Improved RobustThroughputEstimator

- Filter out very old packets (to ensure that the estimate doesn't drop to zero if sending is paused and later resumed).
- Discard packets older than previously discarded packets (to avoid the estimate dropping after deep reordering.)
- Add tests cases for high loss, deep reordering and paused/resumed streams to unittest.
- Remove some field trial settings that have very minor effect and rename some of the others.
- Change analyzer.cc to only draw data points if the estimators have valid estimates.

Bug: webrtc:13402
Change-Id: I47ead8aa4454cced5134d10895ca061d2c3e32f4
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/236347
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Reviewed-by: Per Kjellander <perkj@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36849}
This commit is contained in:
Björn Terelius 2022-05-05 15:54:49 +02:00 committed by WebRTC LUCI CQ
parent 2cdbb969f0
commit eb9af84a55
7 changed files with 592 additions and 248 deletions

View file

@ -129,6 +129,8 @@ rtc_library("estimators") {
"../../../api/rtc_event_log", "../../../api/rtc_event_log",
"../../../api/transport:network_control", "../../../api/transport:network_control",
"../../../api/units:data_rate", "../../../api/units:data_rate",
"../../../api/units:data_size",
"../../../api/units:time_delta",
"../../../api/units:timestamp", "../../../api/units:timestamp",
"../../../logging:rtc_event_bwe", "../../../logging:rtc_event_bwe",
"../../../rtc_base:checks", "../../../rtc_base:checks",
@ -357,6 +359,7 @@ if (rtc_include_tests) {
"../../pacing", "../../pacing",
"//testing/gmock", "//testing/gmock",
] ]
absl_deps = [ "//third_party/abseil-cpp/absl/strings:strings" ]
} }
} }
} }

View file

@ -12,6 +12,7 @@
#include <algorithm> #include <algorithm>
#include "api/units/time_delta.h"
#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h" #include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/goog_cc/robust_throughput_estimator.h" #include "modules/congestion_controller/goog_cc/robust_throughput_estimator.h"
#include "rtc_base/logging.h" #include "rtc_base/logging.h"
@ -24,22 +25,36 @@ RobustThroughputEstimatorSettings::RobustThroughputEstimatorSettings(
const FieldTrialsView* key_value_config) { const FieldTrialsView* key_value_config) {
Parser()->Parse( Parser()->Parse(
key_value_config->Lookup(RobustThroughputEstimatorSettings::kKey)); key_value_config->Lookup(RobustThroughputEstimatorSettings::kKey));
if (min_packets < 10 || kMaxPackets < min_packets) { if (window_packets < 10 || 1000 < window_packets) {
RTC_LOG(LS_WARNING) << "Window size must be between 10 and " << kMaxPackets RTC_LOG(LS_WARNING) << "Window size must be between 10 and 1000 packets";
<< " packets"; window_packets = 20;
min_packets = 20;
} }
if (initial_packets < 10 || kMaxPackets < initial_packets) { if (max_window_packets < 10 || 1000 < max_window_packets) {
RTC_LOG(LS_WARNING) << "Initial size must be between 10 and " << kMaxPackets RTC_LOG(LS_WARNING)
<< " packets"; << "Max window size must be between 10 and 1000 packets";
initial_packets = 20; max_window_packets = 500;
} }
initial_packets = std::min(initial_packets, min_packets); max_window_packets = std::max(max_window_packets, window_packets);
if (window_duration < TimeDelta::Millis(100) ||
TimeDelta::Millis(2000) < window_duration) { if (required_packets < 10 || 1000 < required_packets) {
RTC_LOG(LS_WARNING) << "Window duration must be between 100 and 2000 ms"; RTC_LOG(LS_WARNING) << "Required number of initial packets must be between "
window_duration = TimeDelta::Millis(500); "10 and 1000 packets";
required_packets = 10;
} }
required_packets = std::min(required_packets, window_packets);
if (min_window_duration < TimeDelta::Millis(100) ||
TimeDelta::Millis(3000) < min_window_duration) {
RTC_LOG(LS_WARNING) << "Window duration must be between 100 and 3000 ms";
min_window_duration = TimeDelta::Millis(750);
}
if (max_window_duration < TimeDelta::Seconds(1) ||
TimeDelta::Seconds(15) < max_window_duration) {
RTC_LOG(LS_WARNING) << "Max window duration must be between 1 and 15 s";
max_window_duration = TimeDelta::Seconds(5);
}
min_window_duration = std::min(min_window_duration, max_window_duration);
if (unacked_weight < 0.0 || 1.0 < unacked_weight) { if (unacked_weight < 0.0 || 1.0 < unacked_weight) {
RTC_LOG(LS_WARNING) RTC_LOG(LS_WARNING)
<< "Weight for prior unacked size must be between 0 and 1."; << "Weight for prior unacked size must be between 0 and 1.";
@ -49,14 +64,14 @@ RobustThroughputEstimatorSettings::RobustThroughputEstimatorSettings(
std::unique_ptr<StructParametersParser> std::unique_ptr<StructParametersParser>
RobustThroughputEstimatorSettings::Parser() { RobustThroughputEstimatorSettings::Parser() {
return StructParametersParser::Create("enabled", &enabled, // return StructParametersParser::Create(
"reduce_bias", &reduce_bias, // "enabled", &enabled, //
"assume_shared_link", // "window_packets", &window_packets, //
&assume_shared_link, // "max_window_packets", &max_window_packets, //
"min_packets", &min_packets, // "window_duration", &min_window_duration, //
"window_duration", &window_duration, // "max_window_duration", &max_window_duration, //
"initial_packets", &initial_packets, // "required_packets", &required_packets, //
"unacked_weight", &unacked_weight); "unacked_weight", &unacked_weight);
} }
AcknowledgedBitrateEstimatorInterface:: AcknowledgedBitrateEstimatorInterface::

