dcsctp: Implement Round Robin scheduler

Bug: webrtc:12793
Change-Id: I19adb292443def42ee54df67c4869b980db7b7c0
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/219682
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34093}
This commit is contained in:
Victor Boivie 2021-05-20 13:08:21 +02:00 committed by WebRTC LUCI CQ
parent 70cd086644
commit 93faab1b51
4 changed files with 404 additions and 174 deletions

View file

@ -127,6 +127,7 @@ if (rtc_include_tests) {
"../public:socket",
"../public:types",
"../testing:data_generator",
"../testing:testing_macros",
"../timer",
]
absl_deps = [ "//third_party/abseil-cpp/absl/types:optional" ]

View file

@ -11,8 +11,7 @@
#include <cstdint>
#include <deque>
#include <unordered_map>
#include <unordered_set>
#include <map>
#include <utility>
#include <vector>
@ -22,52 +21,16 @@
#include "net/dcsctp/packet/data.h"
#include "net/dcsctp/public/dcsctp_message.h"
#include "net/dcsctp/public/dcsctp_socket.h"
#include "net/dcsctp/public/types.h"
#include "net/dcsctp/tx/send_queue.h"
#include "rtc_base/logging.h"
namespace dcsctp {
void RRSendQueue::Add(TimeMs now,
DcSctpMessage message,
const SendOptions& send_options) {
RTC_DCHECK(!message.payload().empty());
std::deque<Item>& queue =
IsPaused(message.stream_id()) ? paused_items_ : items_;
// Any limited lifetime should start counting from now - when the message
// has been added to the queue.
absl::optional<TimeMs> expires_at = absl::nullopt;
if (send_options.lifetime.has_value()) {
// `expires_at` is the time when it expires. Which is slightly larger than
// the message's lifetime, as the message is alive during its entire
// lifetime (which may be zero).
expires_at = now + *send_options.lifetime + DurationMs(1);
}
queue.emplace_back(std::move(message), expires_at, send_options);
}
size_t RRSendQueue::total_bytes() const {
// TODO(boivie): Have the current size as a member variable, so that's it not
// calculated for every operation.
return absl::c_accumulate(items_, 0,
[](size_t size, const Item& item) {
return size + item.remaining_size;
}) +
absl::c_accumulate(paused_items_, 0,
[](size_t size, const Item& item) {
return size + item.remaining_size;
});
}
bool RRSendQueue::IsFull() const {
return total_bytes() >= buffer_size_;
}
bool RRSendQueue::IsEmpty() const {
return items_.empty();
}
RRSendQueue::Item* RRSendQueue::GetFirstNonExpiredMessage(TimeMs now) {
RRSendQueue::OutgoingStream::Item*
RRSendQueue::OutgoingStream::GetFirstNonExpiredMessage(TimeMs now) {
while (!items_.empty()) {
RRSendQueue::Item& item = items_.front();
RRSendQueue::OutgoingStream::Item& item = items_.front();
// An entire item can be discarded iff:
// 1) It hasn't been partially sent (has been allocated a message_id).
// 2) It has a non-negative expiry time.
@ -75,9 +38,6 @@ RRSendQueue::Item* RRSendQueue::GetFirstNonExpiredMessage(TimeMs now) {
if (!item.message_id.has_value() && item.expires_at.has_value() &&
*item.expires_at <= now) {
// TODO(boivie): This should be reported to the client.
RTC_DLOG(LS_VERBOSE)
<< log_prefix_
<< "Message is expired before even partially sent - discarding";
items_.pop_front();
continue;
}
@ -87,35 +47,42 @@ RRSendQueue::Item* RRSendQueue::GetFirstNonExpiredMessage(TimeMs now) {
return nullptr;
}
absl::optional<SendQueue::DataToSend> RRSendQueue::Produce(TimeMs now,
size_t max_size) {
void RRSendQueue::OutgoingStream::Add(DcSctpMessage message,
absl::optional<TimeMs> expires_at,
const SendOptions& send_options) {
items_.emplace_back(std::move(message), expires_at, send_options);
}
absl::optional<SendQueue::DataToSend> RRSendQueue::OutgoingStream::Produce(
TimeMs now,
size_t max_size) {
Item* item = GetFirstNonExpiredMessage(now);
if (item == nullptr) {
return absl::nullopt;
}
// If a stream is paused, it will allow sending all partially sent messages
// but will not start sending new fragments of completely unsent messages.
