A similar function was defined in rtc_base/openssl_adapter. Moving it from net/dcsctp/common/ to rtc_base/strings/. I'm planning to use StrJoin in a video codec test (a follow-up change).
Bug: webrtc:14852
Change-Id: Ie657c03e7f9fb52c189c127af6f66ec505b512ae
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/327322
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41166}
While this is a fairly big CL, it's fairly straightforward. It replaces
uses of TimeMs with webrtc::Timestamp, and additionally does some
cleanup of DurationMs to webrtc::TimeDelta that are now easier to do.
Bug: webrtc:15593
Change-Id: Id0e3edcba0533e0e8df3358b1778b6995c344243
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/326560
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41138}
This callback is identical to TimeMillis, but returns a
webrtc::Timestamp instead of a TimeMs.
When all callers have migrated to Now() (and all dcsctp code),
TimeMillis will be removed.
Bug: webrtc:15593
Change-Id: I608387607537f29989736af5bf98c7f184f52ebc
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/326500
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41127}
With this, the code base should be mostly converted from using
DurationMs to rtc::TimeDelta, and the work can continue to replace
TimeMs with rtc::Timestamp.
Bug: webrtc:15593
Change-Id: I083fee6eccb173efc0232bb8d46e2554a5fbee5b
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/326161
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41101}
This does the bulk of the remaining refactoring, except timers since
they are an even bigger part - but more isolated.
Bug: webrtc:15593
Change-Id: I7afa349e2119be7592797ee6b3b198e6de4f697a
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/326160
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41090}
It's still doing the calculations in milliseconds, which will be updated
in follow-up CLs.
Bug: webrtc:15593
Change-Id: I7fb93d4687d58f409db182db40db720d82feb3dd
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/325524
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41074}
This commit replaces the internal use of DurationMs, with millisecond
precision, to webrtc::TimeDelta, which uses microsecond precision.
This is just a refactoring. The only change to the public API is
convenience methods to convert between DurationMs and webrtc::TimeDelta.
Bug: webrtc:15593
Change-Id: Ida861bf585c716be5f898d0e7ef98da2c15268b7
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/325402
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41062}
When a timer expires, it can optionally return a new expiration value.
Clearly, that value can't be zero, as that would make it expire
immediately again.
To simplify the interface, and make it easier to migrate to
rtc::TimeDelta, change it from an optional value to an always-present
value that - if zero - means that the expiration time should be
unchanged.
This is just an internal refactoring, and not part of any external
interface.
Bug: webrtc:15593
Change-Id: I6e7010d2dbe774ccb260e14fd6b9861c319e2411
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/325281
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41045}
Before this change, a timer could have an optional max duration. Either
that value was present, and that limited the max duration of the timer,
or it was absl::nullopt, which represented "no limit".
To simplify the interface, this CL makes that value "not optional" by
having it always present. The previous "no limit" is now represented by
DurationMs::InfiniteDuration.
This is just a refactoring of internal interfaces - public interfaces
are left untouched.
Bug: webrtc:15593
Change-Id: I80df1d9b2f4d208411ce6cb5045db0a57865e3b4
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/325280
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41040}
When a sender has requested a stream to be reset, and the last sender
assigned TSN hasn't been received yet, the receiver will enter deferred
reset mode, where it will store any data chunks received after that
given TSN, and replay those later, when the stream has been reset.
Before this CL, leaving deferred mode was done as soon as the sender's
last assigned TSN was received. That's actually not how the RFC
describes the process[1], but was done that way to properly handle some
sequences of RE-CONFIG and FORWARD-TSN. But after having read the RFCs
again, and realizing that whenever RFC6525 mention "any data arriving",
this also applies to any FORWARD-TSN[2] - it's better to reset streams
synchronously with the incoming requests, and defer not just DATA past
the sender last assigned TSN, but also any FORWARD-TSN after that TSN.
This mostly simplifies the code and is mostly a refactoring, but most
importantly aligns it with how the resetting procedure is explained in
the RFC. It also fixes two bugs:
* It defers FORWARD-TSN *as well as* DATA chunks with a TSN later
than the sender's last assigned TSN - see test case. The old
implementation tried to handle that by exiting the deferred reset
processing as soon as it reached the sender's last assigned TSN, but
it didn't manage to do that in all cases.
* It only defers DATA chunks for streams that are to be reset, not
all DATA chunks with a TSN > sender's last assigned TSN. This was
missed in the old implementation, but as it's now implemented
strictly according to the RFC, this was now done.