View file

@ -11,6 +11,8 @@
#ifndef MODULES_CONGESTION_CONTROLLER_GOOG_CC_ACKNOWLEDGED_BITRATE_ESTIMATOR_INTERFACE_H_ #ifndef MODULES_CONGESTION_CONTROLLER_GOOG_CC_ACKNOWLEDGED_BITRATE_ESTIMATOR_INTERFACE_H_
#define MODULES_CONGESTION_CONTROLLER_GOOG_CC_ACKNOWLEDGED_BITRATE_ESTIMATOR_INTERFACE_H_ #define MODULES_CONGESTION_CONTROLLER_GOOG_CC_ACKNOWLEDGED_BITRATE_ESTIMATOR_INTERFACE_H_
#include <stddef.h>
#include <memory> #include <memory>
#include <vector> #include <vector>
@ -18,13 +20,14 @@
#include "api/field_trials_view.h" #include "api/field_trials_view.h"
#include "api/transport/network_types.h" #include "api/transport/network_types.h"
#include "api/units/data_rate.h" #include "api/units/data_rate.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/experiments/struct_parameters_parser.h" #include "rtc_base/experiments/struct_parameters_parser.h"
namespace webrtc { namespace webrtc {
struct RobustThroughputEstimatorSettings { struct RobustThroughputEstimatorSettings {
static constexpr char kKey[] = "WebRTC-Bwe-RobustThroughputEstimatorSettings"; static constexpr char kKey[] = "WebRTC-Bwe-RobustThroughputEstimatorSettings";
static constexpr size_t kMaxPackets = 500;
RobustThroughputEstimatorSettings() = delete; RobustThroughputEstimatorSettings() = delete;
explicit RobustThroughputEstimatorSettings( explicit RobustThroughputEstimatorSettings(
@ -32,30 +35,32 @@ struct RobustThroughputEstimatorSettings {
bool enabled = false; // Set to true to use RobustThroughputEstimator. bool enabled = false; // Set to true to use RobustThroughputEstimator.
// The estimator handles delay spikes by removing the largest receive time // The estimator keeps the smallest window containing at least
// gap, but this introduces some bias that may lead to overestimation when // `window_packets` and at least the packets received during the last
// there isn't any delay spike. If `reduce_bias` is true, we instead replace // `min_window_duration` milliseconds.
// the largest receive time gap by the second largest. This reduces the bias // (This means that it may store more than `window_packets` at high bitrates,
// at the cost of not completely removing the genuine delay spikes. // and a longer duration than `min_window_duration` at low bitrates.)
bool reduce_bias = true; // However, if will never store more than kMaxPackets (for performance
// reasons), and never longer than max_window_duration (to avoid very old
// packets influencing the estimate for example when sending is paused).
unsigned window_packets = 20;
unsigned max_window_packets = 500;
TimeDelta min_window_duration = TimeDelta::Seconds(1);
TimeDelta max_window_duration = TimeDelta::Seconds(5);
// If `assume_shared_link` is false, we ignore the size of the first packet // The estimator window requires at least `required_packets` packets
// when computing the receive rate. Otherwise, we remove half of the first // to produce an estimate.
// and last packet's sizes. unsigned required_packets = 10;
bool assume_shared_link = false;
// The estimator window keeps at least `min_packets` packets and up to
// kMaxPackets received during the last `window_duration`.
unsigned min_packets = 20;
TimeDelta window_duration = TimeDelta::Millis(500);
// The estimator window requires at least `initial_packets` packets received
// over at least `initial_duration`.
unsigned initial_packets = 20;
// If audio packets aren't included in allocation (i.e. the
// estimated available bandwidth is divided only among the video
// streams), then `unacked_weight` should be set to 0.
// If audio packets are included in allocation, but not in bandwidth // If audio packets are included in allocation, but not in bandwidth
// estimation and the sent audio packets get double counted, // estimation (i.e. they don't have transport-wide sequence numbers,
// then it might be useful to reduce the weight to 0.5. // but we nevertheless divide the estimated available bandwidth among
// both audio and video streams), then `unacked_weight` should be set to 1.
// If all packets have transport-wide sequence numbers, then the value
// of `unacked_weight` doesn't matter.
double unacked_weight = 1.0; double unacked_weight = 1.0;
std::unique_ptr<StructParametersParser> Parser(); std::unique_ptr<StructParametersParser> Parser();