if (is_paused_ && !item->message_id.has_value()) {
return absl::nullopt;
}
DcSctpMessage& message = item->message;
// Don't make too small fragments as that can result in increased risk of
// failure to assemble a message if a small fragment is missing.
if (item->remaining_size > max_size && max_size < kMinimumFragmentedPayload) {
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "tx-msg: Will not fragment "
<< item->remaining_size << " bytes into buffer of "
<< max_size << " bytes";
return absl::nullopt;
}
// Allocate Message ID and SSN when the first fragment is sent.
if (!item->message_id.has_value()) {
MID& mid =
mid_by_stream_id_[{item->send_options.unordered, message.stream_id()}];
item->send_options.unordered ? next_unordered_mid_ : next_ordered_mid_;
item->message_id = mid;
mid = MID(*mid + 1);
}
if (!item->send_options.unordered && !item->ssn.has_value()) {
SSN& ssn = ssn_by_stream_id_[message.stream_id()];
item->ssn = ssn;
ssn = SSN(*ssn + 1);
item->ssn = next_ssn_;
next_ssn_ = SSN(*next_ssn_ + 1);
}
// Grab the next `max_size` fragment from this message and calculate flags.
@ -157,38 +124,39 @@ absl::optional<SendQueue::DataToSend> RRSendQueue::Produce(TimeMs now,
item->message.payload().size());
RTC_DCHECK(item->remaining_size > 0);
}
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "tx-msg: Producing chunk of "
<< chunk.data.size() << " bytes (max: " << max_size
<< ")";
return chunk;
}
void RRSendQueue::Discard(IsUnordered unordered,
StreamID stream_id,
MID message_id) {
// As this method will only discard partially sent messages, and as the queue
// is a FIFO queue, the only partially sent message would be the topmost
// message.
size_t RRSendQueue::OutgoingStream::buffered_amount() const {
size_t bytes = 0;
for (const auto& item : items_) {
bytes += item.remaining_size;
}
return bytes;
}
void RRSendQueue::OutgoingStream::Discard(IsUnordered unordered,
MID message_id) {
if (!items_.empty()) {
Item& item = items_.front();
if (item.send_options.unordered == unordered &&
item.message.stream_id() == stream_id && item.message_id.has_value() &&
*item.message_id == message_id) {
item.message_id.has_value() && *item.message_id == message_id) {
items_.pop_front();
}
}
}
void RRSendQueue::PrepareResetStreams(rtc::ArrayView<const StreamID> streams) {
for (StreamID stream_id : streams) {
paused_streams_.insert(stream_id);
}
void RRSendQueue::OutgoingStream::Pause() {
is_paused_ = true;
// Will not discard partially sent messages - only whole messages. Partially
// delivered messages (at the time of receiving a Stream Reset command) will
// always deliver all the fragments before actually resetting the stream.
// A stream is pause when it's about to be reset. In this implementation,
// it will throw away all non-partially send messages. This is subject to
// change. It will however not discard any partially sent messages - only
// whole messages. Partially delivered messages (at the time of receiving a
// Stream Reset command) will always deliver all the fragments before actually
// resetting the stream.
for (auto it = items_.begin(); it != items_.end();) {
if (IsPaused(it->message.stream_id()) && it->remaining_offset == 0) {
if (it->remaining_offset == 0) {
it = items_.erase(it);
} else {
++it;
@ -196,37 +164,7 @@ void RRSendQueue::PrepareResetStreams(rtc::ArrayView<const StreamID> streams) {
}
}
bool RRSendQueue::CanResetStreams() const {
for (auto& item : items_) {
if (IsPaused(item.message.stream_id())) {
return false;
}
}
return true;
}
void RRSendQueue::CommitResetStreams() {
for (StreamID stream_id : paused_streams_) {
ssn_by_stream_id_[stream_id] = SSN(0);
// https://tools.ietf.org/html/rfc8260#section-2.3.2
// "When an association resets the SSN using the SCTP extension defined
// in [RFC6525], the two counters (one for the ordered messages, one for
// the unordered messages) used for the MIDs MUST be reset to 0."
mid_by_stream_id_[{IsUnordered(false), stream_id}] = MID(0);
mid_by_stream_id_[{IsUnordered(true), stream_id}] = MID(0);
}
RollbackResetStreams();
}
void RRSendQueue::RollbackResetStreams() {
while (!paused_items_.empty()) {
items_.push_back(std::move(paused_items_.front()));
paused_items_.pop_front();
}
paused_streams_.clear();
}
void RRSendQueue::Reset() {
void RRSendQueue::OutgoingStream::Reset() {
if (!items_.empty()) {
// If this message has been partially sent, reset it so that it will be
// re-sent.
