp != frame_timestamp)) {
break; break;
} }
@ -406,35 +389,28 @@ std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames(
// Now that we have decided whether to treat this frame as a key frame // Now that we have decided whether to treat this frame as a key frame
// or delta frame in the frame buffer, we update the field that // or delta frame in the frame buffer, we update the field that
// determines if the RtpFrameObject is a key frame or delta frame. // determines if the RtpFrameObject is a key frame or delta frame.
const size_t first_packet_index = start_seq_num % size_; const size_t first_packet_index = start_seq_num % buffer_.size();
RTC_CHECK_LT(first_packet_index, size_);
if (is_h264_keyframe) { if (is_h264_keyframe) {
data_buffer_[first_packet_index].video_header.frame_type = buffer_[first_packet_index].data.video_header.frame_type =
VideoFrameType::kVideoFrameKey; VideoFrameType::kVideoFrameKey;
if (idr_width > 0 && idr_height > 0) { if (idr_width > 0 && idr_height > 0) {
// IDR frame was finalized and we have the correct resolution for // IDR frame was finalized and we have the correct resolution for
// IDR; update first packet to have same resolution as IDR. // IDR; update first packet to have same resolution as IDR.
data_buffer_[first_packet_index].video_header.width = idr_width; buffer_[first_packet_index].data.video_header.width = idr_width;
data_buffer_[first_packet_index].video_header.height = idr_height; buffer_[first_packet_index].data.video_header.height = idr_height;
} }
} else { } else {
data_buffer_[first_packet_index].video_header.frame_type = buffer_[first_packet_index].data.video_header.frame_type =
VideoFrameType::kVideoFrameDelta; VideoFrameType::kVideoFrameDelta;
} }
// With IPPP, if this is not a keyframe, make sure there are no gaps // With IPPP, if this is not a keyframe, make sure there are no gaps
// in the packet sequence numbers up until this point. // in the packet sequence numbers up until this point.
const uint8_t h264tid = const uint8_t h264tid =
data_buffer_[start_index].video_header.frame_marking.temporal_id; buffer_[start_index].data.video_header.frame_marking.temporal_id;
if (h264tid == kNoTemporalIdx && !is_h264_keyframe && if (h264tid == kNoTemporalIdx && !is_h264_keyframe &&
missing_packets_.upper_bound(start_seq_num) != missing_packets_.upper_bound(start_seq_num) !=
missing_packets_.begin()) { missing_packets_.begin()) {
uint16_t stop_index = (index + 1) % size_;
while (start_index != stop_index) {
sequence_buffer_[start_index].frame_created = false;
start_index = (start_index + 1) % size_;
}
return found_frames; return found_frames;
} }
} }
@ -469,33 +445,32 @@ rtc::scoped_refptr<EncodedImageBuffer> PacketBuffer::GetEncodedImageBuffer(
size_t frame_size, size_t frame_size,
uint16_t first_seq_num, uint16_t first_seq_num,
uint16_t last_seq_num) { uint16_t last_seq_num) {
size_t index = first_seq_num % size_; size_t index = first_seq_num % buffer_.size();
size_t end = (last_seq_num + 1) % size_; size_t end = (last_seq_num + 1) % buffer_.size();
auto buffer = EncodedImageBuffer::Create(frame_size); auto buffer = EncodedImageBuffer::Create(frame_size);
size_t offset = 0; size_t offset = 0;
do { do {
RTC_DCHECK(sequence_buffer_[index].used); RTC_DCHECK(buffer_[index].used);
size_t length = data_buffer_[index].sizeBytes; size_t length = buffer_[index].data.sizeBytes;
RTC_CHECK_LE(offset + length, buffer->size()); RTC_CHECK_LE(offset + length, buffer->size());
memcpy(buffer->data() + offset, data_buffer_[index].dataPtr, length); memcpy(buffer->data() + offset, buffer_[index].data.dataPtr, length);
offset += length; offset += length;
index = (index + 1) % size_; index = (index + 1) % buffer_.size();
} while (index != end); } while (index != end);
return buffer; return buffer;
} }
VCMPacket* PacketBuffer::GetPacket(uint16_t seq_num) { VCMPacket* PacketBuffer::GetPacket(uint16_t seq_num) {
size_t index = seq_num % size_; StoredPacket& entry = buffer_[seq_num % buffer_.size()];
if (!sequence_buffer_[index].used || if (!entry.used || seq_num != entry.seq_num()) {
seq_num != sequence_buffer_[index].seq_num) {
return nullptr; return nullptr;
} }
return &data_buffer_[index]; return &entry.data;
} }
void PacketBuffer::UpdateMissingPackets(uint16_t seq_num) { void PacketBuffer::UpdateMissingPackets(uint16_t seq_num) {

View file

@ -44,13 +44,12 @@ class PacketBuffer {
size_t start_buffer_size, size_t start_buffer_size,
size_t max_buffer_size, size_t max_buffer_size,
OnAssembledFrameCallback* frame_callback); OnAssembledFrameCallback* frame_callback);
virtual ~PacketBuffer(); ~PacketBuffer();
// Returns true unless the packet buffer is cleared, which means that a key // Returns true unless the packet buffer is cleared, which means that a key
// frame request should be sent. The PacketBuffer will always take ownership // frame request should be sent. The PacketBuffer will always take ownership
// of the |packet.dataPtr| when this function is called. Made virtual for // of the |packet.dataPtr| when this function is called.