View file

@ -15,24 +15,55 @@
#include <algorithm> #include <algorithm>
#include <utility> #include <utility>
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
namespace webrtc { namespace webrtc {
RobustThroughputEstimator::RobustThroughputEstimator( RobustThroughputEstimator::RobustThroughputEstimator(
const RobustThroughputEstimatorSettings& settings) const RobustThroughputEstimatorSettings& settings)
: settings_(settings) { : settings_(settings),
latest_discarded_send_time_(Timestamp::MinusInfinity()) {
RTC_DCHECK(settings.enabled); RTC_DCHECK(settings.enabled);
} }
RobustThroughputEstimator::~RobustThroughputEstimator() {} RobustThroughputEstimator::~RobustThroughputEstimator() {}
bool RobustThroughputEstimator::FirstPacketOutsideWindow() {
if (window_.empty())
return false;
if (window_.size() > settings_.max_window_packets)
return true;
TimeDelta current_window_duration =
window_.back().receive_time - window_.front().receive_time;
if (current_window_duration > settings_.max_window_duration)
return true;
if (window_.size() > settings_.window_packets &&
current_window_duration > settings_.min_window_duration) {
return true;
}
return false;
}
void RobustThroughputEstimator::IncomingPacketFeedbackVector( void RobustThroughputEstimator::IncomingPacketFeedbackVector(
const std::vector<PacketResult>& packet_feedback_vector) { const std::vector<PacketResult>& packet_feedback_vector) {
RTC_DCHECK(std::is_sorted(packet_feedback_vector.begin(), RTC_DCHECK(std::is_sorted(packet_feedback_vector.begin(),
packet_feedback_vector.end(), packet_feedback_vector.end(),
PacketResult::ReceiveTimeOrder())); PacketResult::ReceiveTimeOrder()));
for (const auto& packet : packet_feedback_vector) { for (const auto& packet : packet_feedback_vector) {
// Ignore packets without valid send or receive times.
// (This should not happen in production since lost packets are filtered
// out before passing the feedback vector to the throughput estimator.
// However, explicitly handling this case makes the estimator more robust
// and avoids a hard-to-detect bad state.)
if (packet.receive_time.IsInfinite() ||
packet.sent_packet.send_time.IsInfinite()) {
continue;
}
// Insert the new packet. // Insert the new packet.
window_.push_back(packet); window_.push_back(packet);
window_.back().sent_packet.prior_unacked_data = window_.back().sent_packet.prior_unacked_data =
@ -45,24 +76,24 @@ void RobustThroughputEstimator::IncomingPacketFeedbackVector(
i > 0 && window_[i].receive_time < window_[i - 1].receive_time; i--) { i > 0 && window_[i].receive_time < window_[i - 1].receive_time; i--) {
std::swap(window_[i], window_[i - 1]); std::swap(window_[i], window_[i - 1]);
} }
// Remove old packets. }
while (window_.size() > settings_.kMaxPackets ||
(window_.size() > settings_.min_packets && // Remove old packets.
packet.receive_time - window_.front().receive_time > while (FirstPacketOutsideWindow()) {
settings_.window_duration)) { latest_discarded_send_time_ = std::max(
window_.pop_front(); latest_discarded_send_time_, window_.front().sent_packet.send_time);
} window_.pop_front();
} }
} }
absl::optional<DataRate> RobustThroughputEstimator::bitrate() const { absl::optional<DataRate> RobustThroughputEstimator::bitrate() const {
if (window_.size() < settings_.initial_packets) if (window_.empty() || window_.size() < settings_.required_packets)
return absl::nullopt; return absl::nullopt;
TimeDelta largest_recv_gap(TimeDelta::Millis(0)); TimeDelta largest_recv_gap(TimeDelta::Millis(0));
TimeDelta second_largest_recv_gap(TimeDelta::Millis(0)); TimeDelta second_largest_recv_gap(TimeDelta::Millis(0));
for (size_t i = 1; i < window_.size(); i++) { for (size_t i = 1; i < window_.size(); i++) {
// Find receive time gaps // Find receive time gaps.
TimeDelta gap = window_[i].receive_time - window_[i - 1].receive_time; TimeDelta gap = window_[i].receive_time - window_[i - 1].receive_time;
if (gap > largest_recv_gap) { if (gap > largest_recv_gap) {
second_largest_recv_gap = largest_recv_gap; second_largest_recv_gap = largest_recv_gap;
@ -72,63 +103,86 @@ absl::optional<DataRate> RobustThroughputEstimator::bitrate() const {
} }
} }
Timestamp min_send_time = window_[0].sent_packet.send_time; Timestamp first_send_time = Timestamp::PlusInfinity();
Timestamp max_send_time = window_[0].sent_packet.send_time; Timestamp last_send_time = Timestamp::MinusInfinity();
Timestamp min_recv_time = window_[0].receive_time; Timestamp first_recv_time = Timestamp::PlusInfinity();
Timestamp max_recv_time = window_[0].receive_time; Timestamp last_recv_time = Timestamp::MinusInfinity();
DataSize data_size = DataSize::Bytes(0); DataSize recv_size = DataSize::Bytes(0);
DataSize send_size = DataSize::Bytes(0);
DataSize first_recv_size = DataSize::Bytes(0);
DataSize last_send_size = DataSize::Bytes(0);
size_t num_sent_packets_in_window = 0;
for (const auto& packet : window_) { for (const auto& packet : window_) {
min_send_time = std::min(min_send_time, packet.sent_packet.send_time); if (packet.receive_time < first_recv_time) {
max_send_time = std::max(max_send_time, packet.sent_packet.send_time); first_recv_time = packet.receive_time;
min_recv_time = std::min(min_recv_time, packet.receive_time); first_recv_size =
max_recv_time = std::max(max_recv_time, packet.receive_time); packet.sent_packet.size + packet.sent_packet.prior_unacked_data;
data_size += packet.sent_packet.size; }
data_size += packet.sent_packet.prior_unacked_data; last_recv_time = std::max(last_recv_time, packet.receive_time);
recv_size += packet.sent_packet.size;
recv_size += packet.sent_packet.prior_unacked_data;
if (packet.sent_packet.send_time < latest_discarded_send_time_) {
// If we have dropped packets from the window that were sent after
// this packet, then this packet was reordered. Ignore it from
// the send rate computation (since the send time may be very far
// in the past, leading to underestimation of the send rate.)
// However, ignoring packets creates a risk that we end up without
// any packets left to compute a send rate.
continue;
}
if (packet.sent_packet.send_time > last_send_time) {
last_send_time = packet.sent_packet.send_time;
last_send_size =
packet.sent_packet.size + packet.sent_packet.prior_unacked_data;
}
first_send_time = std::min(first_send_time, packet.sent_packet.send_time);
send_size += packet.sent_packet.size;
send_size += packet.sent_packet.prior_unacked_data;
++num_sent_packets_in_window;
} }
// Suppose a packet of size S is sent every T milliseconds. // Suppose a packet of size S is sent every T milliseconds.
// A window of N packets would contain N*S bytes, but the time difference // A window of N packets would contain N*S bytes, but the time difference
// between the first and the last packet would only be (N-1)*T. Thus, we // between the first and the last packet would only be (N-1)*T. Thus, we
// need to remove one packet. // need to remove the size of one packet to get the correct rate of S/T.
DataSize recv_size = data_size; // Which packet to remove (if the packets have varying sizes),
DataSize send_size = data_size; // depends on the network model.
if (settings_.assume_shared_link) { // Suppose that 2 packets with sizes s1 and s2, are received at times t1
// Depending on how the bottleneck queue is implemented, a large packet // and t2, respectively. If the packets were transmitted back to back over
// may delay sending of sebsequent packets, so the delay between packets // a bottleneck with rate capacity r, then we'd expect t2 = t1 + r * s2.
// i and i+1 depends on the size of both packets. In this case we minimize // Thus, r = (t2-t1) / s2, so the size of the first packet doesn't affect
// the maximum error by removing half of both the first and last packet // the difference between t1 and t2.
// size. // Analoguously, if the first packet is sent at time t1 and the sender
DataSize first_last_average_size = // paces the packets at rate r, then the second packet can be sent at time
(window_.front().sent_packet.size + // t2 = t1 + r * s1. Thus, the send rate estimate r = (t2-t1) / s1 doesn't
window_.front().sent_packet.prior_unacked_data + // depend on the size of the last packet.
window_.back().sent_packet.size + recv_size -= first_recv_size;
window_.back().sent_packet.prior_unacked_data) / send_size -= last_send_size;
2;
recv_size -= first_last_average_size;
send_size -= first_last_average_size;
} else {
// In the simpler case where the delay between packets i and i+1 only
// depends on the size of packet i+1, the first packet doesn't give us
// any information. Analogously, we assume that the start send time
// for the last packet doesn't depend on the size of the packet.
recv_size -= (window_.front().sent_packet.size +
window_.front().sent_packet.prior_unacked_data);
send_size -= (window_.back().sent_packet.size +
window_.back().sent_packet.prior_unacked_data);
}
// Remove the largest gap by replacing it by the second largest gap // Remove the largest gap by replacing it by the second largest gap.
// or the average gap. // This is to ensure that spurious "delay spikes" (i.e. when the
TimeDelta send_duration = max_send_time - min_send_time; // network stops transmitting packets for a short period, followed
TimeDelta recv_duration = (max_recv_time - min_recv_time) - largest_recv_gap; // by a burst of delayed packets), don't cause the estimate to drop.
if (settings_.reduce_bias) { // This could cause an overestimation, which we guard against by
recv_duration += second_largest_recv_gap; // never returning an estimate above the send rate.
} else { RTC_DCHECK(first_recv_time.IsFinite());
recv_duration += recv_duration / (window_.size() - 2); RTC_DCHECK(last_recv_time.IsFinite());
} TimeDelta recv_duration = (last_recv_time - first_recv_time) -
largest_recv_gap + second_largest_recv_gap;
send_duration = std::max(send_duration, TimeDelta::Millis(1));
recv_duration = std::max(recv_duration, TimeDelta::Millis(1)); recv_duration = std::max(recv_duration, TimeDelta::Millis(1));
if (num_sent_packets_in_window < settings_.required_packets) {
// Too few send times to calculate a reliable send rate.
return recv_size / recv_duration;
}
RTC_DCHECK(first_send_time.IsFinite());
RTC_DCHECK(last_send_time.IsFinite());
TimeDelta send_duration = last_send_time - first_send_time;
send_duration = std::max(send_duration, TimeDelta::Millis(1));
return std::min(send_size / send_duration, recv_size / recv_duration); return std::min(send_size / send_duration, recv_size / recv_duration);
} }