@ -237,13 +175,141 @@ void RRSendQueue::Reset() {
item.ssn = absl::nullopt;
item.current_fsn = FSN(0);
}
RollbackResetStreams();
mid_by_stream_id_.clear();
ssn_by_stream_id_.clear();
is_paused_ = false;
next_ordered_mid_ = MID(0);
next_unordered_mid_ = MID(0);
next_ssn_ = SSN(0);
}
bool RRSendQueue::IsPaused(StreamID stream_id) const {
return paused_streams_.find(stream_id) != paused_streams_.end();
bool RRSendQueue::OutgoingStream::has_partially_sent_message() const {
if (items_.empty()) {
return false;
}
return items_.front().message_id.has_value();
}
void RRSendQueue::Add(TimeMs now,
DcSctpMessage message,
const SendOptions& send_options) {
RTC_DCHECK(!message.payload().empty());
// Any limited lifetime should start counting from now - when the message
// has been added to the queue.
absl::optional<TimeMs> expires_at = absl::nullopt;
if (send_options.lifetime.has_value()) {
// `expires_at` is the time when it expires. Which is slightly larger than
// the message's lifetime, as the message is alive during its entire
// lifetime (which may be zero).
expires_at = now + *send_options.lifetime + DurationMs(1);
}
GetOrCreateStreamInfo(message.stream_id())
.Add(std::move(message), expires_at, send_options);
}
size_t RRSendQueue::total_bytes() const {
// TODO(boivie): Have the current size as a member variable, so that's it not
// calculated for every operation.
size_t bytes = 0;
for (const auto& stream : streams_) {
bytes += stream.second.buffered_amount();
}
return bytes;
}
bool RRSendQueue::IsFull() const {
return total_bytes() >= buffer_size_;
}
bool RRSendQueue::IsEmpty() const {
return total_bytes() == 0;
}
absl::optional<SendQueue::DataToSend> RRSendQueue::Produce(
std::map<StreamID, RRSendQueue::OutgoingStream>::iterator it,
TimeMs now,
size_t max_size) {
absl::optional<DataToSend> data = it->second.Produce(now, max_size);
if (data.has_value()) {
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "tx-msg: Producing chunk of "
<< data->data.size() << " bytes (max: " << max_size
<< ")";
if (data->data.is_end) {
// No more fragments. Continue with the next stream next time.
next_stream_id_ = StreamID(*it->first + 1);
}
}
return data;
}
absl::optional<SendQueue::DataToSend> RRSendQueue::Produce(TimeMs now,
size_t max_size) {
auto start_it = streams_.lower_bound(next_stream_id_);
for (auto it = start_it; it != streams_.end(); ++it) {
absl::optional<DataToSend> ret = Produce(it, now, max_size);
if (ret.has_value()) {
return ret;
}
}
for (auto it = streams_.begin(); it != start_it; ++it) {
absl::optional<DataToSend> ret = Produce(it, now, max_size);
if (ret.has_value()) {
return ret;
}
}
return absl::nullopt;
}
void RRSendQueue::Discard(IsUnordered unordered,
StreamID stream_id,
MID message_id) {
GetOrCreateStreamInfo(stream_id).Discard(unordered, message_id);
}
void RRSendQueue::PrepareResetStreams(rtc::ArrayView<const StreamID> streams) {
for (StreamID stream_id : streams) {
GetOrCreateStreamInfo(stream_id).Pause();
}
}
bool RRSendQueue::CanResetStreams() const {
// Streams can be reset if those streams that are paused don't have any
// messages that are partially sent.