[1] https://datatracker.ietf.org/doc/html/rfc6525#section-5.2.2
[2] RFC6525 cover stream resetting, and RFC3758 cover FORWARD-TSN, and
the combination of these is not covered in the RFCs.
Bug: webrtc:14600
Change-Id: Ief878b755291b9c923aa6fb4317b0f5c00231df4
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/322623
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40889}
MID is a RFC8260 property on an I-DATA chunk, replacing the SSN property
on the DATA chunk in non-interleaved message. The MID stands for
"Message Identifier", and it was frequently named "message_id" in the
source code, but sometimes "mid". To be consistent and using the same
terminology as is most common in the RFC, use "mid" everywhere.
This was triggered by the need to introduce yet another "message
identifier" - but for now, this is just a refacotring CL.
Bug: None
Change-Id: I9cca898d9f3a2f162d6f2e4508ec1b4bc8d7308f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/322500
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40876}
Similar to change I602a8552a9a4c853684fcf105309ec3d8073f2c2, which
ensured that only new DATA chunks would be processed by the reassembly
queue by utilizing the data tracker, the same is done for FORWARD-TSN
chunks.
By having the data tracker gate keeping what is provided to the
reassembly queue, the reassembly queue can be simplified as well, which
is an added bonus, by removing last_assembled_tsn_watermark_ and
reassembled_messages_ as those were protecting the queue from
re-delivering messages it had already delivered, but as now the data
tracker would ensure that it wouldn't re-process DATA/FORWARD-TSNs, that
would have the same effect. In this CL, we will still update those
variables and save to the handover state, but not actually read from
them, and then when this change has been rolled out on the servers, I
can remove the variables as well.
The core change is to move validation from ReassemblyQueue::Handle
to DataTracker::HandleForwardTsn.
Some tests have been moved/replicated into data_tracker_test.cc to
ensure that it catches the issues that the reassembly queue did earlier.
Bug: webrtc:14600
Change-Id: I75c1d5911185d594f73c8b1e6bcf776e88f5b7c7
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/321603
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40856}
This was a fun bug which proved to be challenging to find a good
solution for. The issue comes from the combination of partial
reliability and stream resetting, which are covered in different RFCs,
and where they don't refer to each other...
Stream resetting (RFC 6525) is used in WebRTC for closing a Data
Channel, and is done by signaling to the receiver that the stream
sequence number (SSN) should be set to zero (0) at some time. Partial
reliability (RFC 3758) - and expiring messages that will not be
retransmitted - is done by signaling that the SSN should be set to a
certain value at a certain TSN, as the messages up until the provided
SSN are not to be expected to be sent again.
As these two functionalities both work by signaling to the receiver
what the next expected SSN should be, they need to do it correctly not
to overwrite each others' intent. And here was the bug. An example
scenario where this caused issues, where we are Z (the receiver),
getting packets from the sender (A):
5 A->Z DATA (TSN=30, B, SID=2, SSN=0)
6 Z->A SACK (Ack=30)
7 A->Z DATA (TSN=31, E, SID=2, SSN=0)
8 A->Z RE_CONFIG (REQ=30, TSN=31, SID=2)
9 Z->A RE_CONFIG (RESP=30, Performed)
10 Z->A SACK (Ack=31)
11 A->Z DATA (TSN=32, SID=1)
12 A->Z FORWARD_TSN (TSN=32, SID=2, SSN=0)
Let's assume that the path Z->A had packet loss and A never really
received our responses (#6, #9, #10) in time.
At #5, Z receives a DATA fragment, which it acks, and at #7 the end of
that message. The stream is then reset (#8) which it signals that it
was performed (#9) and acked (#10), and data on another stream (2) was
received (#11). Since A hasn't received any ACKS yet, and those chunks
on SID=2 all expired, A sends a FORWARD-TSN saying that "Skip to TSN=32,
and don't expect SID=2, SSN=0". That makes the receiver expect the SSN
on SID=2 to be SSN=1 next time at TSN=32.
But that's not good at all - A reset the stream at #8 and will want to
send the next message on SID=2 using SSN=0 - not 1. The FORWARD-TSN
clearly can't have a TSN that is beyond the stream reset TSN for that
stream.
This is just one example - combining stream resetting and partial
reliability, together with a lossy network, and different variants of
this can occur, which results in the receiver possibly not delivering
packets because it expects a different SSN than the one the sender is
later using.