View file

@ -12,13 +12,12 @@
#define MODULES_CONGESTION_CONTROLLER_GOOG_CC_ROBUST_THROUGHPUT_ESTIMATOR_H_ #define MODULES_CONGESTION_CONTROLLER_GOOG_CC_ROBUST_THROUGHPUT_ESTIMATOR_H_
#include <deque> #include <deque>
#include <memory>
#include <vector> #include <vector>
#include "absl/types/optional.h" #include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/transport/network_types.h" #include "api/transport/network_types.h"
#include "api/units/data_rate.h" #include "api/units/data_rate.h"
#include "api/units/timestamp.h"
#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator_interface.h" #include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator_interface.h"
namespace webrtc { namespace webrtc {
@ -39,8 +38,11 @@ class RobustThroughputEstimator : public AcknowledgedBitrateEstimatorInterface {
void SetAlrEndedTime(Timestamp /*alr_ended_time*/) override {} void SetAlrEndedTime(Timestamp /*alr_ended_time*/) override {}
private: private:
bool FirstPacketOutsideWindow();
const RobustThroughputEstimatorSettings settings_; const RobustThroughputEstimatorSettings settings_;
std::deque<PacketResult> window_; std::deque<PacketResult> window_;
Timestamp latest_discarded_send_time_ = Timestamp::MinusInfinity();
}; };
} // namespace webrtc } // namespace webrtc