for (auto& stream : streams_) {
if (stream.second.is_paused() &&
stream.second.has_partially_sent_message()) {
return false;
}
}
return true;
}
void RRSendQueue::CommitResetStreams() {
Reset();
}
void RRSendQueue::RollbackResetStreams() {
for (auto& stream_entry : streams_) {
stream_entry.second.Resume();
}
}
void RRSendQueue::Reset() {
for (auto& stream_entry : streams_) {
OutgoingStream& stream = stream_entry.second;
stream.Reset();
}
}
RRSendQueue::OutgoingStream& RRSendQueue::GetOrCreateStreamInfo(
StreamID stream_id) {
auto it = streams_.find(stream_id);
if (it != streams_.end()) {
return it->second;
}
return streams_.emplace(stream_id, OutgoingStream()).first->second;
}
} // namespace dcsctp

View file

@ -12,9 +12,8 @@
#include <cstdint>
#include <deque>
#include <map>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "absl/algorithm/container.h"
@ -78,44 +77,91 @@ class RRSendQueue : public SendQueue {
size_t total_bytes() const;
private:
// An enqueued message and metadata.
struct Item {
explicit Item(DcSctpMessage msg,
absl::optional<TimeMs> expires_at,
const SendOptions& send_options)
: message(std::move(msg)),
expires_at(expires_at),
send_options(send_options),
remaining_offset(0),
remaining_size(message.payload().size()) {}
DcSctpMessage message;
absl::optional<TimeMs> expires_at;
SendOptions send_options;
// The remaining payload (offset and size) to be sent, when it has been
// fragmented.
size_t remaining_offset;
size_t remaining_size;
// If set, an allocated Message ID and SSN. Will be allocated when the first
// fragment is sent.
absl::optional<MID> message_id = absl::nullopt;
absl::optional<SSN> ssn = absl::nullopt;
// The current Fragment Sequence Number, incremented for each fragment.
FSN current_fsn = FSN(0);
// Per-stream information.
class OutgoingStream {
public:
// Enqueues a message to this stream.
void Add(DcSctpMessage message,
absl::optional<TimeMs> expires_at,
const SendOptions& send_options);
// Possibly produces a data chunk to send.
absl::optional<DataToSend> Produce(TimeMs now, size_t max_size);
// The amount of data enqueued on this stream.
size_t buffered_amount() const;
// Discards a partially sent message, see `SendQueue::Discard`.
void Discard(IsUnordered unordered, MID message_id);
// Pauses this stream, which is used before resetting it.
void Pause();
// Resumes a paused stream.
void Resume() { is_paused_ = false; }
bool is_paused() const { return is_paused_; }
// Resets this stream, meaning MIDs and SSNs are set to zero.
void Reset();
// Indicates if this stream has a partially sent message in it.
bool has_partially_sent_message() const;
private:
// An enqueued message and metadata.
struct Item {
explicit Item(DcSctpMessage msg,
absl::optional<TimeMs> expires_at,
const SendOptions& send_options)
: message(std::move(msg)),
expires_at(expires_at),
send_options(send_options),
remaining_offset(0),
remaining_size(message.payload().size()) {}
DcSctpMessage message;
absl::optional<TimeMs> expires_at;
SendOptions send_options;
// The remaining payload (offset and size) to be sent, when it has been
// fragmented.
size_t remaining_offset;
size_t remaining_size;
// If set, an allocated Message ID and SSN. Will be allocated when the
// first fragment is sent.
absl::optional<MID> message_id = absl::nullopt;
absl::optional<SSN> ssn = absl::nullopt;
// The current Fragment Sequence Number, incremented for each fragment.
FSN current_fsn = FSN(0);
};
// Returns the first non-expired message, or nullptr if there isn't one.
Item* GetFirstNonExpiredMessage(TimeMs now);
// Streams are pause when they are about to be reset.
bool is_paused_ = false;
// MIDs are different for unordered and ordered messages sent on a stream.
MID next_unordered_mid_ = MID(0);
MID next_ordered_mid_ = MID(0);
SSN next_ssn_ = SSN(0);
// Enqueued messages, and metadata.
std::deque<Item> items_;
};
Item* GetFirstNonExpiredMessage(TimeMs now);
bool IsPaused(StreamID stream_id) const;
OutgoingStream& GetOrCreateStreamInfo(StreamID stream_id);
absl::optional<DataToSend> Produce(
std::map<StreamID, OutgoingStream>::iterator it,
TimeMs now,
size_t max_size);
const std::string log_prefix_;
const size_t buffer_size_;
std::deque<Item> items_;
std::unordered_set<StreamID, StreamID::Hasher> paused_streams_;
std::deque<Item> paused_items_;
// The next stream to send chunks from.