So this CL adds "breakpoints" to how far a FORWARD-TSN can stretch. It
will simply not cross any Stream Reset last assigned TSNs, and only when
a receiver has acked that all TSNs up till the Stream Reset last
assigned TSN has been received, it will proceed expiring chunks after
that.
Bug: webrtc:14600
Change-Id: Ibae8c9308f5dfe8d734377d42cce653e69e95731
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/321600
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40829}
https://datatracker.ietf.org/doc/html/rfc6525#section-5.2.2:
E2: If the Sender's Last Assigned TSN is greater than the cumulative
acknowledgment point, then the endpoint MUST enter "deferred
reset processing". ... until the cumulative
acknowledgment point reaches the Sender's Last Assigned TSN.
The cumulative acknowledgement point can not only be reached by
receiving DATA chunks, but also by receiving a FORWARD-TSN that
instructs the receiver to skip them. This was only done for DATA and not
for FORWARD-TSN, which is now corrected.
Additionally, an unnecessary implicit sending of SACK after having
received FORWARD-TSN was removed as this is done anyway every time a
packet has been received. This unifies the processing of DATA and
FORWARD-TSN more.
Bug: webrtc:14600
Change-Id: If797d3c46e741074fe05e322d0aebec765a87968
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/321400
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40811}
More general matches that can be reused, less specialized ones.
Bug: None
Change-Id: I12ea98caf4f566168566173a509c204bd25e5a13
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/321123
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40804}
The handover state has been added with
commit daaa6ab5a8.
This reverts commit 014cbed9d2.
Bug: webrtc:14997
Change-Id: Ie84f3184f3ea67aaa6438481634046ba18b497a6
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/320941
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Reviewed-by: Jeremy Leconte <jleconte@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40794}
This reverts commit a736f30a5f.
Due to a downstream project not supporting this
new handover state, it fails. Handover state needs
to be submitted first, then downstream project needs
to be updated, and finally the code changes can be
submitted.
Bug: webrtc:14997
Change-Id: I8551e349408d9bf4eb593cb948279d659467fe20
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/302821
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Auto-Submit: Victor Boivie <boivie@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39923}
If configured, attempt to negotiate "zero checksum
acceptable" capability, which will make the outgoing
packets have a fixed checksum of zero. Received
packets will not be verified for a correct checksum
if it's zero.
Also includes some boilerplate:
- Setting capability in state cookie
- Adding capability to handover state
- Adding metric to know if the feature is used
This feature is not enabled by default, as it will be
first evaluated with an A/B experiment before making
it the default.
When the feature is enabled, lower CPU consumption for
both receiving and sending packets is expected. How
much depends on the architecture, as some architectures
have better support for generating CRC32 in hardware
than others.
Bug: webrtc:14997
Change-Id: If23f73e87220c7d42bd4f9a92772cda16bc18fcb
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/299076
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39920}
This reverts commit 45eae34693.
It was found not to be the root cause of the performance
regression, so it's safe to reland.
Bug: webrtc:14997
Change-Id: I67c90752875bf4071cbdd5adfa462a37f4d4ceab
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/302162
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/main@{#39910}
This reverts commit bd46bb7660.
Reason for revert: There is a slight performance degradation
pointing to this CL, so revert this to be able to confirm if
it is the culprit.
Original change's description:
> dcsctp: Support zero checksum packets
>
> If configured, the packet parser will allow packets with
> a set checksum of zero. In that case, the correct checksum
> will not even be calculated, avoiding a CPU intensive
> calculation.
>
> Also, if specified when building a packet, the checksum can
> be opted to be not calculated and written to the packet.
> This is to be used when draft-tuexen-tsvwg-sctp-zero-checksum
> has been negotiated, except for some packets during association
> establishment.
>
> This is mainly a preparation CL and follow-up CL will enable
> this feature.
>
> Low-Coverage-Reason: Affects debug logging code not run in tests
> Bug: webrtc:14997
> Change-Id: I3207ac3a626df039ee2990403c2edd6429f17617
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/298481
> Reviewed-by: Harald Alvestrand <hta@webrtc.org>
> Commit-Queue: Victor Boivie <boivie@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#39737}
Bug: webrtc:14997
Change-Id: Ie22267abb4bcd25d5af07875eb933c51ed5be853
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/301580
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39878}
This component is mostly "glue" and is heavily tested in the
socket tests, but not the ToString method, which results in
getting "low test coverage" warnings.
So for the sake of it, add a test that verifies that it works.