View file

@ -10,158 +10,418 @@
#include "modules/congestion_controller/goog_cc/robust_throughput_estimator.h" #include "modules/congestion_controller/goog_cc/robust_throughput_estimator.h"
#include "api/transport/field_trial_based_config.h" #include <stddef.h>
#include "test/field_trial.h" #include <stdint.h>
#include <algorithm>
#include <memory>
#include "absl/strings/string_view.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "test/explicit_key_value_config.h"
#include "test/gtest.h" #include "test/gtest.h"
namespace webrtc { namespace webrtc {
namespace {
std::vector<PacketResult> CreateFeedbackVector(size_t number_of_packets,
DataSize packet_size,
TimeDelta send_increment,
TimeDelta recv_increment,
Timestamp* send_clock,
Timestamp* recv_clock,
uint16_t* sequence_number) {
std::vector<PacketResult> packet_feedback_vector(number_of_packets);
for (size_t i = 0; i < number_of_packets; i++) {
packet_feedback_vector[i].receive_time = *recv_clock;
packet_feedback_vector[i].sent_packet.send_time = *send_clock;
packet_feedback_vector[i].sent_packet.sequence_number = *sequence_number;
packet_feedback_vector[i].sent_packet.size = packet_size;
*send_clock += send_increment;
*recv_clock += recv_increment;
*sequence_number += 1;
}
return packet_feedback_vector;
}
} // anonymous namespace
TEST(RobustThroughputEstimatorTest, SteadyRate) { RobustThroughputEstimatorSettings CreateRobustThroughputEstimatorSettings(
webrtc::test::ScopedFieldTrials field_trials( absl::string_view field_trial_string) {
"WebRTC-Bwe-RobustThroughputEstimatorSettings/" test::ExplicitKeyValueConfig trials(field_trial_string);
"enabled:true,assume_shared_link:false,reduce_bias:true,min_packets:10," RobustThroughputEstimatorSettings settings(&trials);
"window_duration:100ms/"); return settings;
FieldTrialBasedConfig field_trial_config; }
RobustThroughputEstimatorSettings settings(&field_trial_config);
RobustThroughputEstimator throughput_estimator(settings); class FeedbackGenerator {
DataSize packet_size(DataSize::Bytes(1000)); public:
Timestamp send_clock(Timestamp::Millis(100000)); std::vector<PacketResult> CreateFeedbackVector(size_t number_of_packets,
Timestamp recv_clock(Timestamp::Millis(10000)); DataSize packet_size,
TimeDelta send_increment(TimeDelta::Millis(10)); DataRate send_rate,
TimeDelta recv_increment(TimeDelta::Millis(10)); DataRate recv_rate) {
uint16_t sequence_number = 100; std::vector<PacketResult> packet_feedback_vector(number_of_packets);
for (size_t i = 0; i < number_of_packets; i++) {
packet_feedback_vector[i].sent_packet.send_time = send_clock_;
packet_feedback_vector[i].sent_packet.sequence_number = sequence_number_;
packet_feedback_vector[i].sent_packet.size = packet_size;
send_clock_ += packet_size / send_rate;
recv_clock_ += packet_size / recv_rate;
sequence_number_ += 1;
packet_feedback_vector[i].receive_time = recv_clock_;
}
return packet_feedback_vector;
}
Timestamp CurrentReceiveClock() { return recv_clock_; }
void AdvanceReceiveClock(TimeDelta delta) { recv_clock_ += delta; }
void AdvanceSendClock(TimeDelta delta) { send_clock_ += delta; }
private:
Timestamp send_clock_ = Timestamp::Millis(100000);
Timestamp recv_clock_ = Timestamp::Millis(10000);
uint16_t sequence_number_ = 100;
};
TEST(RobustThroughputEstimatorTest, InitialEstimate) {
FeedbackGenerator feedback_generator;
RobustThroughputEstimator throughput_estimator(
CreateRobustThroughputEstimatorSettings(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true/"));
DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
// No estimate until the estimator has enough data.
std::vector<PacketResult> packet_feedback = std::vector<PacketResult> packet_feedback =
CreateFeedbackVector(9, packet_size, send_increment, recv_increment, feedback_generator.CreateFeedbackVector(9, DataSize::Bytes(1000),
&send_clock, &recv_clock, &sequence_number); send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback); throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
EXPECT_FALSE(throughput_estimator.bitrate().has_value()); EXPECT_FALSE(throughput_estimator.bitrate().has_value());
packet_feedback = // Estimate once `required_packets` packets have been received.
CreateFeedbackVector(11, packet_size, send_increment, recv_increment, packet_feedback = feedback_generator.CreateFeedbackVector(
&send_clock, &recv_clock, &sequence_number); 1, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback); throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate(); auto throughput = throughput_estimator.bitrate();
EXPECT_TRUE(throughput.has_value()); EXPECT_EQ(throughput, send_rate);
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(), 100 * 1000.0,
0.05 * 100 * 1000.0); // Allow 5% error // Estimate remains stable when send and receive rates are stable.
packet_feedback = feedback_generator.CreateFeedbackVector(
15, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
} }
TEST(RobustThroughputEstimatorTest, DelaySpike) { TEST(RobustThroughputEstimatorTest, EstimateAdapts) {
webrtc::test::ScopedFieldTrials field_trials( FeedbackGenerator feedback_generator;
"WebRTC-Bwe-RobustThroughputEstimatorSettings/" RobustThroughputEstimator throughput_estimator(
"enabled:true,assume_shared_link:false,reduce_bias:true,min_packets:10," CreateRobustThroughputEstimatorSettings(
"window_duration:100ms/"); "WebRTC-Bwe-RobustThroughputEstimatorSettings/"
FieldTrialBasedConfig field_trial_config; "enabled:true/"));
RobustThroughputEstimatorSettings settings(&field_trial_config);
RobustThroughputEstimator throughput_estimator(settings);
DataSize packet_size(DataSize::Bytes(1000));
Timestamp send_clock(Timestamp::Millis(100000));
Timestamp recv_clock(Timestamp::Millis(10000));
TimeDelta send_increment(TimeDelta::Millis(10));
TimeDelta recv_increment(TimeDelta::Millis(10));
uint16_t sequence_number = 100;
std::vector<PacketResult> packet_feedback =
CreateFeedbackVector(20, packet_size, send_increment, recv_increment,
&send_clock, &recv_clock, &sequence_number);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
EXPECT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(), 100 * 1000.0,
0.05 * 100 * 1000.0); // Allow 5% error
// Delay spike // 1 second, 800kbps, estimate is stable.