StreamID next_stream_id_ = StreamID(0);
std::unordered_map<std::pair<IsUnordered, StreamID>, MID, UnorderedStreamHash>
mid_by_stream_id_;
std::unordered_map<StreamID, SSN, StreamID::Hasher> ssn_by_stream_id_;
// All streams, and messages added to those.
std::map<StreamID, OutgoingStream> streams_;
};
} // namespace dcsctp

View file

@ -18,20 +18,25 @@
#include "net/dcsctp/public/dcsctp_options.h"
#include "net/dcsctp/public/dcsctp_socket.h"
#include "net/dcsctp/public/types.h"
#include "net/dcsctp/testing/testing_macros.h"
#include "net/dcsctp/tx/send_queue.h"
#include "rtc_base/gunit.h"
#include "test/gmock.h"
namespace dcsctp {
namespace {
using ::testing::SizeIs;
constexpr TimeMs kNow = TimeMs(0);
constexpr StreamID kStreamID(1);
constexpr PPID kPPID(53);
constexpr size_t kMaxQueueSize = 1000;
constexpr size_t kOneFragmentPacketSize = 100;
constexpr size_t kTwoFragmentPacketSize = 101;
class RRSendQueueTest : public testing::Test {
protected:
RRSendQueueTest() : buf_("log: ", 100) {}
RRSendQueueTest() : buf_("log: ", kMaxQueueSize) {}
const DcSctpOptions options_;
RRSendQueue buf_;
@ -39,7 +44,7 @@ class RRSendQueueTest : public testing::Test {
TEST_F(RRSendQueueTest, EmptyBuffer) {
EXPECT_TRUE(buf_.IsEmpty());
EXPECT_FALSE(buf_.Produce(kNow, 100).has_value());
EXPECT_FALSE(buf_.Produce(kNow, kOneFragmentPacketSize).has_value());
EXPECT_FALSE(buf_.IsFull());
}
@ -48,7 +53,8 @@ TEST_F(RRSendQueueTest, AddAndGetSingleChunk) {
EXPECT_FALSE(buf_.IsEmpty());
EXPECT_FALSE(buf_.IsFull());
absl::optional<SendQueue::DataToSend> chunk_opt = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_opt =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_opt.has_value());
EXPECT_TRUE(chunk_opt->data.is_beginning);
EXPECT_TRUE(chunk_opt->data.is_end);
@ -76,7 +82,7 @@ TEST_F(RRSendQueueTest, CarveOutBeginningMiddleAndEnd) {
EXPECT_FALSE(chunk_end->data.is_beginning);
EXPECT_TRUE(chunk_end->data.is_end);
EXPECT_FALSE(buf_.Produce(kNow, 100).has_value());
EXPECT_FALSE(buf_.Produce(kNow, kOneFragmentPacketSize).has_value());
}
TEST_F(RRSendQueueTest, GetChunksFromTwoMessages) {
@ -84,14 +90,16 @@ TEST_F(RRSendQueueTest, GetChunksFromTwoMessages) {
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
buf_.Add(kNow, DcSctpMessage(StreamID(3), PPID(54), payload));
absl::optional<SendQueue::DataToSend> chunk_one = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_one =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_one.has_value());
EXPECT_EQ(chunk_one->data.stream_id, kStreamID);
EXPECT_EQ(chunk_one->data.ppid, kPPID);
EXPECT_TRUE(chunk_one->data.is_beginning);
EXPECT_TRUE(chunk_one->data.is_end);
absl::optional<SendQueue::DataToSend> chunk_two = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_two =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_two.has_value());
EXPECT_EQ(chunk_two->data.stream_id, StreamID(3));
EXPECT_EQ(chunk_two->data.ppid, PPID(54));
@ -100,7 +108,7 @@ TEST_F(RRSendQueueTest, GetChunksFromTwoMessages) {
}
TEST_F(RRSendQueueTest, BufferBecomesFullAndEmptied) {
std::vector<uint8_t> payload(60);
std::vector<uint8_t> payload(600);
EXPECT_FALSE(buf_.IsFull());