// testing. bool InsertPacket(VCMPacket* packet);
virtual bool InsertPacket(VCMPacket* packet);
void ClearTo(uint16_t seq_num); void ClearTo(uint16_t seq_num);
void Clear(); void Clear();
void PaddingReceived(uint16_t seq_num); void PaddingReceived(uint16_t seq_num);
@ -63,19 +62,14 @@ class PacketBuffer {
int GetUniqueFramesSeen() const; int GetUniqueFramesSeen() const;
private: private:
friend RtpFrameObject; struct StoredPacket {
// Since we want the packet buffer to be as packet type agnostic uint16_t seq_num() const { return data.seqNum; }
// as possible we extract only the information needed in order
// to determine whether a sequence of packets is continuous or not.
struct ContinuityInfo {
// The sequence number of the packet.
uint16_t seq_num = 0;
// If this is the first packet of the frame. // If this is the first packet of the frame.
bool frame_begin = false; bool frame_begin() const { return data.is_first_packet_in_frame(); }
// If this is the last packet of the frame. // If this is the last packet of the frame.
bool frame_end = false; bool frame_end() const { return data.is_last_packet_in_frame(); }
// If this slot is currently used. // If this slot is currently used.
bool used = false; bool used = false;
@ -83,8 +77,7 @@ class PacketBuffer {
// If all its previous packets have been inserted into the packet buffer. // If all its previous packets have been inserted into the packet buffer.
bool continuous = false; bool continuous = false;
// If this packet has been used to create a frame already. VCMPacket data;
bool frame_created = false;
}; };
Clock* const clock_; Clock* const clock_;
@ -107,9 +100,7 @@ class PacketBuffer {
uint16_t last_seq_num) RTC_EXCLUSIVE_LOCKS_REQUIRED(crit_); uint16_t last_seq_num) RTC_EXCLUSIVE_LOCKS_REQUIRED(crit_);
// Get the packet with sequence number |seq_num|. // Get the packet with sequence number |seq_num|.
// Virtual for testing. VCMPacket* GetPacket(uint16_t seq_num) RTC_EXCLUSIVE_LOCKS_REQUIRED(crit_);
virtual VCMPacket* GetPacket(uint16_t seq_num)
RTC_EXCLUSIVE_LOCKS_REQUIRED(crit_);
// Clears the packet buffer from |start_seq_num| to |stop_seq_num| where the // Clears the packet buffer from |start_seq_num| to |stop_seq_num| where the
// endpoints are inclusive. // endpoints are inclusive.
@ -125,8 +116,7 @@ class PacketBuffer {
rtc::CriticalSection crit_; rtc::CriticalSection crit_;
// Buffer size_ and max_size_ must always be a power of two. // buffer_.size() and max_size_ must always be a power of two.
size_t size_ RTC_GUARDED_BY(crit_);
const size_t max_size_; const size_t max_size_;
// The fist sequence number currently in the buffer. // The fist sequence number currently in the buffer.
@ -138,12 +128,9 @@ class PacketBuffer {
// If the buffer is cleared to |first_seq_num_|. // If the buffer is cleared to |first_seq_num_|.
bool is_cleared_to_first_seq_num_ RTC_GUARDED_BY(crit_); bool is_cleared_to_first_seq_num_ RTC_GUARDED_BY(crit_);
// Buffer that holds the inserted packets. // Buffer that holds the the inserted packets and information needed to
std::vector<VCMPacket> data_buffer_ RTC_GUARDED_BY(crit_); // determine continuity between them.
std::vector<StoredPacket> buffer_ RTC_GUARDED_BY(crit_);
// Buffer that holds the information about which slot that is currently in use
// and information needed to determine the continuity between packets.
std::vector<ContinuityInfo> sequence_buffer_ RTC_GUARDED_BY(crit_);
// Called when all packets in a frame are received, allowing the frame // Called when all packets in a frame are received, allowing the frame
// to be assembled. // to be assembled.