recv_clock += TimeDelta::Millis(40); DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
for (int i = 0; i < 10; ++i) {
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
}
// Faster delivery after the gap // 1 second, 1600kbps, estimate increases
recv_increment = TimeDelta::Millis(2); send_rate = DataRate::BytesPerSec(200000);
packet_feedback = recv_rate = DataRate::BytesPerSec(200000);
CreateFeedbackVector(5, packet_size, send_increment, recv_increment, for (int i = 0; i < 20; ++i) {
&send_clock, &recv_clock, &sequence_number); std::vector<PacketResult> packet_feedback =
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback); feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
throughput = throughput_estimator.bitrate(); send_rate, recv_rate);
EXPECT_TRUE(throughput.has_value()); throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(), 100 * 1000.0, auto throughput = throughput_estimator.bitrate();
0.05 * 100 * 1000.0); // Allow 5% error ASSERT_TRUE(throughput.has_value());
EXPECT_GE(throughput.value(), DataRate::BytesPerSec(100000));
EXPECT_LE(throughput.value(), send_rate);
}
// Delivery at normal rate. This will be capped by the send rate. // 1 second, 1600kbps, estimate is stable
recv_increment = TimeDelta::Millis(10); for (int i = 0; i < 20; ++i) {
packet_feedback = std::vector<PacketResult> packet_feedback =
CreateFeedbackVector(5, packet_size, send_increment, recv_increment, feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
&send_clock, &recv_clock, &sequence_number); send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback); throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate(); auto throughput = throughput_estimator.bitrate();
EXPECT_TRUE(throughput.has_value()); EXPECT_EQ(throughput, send_rate);
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(), 100 * 1000.0, }
0.05 * 100 * 1000.0); // Allow 5% error
// 1 second, 400kbps, estimate decreases
send_rate = DataRate::BytesPerSec(50000);
recv_rate = DataRate::BytesPerSec(50000);
for (int i = 0; i < 5; ++i) {
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_LE(throughput.value(), DataRate::BytesPerSec(200000));
EXPECT_GE(throughput.value(), send_rate);
}
// 1 second, 400kbps, estimate is stable
send_rate = DataRate::BytesPerSec(50000);
recv_rate = DataRate::BytesPerSec(50000);
for (int i = 0; i < 5; ++i) {
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
}
} }
TEST(RobustThroughputEstimatorTest, CappedByReceiveRate) { TEST(RobustThroughputEstimatorTest, CappedByReceiveRate) {
webrtc::test::ScopedFieldTrials field_trials( FeedbackGenerator feedback_generator;
"WebRTC-Bwe-RobustThroughputEstimatorSettings/" RobustThroughputEstimator throughput_estimator(
"enabled:true,assume_shared_link:false,reduce_bias:true,min_packets:10," CreateRobustThroughputEstimatorSettings(
"window_duration:100ms/"); "WebRTC-Bwe-RobustThroughputEstimatorSettings/"
FieldTrialBasedConfig field_trial_config; "enabled:true/"));
RobustThroughputEstimatorSettings settings(&field_trial_config); DataRate send_rate(DataRate::BytesPerSec(100000));
RobustThroughputEstimator throughput_estimator(settings); DataRate recv_rate(DataRate::BytesPerSec(25000));
DataSize packet_size(DataSize::Bytes(1000));
Timestamp send_clock(Timestamp::Millis(100000));
Timestamp recv_clock(Timestamp::Millis(10000));
TimeDelta send_increment(TimeDelta::Millis(10));
TimeDelta recv_increment(TimeDelta::Millis(40));
uint16_t sequence_number = 100;
std::vector<PacketResult> packet_feedback = std::vector<PacketResult> packet_feedback =
CreateFeedbackVector(20, packet_size, send_increment, recv_increment, feedback_generator.CreateFeedbackVector(20, DataSize::Bytes(1000),
&send_clock, &recv_clock, &sequence_number); send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback); throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate(); auto throughput = throughput_estimator.bitrate();
EXPECT_TRUE(throughput.has_value()); ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(), 25 * 1000.0, EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
0.05 * 25 * 1000.0); // Allow 5% error recv_rate.bytes_per_sec<double>(),
0.05 * recv_rate.bytes_per_sec<double>()); // Allow 5% error
} }
TEST(RobustThroughputEstimatorTest, CappedBySendRate) { TEST(RobustThroughputEstimatorTest, CappedBySendRate) {
webrtc::test::ScopedFieldTrials field_trials( FeedbackGenerator feedback_generator;
"WebRTC-Bwe-RobustThroughputEstimatorSettings/" RobustThroughputEstimator throughput_estimator(
"enabled:true,assume_shared_link:false,reduce_bias:true,min_packets:10," CreateRobustThroughputEstimatorSettings(
"window_duration:100ms/"); "WebRTC-Bwe-RobustThroughputEstimatorSettings/"
FieldTrialBasedConfig field_trial_config; "enabled:true/"));
RobustThroughputEstimatorSettings settings(&field_trial_config); DataRate send_rate(DataRate::BytesPerSec(50000));
RobustThroughputEstimator throughput_estimator(settings); DataRate recv_rate(DataRate::BytesPerSec(100000));
DataSize packet_size(DataSize::Bytes(1000));
Timestamp send_clock(Timestamp::Millis(100000));
Timestamp recv_clock(Timestamp::Millis(10000));
TimeDelta send_increment(TimeDelta::Millis(20));
TimeDelta recv_increment(TimeDelta::Millis(10));
uint16_t sequence_number = 100;
std::vector<PacketResult> packet_feedback = std::vector<PacketResult> packet_feedback =
CreateFeedbackVector(20, packet_size, send_increment, recv_increment, feedback_generator.CreateFeedbackVector(20, DataSize::Bytes(1000),
&send_clock, &recv_clock, &sequence_number); send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
send_rate.bytes_per_sec<double>(),
0.05 * send_rate.bytes_per_sec<double>()); // Allow 5% error
}
TEST(RobustThroughputEstimatorTest, DelaySpike) {
FeedbackGenerator feedback_generator;
// This test uses a 500ms window to amplify the effect
// of a delay spike.
RobustThroughputEstimator throughput_estimator(
CreateRobustThroughputEstimatorSettings(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true,window_duration:500ms/"));
DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(20, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
// Delay spike. 25 packets sent, but none received.
feedback_generator.AdvanceReceiveClock(TimeDelta::Millis(250));
// Deliver all of the packets during the next 50 ms. (During this time,