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
EXPECT_FALSE(buf_.IsFull());
@ -112,14 +120,14 @@ TEST_F(RRSendQueueTest, BufferBecomesFullAndEmptied) {
buf_.Add(kNow, DcSctpMessage(StreamID(5), PPID(55), payload));
EXPECT_TRUE(buf_.IsFull());
absl::optional<SendQueue::DataToSend> chunk_one = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_one = buf_.Produce(kNow, 1000);
ASSERT_TRUE(chunk_one.has_value());
EXPECT_EQ(chunk_one->data.stream_id, kStreamID);
EXPECT_EQ(chunk_one->data.ppid, kPPID);
EXPECT_TRUE(buf_.IsFull());
absl::optional<SendQueue::DataToSend> chunk_two = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_two = buf_.Produce(kNow, 1000);
ASSERT_TRUE(chunk_two.has_value());
EXPECT_EQ(chunk_two->data.stream_id, StreamID(3));
EXPECT_EQ(chunk_two->data.ppid, PPID(54));
@ -127,7 +135,7 @@ TEST_F(RRSendQueueTest, BufferBecomesFullAndEmptied) {
EXPECT_FALSE(buf_.IsFull());
EXPECT_FALSE(buf_.IsEmpty());
absl::optional<SendQueue::DataToSend> chunk_three = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_three = buf_.Produce(kNow, 1000);
ASSERT_TRUE(chunk_three.has_value());
EXPECT_EQ(chunk_three->data.stream_id, StreamID(5));
EXPECT_EQ(chunk_three->data.ppid, PPID(55));
@ -171,7 +179,7 @@ TEST_F(RRSendQueueTest, DefaultsToOrderedSend) {
// Default is ordered
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
absl::optional<SendQueue::DataToSend> chunk_one =
buf_.Produce(kNow, /*max_size=*/100);
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_one.has_value());
EXPECT_FALSE(chunk_one->data.is_unordered);
@ -180,7 +188,7 @@ TEST_F(RRSendQueueTest, DefaultsToOrderedSend) {
opts.unordered = IsUnordered(true);
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload), opts);
absl::optional<SendQueue::DataToSend> chunk_two =
buf_.Produce(kNow, /*max_size=*/100);
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_two.has_value());
EXPECT_TRUE(chunk_two->data.is_unordered);
}
@ -192,7 +200,7 @@ TEST_F(RRSendQueueTest, ProduceWithLifetimeExpiry) {
TimeMs now = kNow;
buf_.Add(now, DcSctpMessage(kStreamID, kPPID, payload));
now += DurationMs(1000000);
ASSERT_TRUE(buf_.Produce(now, 100));
ASSERT_TRUE(buf_.Produce(now, kOneFragmentPacketSize));
SendOptions expires_2_seconds;
expires_2_seconds.lifetime = DurationMs(2000);
@ -200,17 +208,17 @@ TEST_F(RRSendQueueTest, ProduceWithLifetimeExpiry) {
// Add and consume within lifetime
buf_.Add(now, DcSctpMessage(kStreamID, kPPID, payload), expires_2_seconds);
now += DurationMs(2000);
ASSERT_TRUE(buf_.Produce(now, 100));
ASSERT_TRUE(buf_.Produce(now, kOneFragmentPacketSize));
// Add and consume just outside lifetime
buf_.Add(now, DcSctpMessage(kStreamID, kPPID, payload), expires_2_seconds);
now += DurationMs(2001);
ASSERT_FALSE(buf_.Produce(now, 100));
ASSERT_FALSE(buf_.Produce(now, kOneFragmentPacketSize));
// A long time after expiry
buf_.Add(now, DcSctpMessage(kStreamID, kPPID, payload), expires_2_seconds);
now += DurationMs(1000000);
ASSERT_FALSE(buf_.Produce(now, 100));
ASSERT_FALSE(buf_.Produce(now, kOneFragmentPacketSize));
// Expire one message, but produce the second that is not expired.