Bug: None
Change-Id: Id2b75e2798f334452be50631ef1ff15f53fe4157
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/300441
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39826}
If configured, the packet parser will allow packets with
a set checksum of zero. In that case, the correct checksum
will not even be calculated, avoiding a CPU intensive
calculation.
Also, if specified when building a packet, the checksum can
be opted to be not calculated and written to the packet.
This is to be used when draft-tuexen-tsvwg-sctp-zero-checksum
has been negotiated, except for some packets during association
establishment.
This is mainly a preparation CL and follow-up CL will enable
this feature.
Low-Coverage-Reason: Affects debug logging code not run in tests
Bug: webrtc:14997
Change-Id: I3207ac3a626df039ee2990403c2edd6429f17617
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/298481
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39737}
The log_prefix frequently used in dcSCTP is intended to be used
to separate logs from different sockets within the same log output,
typically in unit tests. Every log entry always has the file and
line, so it's not important to add more information to the log prefix
that indicates _where_ it's logged. So those have been removed.
Also, since log_prefix is a string (typically 32 bytes) and it's
never changing during the lifetime of the socket, pass and store it
as a absl::string_view to save memory.
Bug: None
Change-Id: I10466710ca6c2badfcd3adc5630426a90ca74204
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/274704
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39571}
This was a mistake from change 273800 in that it could try to send
packets if there wasn't a connection established - when tcb_ was
nullptr.
Bug: chromium:1360268
Change-Id: Idd4406071dbd8ac89303aef61840895505417569
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/274405
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Auto-Submit: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38031}
When re-receiving a stream reset request with the same request
sequence number, reply with the same result as previous time. In
case the original request was deferred, and "in progress" was
replied, it's important to not indicate that it was performed
successfully as that will make the sender believe it has completed
before it did.
Bug: webrtc:14277
Change-Id: I5c7082dc285180d62061d7ebebe05566e5c4195c
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/274080
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38012}
When a stream reset response has been received, this may result
in unpausing the streams (either because it was successful or
because it failed - but streams will be unpaused). Directly after
receiving the response, send out any pending chunks that are
ready to be sent.
Before this CL, they would eventually be sent out, but that is
unnecessary and undeterministic.
Bug: webrtc:14277
Change-Id: Ic1ab38bc3cea96cfec7419e25001f12807523a3a
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/273800
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38009}
When a RECONFIG has been received with a last assigned TSN that is
not yet seen by the receiver, it will enter deferred reset mode
(https://www.rfc-editor.org/rfc/rfc6525#section-5.2.2, E2).
When more DATA is received, moving the cumulative acknowledgment point,
the request will finally be processed. But the last chunk that has the
same TSN as the last assigned TSN was before this CL not applied before
doing the reset - it was applied after.
This would result of a message getting lost or possibly getting
truncated or incorrectly merged with another.
Handling the message before resetting the stream is the simple
solution here.
Bug: webrtc:14277
Change-Id: Iea9fa227778077a9ff2f78bc77b5d93cc32b702b
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/273323
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37993}
To allow the transport to be able to know which ranges of
stream identifiers it can use, the negotiated incoming/inbound
and outgoing/outbound stream counts will be exposed. They are
added to Metrics, and guaranteed to be available from within
the OnConnected callback.
In this CL, dcSCTP will not validate that the client is sending
on a stream that is within the negotiated bounds. That will be
done as a follow-up CL.
Bug: webrtc:14277
Change-Id: Ic764e5f93f53d55633ee547df86246022f4097cf
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/272321
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37876}
This adds the final piece, which makes the socket and the retransmission
queue generate the callbacks.
Bug: webrtc:5696
Change-Id: I1e28c98e9660bd018e817a3ba0fa6b03940fcd33
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264125
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37455}
This CL adds the API to enable message lifecycle events to be generated.
Those can in turn be used to generate metrics, e.g. latency metrics
tracking the time to send a message, the time until it's acknowledged,
and metrics tracking how often messages are expired.
This will be used to validate that message interleaving really improves
latency for high priority data channels.
The actual implementation of the API will be provided in follow-up CLs.
Bug: webrtc:5696
Change-Id: Ic06f8244d1c79a336975e35479130521dff17519
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264141
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37396}
There was also some refactoring to create the TCB at the same time,
to ensure the metric is always set.
Bug: webrtc:13052, webrtc:5696
Change-Id: I5557ad5f0fc4a0520de1eaaafa15459b3200c4f5
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/262259
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37388}
Before this CL, some components, e.g. the SendQueue, was first created
and then later restored from handover state, while some were created from
the handover state, as an optional parameter to their constructors.