// we'll have sent an additional 5 packets, so we need to receive 30
// packets at 1000 bytes each in 50 ms, i.e. 600000 bytes per second).
recv_rate = DataRate::BytesPerSec(600000);
// Estimate should not drop.
for (int i = 0; i < 30; ++i) {
packet_feedback = feedback_generator.CreateFeedbackVector(
1, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
send_rate.bytes_per_sec<double>(),
0.05 * send_rate.bytes_per_sec<double>()); // Allow 5% error
}
// Delivery at normal rate. When the packets received before the gap
// has left the estimator's window, the receive rate will be high, but the
// estimate should be capped by the send rate.
recv_rate = DataRate::BytesPerSec(100000);
for (int i = 0; i < 20; ++i) {
packet_feedback = feedback_generator.CreateFeedbackVector(
5, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
send_rate.bytes_per_sec<double>(),
0.05 * send_rate.bytes_per_sec<double>()); // Allow 5% error
}
}
TEST(RobustThroughputEstimatorTest, HighLoss) {
FeedbackGenerator feedback_generator;
RobustThroughputEstimator throughput_estimator(
CreateRobustThroughputEstimatorSettings(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true/"));
DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(20, DataSize::Bytes(1000),
send_rate, recv_rate);
// 50% loss
for (size_t i = 0; i < packet_feedback.size(); i++) {
if (i % 2 == 1) {
packet_feedback[i].receive_time = Timestamp::PlusInfinity();
}
}
std::sort(packet_feedback.begin(), packet_feedback.end(),
PacketResult::ReceiveTimeOrder());
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
send_rate.bytes_per_sec<double>() / 2,
0.05 * send_rate.bytes_per_sec<double>() / 2); // Allow 5% error
}
TEST(RobustThroughputEstimatorTest, ReorderedFeedback) {
FeedbackGenerator feedback_generator;
RobustThroughputEstimator throughput_estimator(
CreateRobustThroughputEstimatorSettings(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true/"));
DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(20, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
std::vector<PacketResult> delayed_feedback =
feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
send_rate, recv_rate);
packet_feedback = feedback_generator.CreateFeedbackVector(
10, DataSize::Bytes(1000), send_rate, recv_rate);
// Since we're missing some feedback, it's expected that the
// estimate will drop.
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_LT(throughput.value(), send_rate);
// But it should completely recover as soon as we get the feedback.
throughput_estimator.IncomingPacketFeedbackVector(delayed_feedback);
throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
// It should then remain stable (as if the feedbacks weren't reordered.)
for (int i = 0; i < 10; ++i) {
packet_feedback = feedback_generator.CreateFeedbackVector(
15, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
}
}
TEST(RobustThroughputEstimatorTest, DeepReordering) {
FeedbackGenerator feedback_generator;
// This test uses a 500ms window to amplify the
// effect of reordering.
RobustThroughputEstimator throughput_estimator(
CreateRobustThroughputEstimatorSettings(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true,window_duration:500ms/"));
DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
std::vector<PacketResult> delayed_packets =
feedback_generator.CreateFeedbackVector(1, DataSize::Bytes(1000),
send_rate, recv_rate);
for (int i = 0; i < 10; i++) {
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
}
// Delayed packet arrives ~1 second after it should have.
// Since the window is 500 ms, the delayed packet was sent ~500
// ms before the second oldest packet. However, the send rate
// should not drop.
delayed_packets.front().receive_time =
feedback_generator.CurrentReceiveClock();
throughput_estimator.IncomingPacketFeedbackVector(delayed_packets);
auto throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
send_rate.bytes_per_sec<double>(),
0.05 * send_rate.bytes_per_sec<double>()); // Allow 5% error
// Thoughput should stay stable.
for (int i = 0; i < 10; i++) {
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(10, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate();
ASSERT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
send_rate.bytes_per_sec<double>(),
0.05 * send_rate.bytes_per_sec<double>()); // Allow 5% error
}
}
TEST(RobustThroughputEstimatorTest, StreamPausedAndResumed) {
FeedbackGenerator feedback_generator;
RobustThroughputEstimator throughput_estimator(
CreateRobustThroughputEstimatorSettings(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true/"));
DataRate send_rate(DataRate::BytesPerSec(100000));
DataRate recv_rate(DataRate::BytesPerSec(100000));
std::vector<PacketResult> packet_feedback =
feedback_generator.CreateFeedbackVector(20, DataSize::Bytes(1000),
send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback); throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
auto throughput = throughput_estimator.bitrate(); auto throughput = throughput_estimator.bitrate();
EXPECT_TRUE(throughput.has_value()); EXPECT_TRUE(throughput.has_value());
EXPECT_NEAR(throughput.value().bytes_per_sec<double>(), 50 * 1000.0, double expected_bytes_per_sec = 100 * 1000.0;
0.05 * 50 * 1000.0); // Allow 5% error EXPECT_NEAR(throughput.value().bytes_per_sec<double>(),
expected_bytes_per_sec,
0.05 * expected_bytes_per_sec); // Allow 5% error
// No packets sent or feedback received for 60s.
feedback_generator.AdvanceSendClock(TimeDelta::Seconds(60));
feedback_generator.AdvanceReceiveClock(TimeDelta::Seconds(60));
// Resume sending packets at the same rate as before. The estimate
// will initially be invalid, due to lack of recent data.
packet_feedback = feedback_generator.CreateFeedbackVector(
5, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
EXPECT_FALSE(throughput.has_value());
// But be back to the normal level once we have enough data.
for (int i = 0; i < 4; ++i) {
packet_feedback = feedback_generator.CreateFeedbackVector(
5, DataSize::Bytes(1000), send_rate, recv_rate);
throughput_estimator.IncomingPacketFeedbackVector(packet_feedback);
throughput = throughput_estimator.bitrate();
EXPECT_EQ(throughput, send_rate);
}
} }
} // namespace webrtc*/ } // namespace webrtc