buf_.Add(now, DcSctpMessage(kStreamID, kPPID, payload), expires_2_seconds);
@ -221,8 +229,8 @@ TEST_F(RRSendQueueTest, ProduceWithLifetimeExpiry) {
buf_.Add(now, DcSctpMessage(kStreamID, kPPID, payload), expires_4_seconds);
now += DurationMs(2001);
ASSERT_TRUE(buf_.Produce(now, 100));
ASSERT_FALSE(buf_.Produce(now, 100));
ASSERT_TRUE(buf_.Produce(now, kOneFragmentPacketSize));
ASSERT_FALSE(buf_.Produce(now, kOneFragmentPacketSize));
}
TEST_F(RRSendQueueTest, DiscardPartialPackets) {
@ -231,28 +239,31 @@ TEST_F(RRSendQueueTest, DiscardPartialPackets) {
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
buf_.Add(kNow, DcSctpMessage(StreamID(2), PPID(54), payload));
absl::optional<SendQueue::DataToSend> chunk_one = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_one =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_one.has_value());
EXPECT_FALSE(chunk_one->data.is_end);
EXPECT_EQ(chunk_one->data.stream_id, kStreamID);
buf_.Discard(IsUnordered(false), chunk_one->data.stream_id,
chunk_one->data.message_id);
absl::optional<SendQueue::DataToSend> chunk_two = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_two =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_two.has_value());
EXPECT_FALSE(chunk_two->data.is_end);
EXPECT_EQ(chunk_two->data.stream_id, StreamID(2));
absl::optional<SendQueue::DataToSend> chunk_three = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_three =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_three.has_value());
EXPECT_TRUE(chunk_three->data.is_end);
EXPECT_EQ(chunk_three->data.stream_id, StreamID(2));
ASSERT_FALSE(buf_.Produce(kNow, 100));
ASSERT_FALSE(buf_.Produce(kNow, kOneFragmentPacketSize));
// Calling it again shouldn't cause issues.
buf_.Discard(IsUnordered(false), chunk_one->data.stream_id,
chunk_one->data.message_id);
ASSERT_FALSE(buf_.Produce(kNow, 100));
ASSERT_FALSE(buf_.Produce(kNow, kOneFragmentPacketSize));
}
TEST_F(RRSendQueueTest, PrepareResetStreamsDiscardsStream) {
@ -292,7 +303,7 @@ TEST_F(RRSendQueueTest, EnqueuedItemsArePausedDuringStreamReset) {
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
EXPECT_EQ(buf_.total_bytes(), payload.size());
EXPECT_FALSE(buf_.Produce(kNow, 100).has_value());
EXPECT_FALSE(buf_.Produce(kNow, kOneFragmentPacketSize).has_value());
buf_.CommitResetStreams();
EXPECT_EQ(buf_.total_bytes(), payload.size());
@ -308,11 +319,13 @@ TEST_F(RRSendQueueTest, CommittingResetsSSN) {
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
absl::optional<SendQueue::DataToSend> chunk_one = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_one =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_one.has_value());
EXPECT_EQ(chunk_one->data.ssn, SSN(0));
absl::optional<SendQueue::DataToSend> chunk_two = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_two =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_two.has_value());
EXPECT_EQ(chunk_two->data.ssn, SSN(1));
@ -325,7 +338,8 @@ TEST_F(RRSendQueueTest, CommittingResetsSSN) {
EXPECT_TRUE(buf_.CanResetStreams());
buf_.CommitResetStreams();
absl::optional<SendQueue::DataToSend> chunk_three = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_three =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_three.has_value());
EXPECT_EQ(chunk_three->data.ssn, SSN(0));
}
@ -336,11 +350,13 @@ TEST_F(RRSendQueueTest, RollBackResumesSSN) {
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
buf_.Add(kNow, DcSctpMessage(kStreamID, kPPID, payload));
absl::optional<SendQueue::DataToSend> chunk_one = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_one =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_one.has_value());
EXPECT_EQ(chunk_one->data.ssn, SSN(0));
absl::optional<SendQueue::DataToSend> chunk_two = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_two =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_two.has_value());
EXPECT_EQ(chunk_two->data.ssn, SSN(1));
@ -352,10 +368,111 @@ TEST_F(RRSendQueueTest, RollBackResumesSSN) {
EXPECT_TRUE(buf_.CanResetStreams());
buf_.RollbackResetStreams();
absl::optional<SendQueue::DataToSend> chunk_three = buf_.Produce(kNow, 100);
absl::optional<SendQueue::DataToSend> chunk_three =
buf_.Produce(kNow, kOneFragmentPacketSize);