This CL will make it consistent, by always creating the components in a
pristine state, and then modifying it when restoring them from handover
state. The name "RestoreFromState" was used to be consistent with SendQueue
and the socket.
This is just refactoring.
Bug: None
Change-Id: Ifad2d2e84a74a12a93abbfb0fe1027ebb9580e73
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/267006
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37384}
This adds support to enable message interleaving in the stream scheduler
from the socket, proxied by the send queue.
It also adds socket unit tests to ensure that prioritization and
interleaving works. Also, send queue test has been added to validate the
integration of the stream scheduler. But the actual scheduling parts of
it will be tested in the stream scheduler unit tests.
Bug: webrtc:5696
Change-Id: Ic7d3d2dc28405c77a107f0148f0096882961eec7
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/262248
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37355}
This is the receive-side part of supporting what is frequently called
"ndata", but actually RFC8260 - "User Message Interleaving".
This CL adds a new ReassemblyStreams implementation that can assemble
I-DATA chunks and process I-FORWARD-TSN for partial reliability.
Bug: webrtc:5696
Change-Id: I3cfbea62e7b6c02fbd3f51b43ba3fb7863cf0f88
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/218506
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37128}
This is a re-land of commit 3180a5ad06.
This is an issue found in fuzzer, and doesn't really happen in WebRTC
as it never closes the connection and reconnects.
The issue is that the send queue outlives any connection since you're
allowed to send messages (well, enqueue them) before the association is
fully connected. So the send queue is always present but the TCB
(information about the connection) is torn down when the connection is
closed for example. And the TCB holds the Stream Reset handler, which is
responsible for e.g. keeping track of stream reset sequence numbers and
such - which is tied to the connection.
So to ensure that the Stream Reset Handler is in charge of deciding
if a stream reset is taking place, make sure that the send queue is in
a known good state when the Stream Reset handler is created.
Bug: webrtc:13994, chromium:1320194
Change-Id: Ib8254488523c7abb58057c602f76f411fce896fa
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/265000
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37115}
This is a reland of commit 17a02a31d7.
This is the first part of supporting stream priorities, and adds the API
and very basic support for setting and retrieving the stream priority.
This commit doesn't in any way change the actual packet sending - the
specified priority values are stored, but not acted on.
This is all that is client visible, so clients can start using the API
as written, and they would never notice that things are missing.
Bug: webrtc:5696
Change-Id: I04d64a63cbaec67568496ad99667e14eba85f2e0
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264424
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37081}
This reverts commit 17a02a31d7.
Reason for revert: Breaks downstream test
Original change's description:
> dcsctp: Add public API for setting priorities
>
> This is the first part of supporting stream priorities, and adds the API
> and very basic support for setting and retrieving the stream priority.
>
> This commit doesn't in any way change the actual packet sending - the
> specified priority values are stored, but not acted on.
>
> This is all that is client visible, so clients can start using the API
> as written, and they would never notice that things are missing.
>
> Bug: webrtc:5696
> Change-Id: I24fce8cbb6f3cba187df99d1d3f45e73621c93c6
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261943
> Reviewed-by: Harald Alvestrand <hta@webrtc.org>
> Commit-Queue: Victor Boivie <boivie@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#37034}
Bug: webrtc:5696
Change-Id: If172d9c9dbce7aae72152abbbae1ccc77340bbc1
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264444
Owners-Override: Björn Terelius <terelius@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Auto-Submit: Björn Terelius <terelius@webrtc.org>
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37039}
This is the first part of supporting stream priorities, and adds the API
and very basic support for setting and retrieving the stream priority.
This commit doesn't in any way change the actual packet sending - the
specified priority values are stored, but not acted on.
This is all that is client visible, so clients can start using the API
as written, and they would never notice that things are missing.
Bug: webrtc:5696
Change-Id: I24fce8cbb6f3cba187df99d1d3f45e73621c93c6
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261943
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37034}
This CL first restricts Metrics to be retrievable when the socket is
created. This avoids having most fields as optional and makes it
easier to add more metrics.
Secondly, the peer implementation is moved into Metrics.
Bug: webrtc:13052
Change-Id: I6cb53eeef3f84ac34f3efc883853338f903cc758
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/262256
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36888}
This was found during code review. This code is essentially dead code
until interleaved messaging is implemented, which is disabled both in
configuration and due to missing code.
Bug: None
Change-Id: Idea87dfe2be204361774d8964140fd9947a66410
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261944
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36850}