View file

@ -1242,11 +1242,11 @@ void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
return std::numeric_limits<int64_t>::max(); return std::numeric_limits<int64_t>::max();
}; };
RateStatistics acked_bitrate(750, 8000); RateStatistics raw_acked_bitrate(750, 8000);
test::ExplicitKeyValueConfig throughput_config( test::ExplicitKeyValueConfig throughput_config(
"WebRTC-Bwe-RobustThroughputEstimatorSettings/" "WebRTC-Bwe-RobustThroughputEstimatorSettings/"
"enabled:true,reduce_bias:true,assume_shared_link:false,initial_packets:" "enabled:true,required_packets:10,"
"10,min_packets:25,window_duration:750ms,unacked_weight:0.5/"); "window_packets:25,window_duration:1000ms,unacked_weight:1.0/");
std::unique_ptr<AcknowledgedBitrateEstimatorInterface> std::unique_ptr<AcknowledgedBitrateEstimatorInterface>
robust_throughput_estimator( robust_throughput_estimator(
AcknowledgedBitrateEstimatorInterface::Create(&throughput_config)); AcknowledgedBitrateEstimatorInterface::Create(&throughput_config));
@ -1305,7 +1305,6 @@ void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
auto feedback_msg = transport_feedback.ProcessTransportFeedback( auto feedback_msg = transport_feedback.ProcessTransportFeedback(
rtcp_iterator->transport_feedback, rtcp_iterator->transport_feedback,
Timestamp::Millis(clock.TimeInMilliseconds())); Timestamp::Millis(clock.TimeInMilliseconds()));
absl::optional<uint32_t> bitrate_bps;
if (feedback_msg) { if (feedback_msg) {
observer.Update(goog_cc->OnTransportPacketsFeedback(*feedback_msg)); observer.Update(goog_cc->OnTransportPacketsFeedback(*feedback_msg));
std::vector<PacketResult> feedback = std::vector<PacketResult> feedback =
@ -1315,24 +1314,30 @@ void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
feedback); feedback);
robust_throughput_estimator->IncomingPacketFeedbackVector(feedback); robust_throughput_estimator->IncomingPacketFeedbackVector(feedback);
for (const PacketResult& packet : feedback) { for (const PacketResult& packet : feedback) {
acked_bitrate.Update(packet.sent_packet.size.bytes(), raw_acked_bitrate.Update(packet.sent_packet.size.bytes(),
packet.receive_time.ms()); packet.receive_time.ms());
}
absl::optional<uint32_t> raw_bitrate_bps =
raw_acked_bitrate.Rate(feedback.back().receive_time.ms());
float x = config_.GetCallTimeSec(clock.CurrentTime());
if (raw_bitrate_bps) {
float y = raw_bitrate_bps.value() / 1000;
acked_time_series.points.emplace_back(x, y);
}
absl::optional<DataRate> robust_estimate =
robust_throughput_estimator->bitrate();
if (robust_estimate) {
float y = robust_estimate.value().kbps();
robust_time_series.points.emplace_back(x, y);
}
absl::optional<DataRate> acked_estimate =
acknowledged_bitrate_estimator->bitrate();
if (acked_estimate) {
float y = acked_estimate.value().kbps();
acked_estimate_time_series.points.emplace_back(x, y);
} }
bitrate_bps = acked_bitrate.Rate(feedback.back().receive_time.ms());
} }
} }
float x = config_.GetCallTimeSec(clock.CurrentTime());
float y = bitrate_bps.value_or(0) / 1000;
acked_time_series.points.emplace_back(x, y);
y = robust_throughput_estimator->bitrate()
.value_or(DataRate::Zero())
.kbps();
robust_time_series.points.emplace_back(x, y);
y = acknowledged_bitrate_estimator->bitrate()
.value_or(DataRate::Zero())
.kbps();
acked_estimate_time_series.points.emplace_back(x, y);
++rtcp_iterator; ++rtcp_iterator;
} }
if (clock.TimeInMicroseconds() >= NextProcessTime()) { if (clock.TimeInMicroseconds() >= NextProcessTime()) {