ASSERT_TRUE(chunk_three.has_value());
EXPECT_EQ(chunk_three->data.ssn, SSN(2));
}
TEST_F(RRSendQueueTest, ReturnsFragmentsForOneMessageBeforeMovingToNext) {
std::vector<uint8_t> payload(200);
buf_.Add(kNow, DcSctpMessage(StreamID(1), kPPID, payload));
buf_.Add(kNow, DcSctpMessage(StreamID(2), kPPID, payload));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk1,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk1.data.stream_id, StreamID(1));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk2,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk2.data.stream_id, StreamID(1));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk3,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk3.data.stream_id, StreamID(2));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk4,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk4.data.stream_id, StreamID(2));
}
TEST_F(RRSendQueueTest, ReturnsAlsoSmallFragmentsBeforeMovingToNext) {
std::vector<uint8_t> payload(kTwoFragmentPacketSize);
buf_.Add(kNow, DcSctpMessage(StreamID(1), kPPID, payload));
buf_.Add(kNow, DcSctpMessage(StreamID(2), kPPID, payload));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk1,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk1.data.stream_id, StreamID(1));
EXPECT_THAT(chunk1.data.payload, SizeIs(kOneFragmentPacketSize));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk2,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk2.data.stream_id, StreamID(1));
EXPECT_THAT(chunk2.data.payload,
SizeIs(kTwoFragmentPacketSize - kOneFragmentPacketSize));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk3,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk3.data.stream_id, StreamID(2));
EXPECT_THAT(chunk3.data.payload, SizeIs(kOneFragmentPacketSize));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk4,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk4.data.stream_id, StreamID(2));
EXPECT_THAT(chunk4.data.payload,
SizeIs(kTwoFragmentPacketSize - kOneFragmentPacketSize));
}
TEST_F(RRSendQueueTest, WillCycleInRoundRobinFashionBetweenStreams) {
buf_.Add(kNow, DcSctpMessage(StreamID(1), kPPID, std::vector<uint8_t>(1)));
buf_.Add(kNow, DcSctpMessage(StreamID(1), kPPID, std::vector<uint8_t>(2)));
buf_.Add(kNow, DcSctpMessage(StreamID(2), kPPID, std::vector<uint8_t>(3)));
buf_.Add(kNow, DcSctpMessage(StreamID(2), kPPID, std::vector<uint8_t>(4)));
buf_.Add(kNow, DcSctpMessage(StreamID(3), kPPID, std::vector<uint8_t>(5)));
buf_.Add(kNow, DcSctpMessage(StreamID(3), kPPID, std::vector<uint8_t>(6)));
buf_.Add(kNow, DcSctpMessage(StreamID(4), kPPID, std::vector<uint8_t>(7)));
buf_.Add(kNow, DcSctpMessage(StreamID(4), kPPID, std::vector<uint8_t>(8)));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk1,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk1.data.stream_id, StreamID(1));
EXPECT_THAT(chunk1.data.payload, SizeIs(1));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk2,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk2.data.stream_id, StreamID(2));
EXPECT_THAT(chunk2.data.payload, SizeIs(3));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk3,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk3.data.stream_id, StreamID(3));
EXPECT_THAT(chunk3.data.payload, SizeIs(5));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk4,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk4.data.stream_id, StreamID(4));
EXPECT_THAT(chunk4.data.payload, SizeIs(7));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk5,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk5.data.stream_id, StreamID(1));
EXPECT_THAT(chunk5.data.payload, SizeIs(2));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk6,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk6.data.stream_id, StreamID(2));
EXPECT_THAT(chunk6.data.payload, SizeIs(4));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk7,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk7.data.stream_id, StreamID(3));
EXPECT_THAT(chunk7.data.payload, SizeIs(6));
ASSERT_HAS_VALUE_AND_ASSIGN(SendQueue::DataToSend chunk8,
buf_.Produce(kNow, kOneFragmentPacketSize));
EXPECT_EQ(chunk8.data.stream_id, StreamID(4));
EXPECT_THAT(chunk8.data.payload, SizeIs(8));
}
} // namespace
} // namespace dcsctp