/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/codecs/vp9/svc_rate_allocator.h" #include #include #include #include "rtc_base/checks.h" namespace webrtc { namespace { const float kSpatialLayeringRateScalingFactor = 0.55f; const float kTemporalLayeringRateScalingFactor = 0.55f; } // namespace SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec) : codec_(codec) { RTC_DCHECK_EQ(codec.codecType, kVideoCodecVP9); } BitrateAllocation SvcRateAllocator::GetAllocation(uint32_t total_bitrate_bps, uint32_t framerate_fps) { BitrateAllocation bitrate_allocation; size_t num_spatial_layers = codec_.VP9().numberOfSpatialLayers; RTC_CHECK(num_spatial_layers > 0); size_t num_temporal_layers = codec_.VP9().numberOfTemporalLayers; RTC_CHECK(num_temporal_layers > 0); if (codec_.maxBitrate != 0) { total_bitrate_bps = std::min(total_bitrate_bps, codec_.maxBitrate * 1000); } if (codec_.mode == kScreensharing) { // At screen sharing bitrate allocation is handled by VP9 encoder wrapper. bitrate_allocation.SetBitrate(0, 0, total_bitrate_bps); return bitrate_allocation; } std::vector spatial_layer_bitrate_bps; if (codec_.spatialLayers[0].maxBitrate == 0) { // Layers' parameters are not initialized. Do simple split. spatial_layer_bitrate_bps = SplitBitrate(num_spatial_layers, total_bitrate_bps, kSpatialLayeringRateScalingFactor); } else { // Distribute total bitrate across spatial layers. If there is not enough // bitrate to provide all layers with at least minimum required bitrate // then number of layers is reduced by one and distribution is repeated // until that condition is met or if number of layers is reduced to one. for (;; --num_spatial_layers) { spatial_layer_bitrate_bps = SplitBitrate(num_spatial_layers, total_bitrate_bps, kSpatialLayeringRateScalingFactor); bool enough_bitrate = true; size_t excess_rate = 0; for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) { RTC_DCHECK_GT(codec_.spatialLayers[sl_idx].maxBitrate, 0); RTC_DCHECK_GE(codec_.spatialLayers[sl_idx].maxBitrate, codec_.spatialLayers[sl_idx].minBitrate); const size_t min_bitrate_bps = codec_.spatialLayers[sl_idx].minBitrate * 1000; const size_t max_bitrate_bps = codec_.spatialLayers[sl_idx].maxBitrate * 1000; spatial_layer_bitrate_bps[sl_idx] += excess_rate; if (spatial_layer_bitrate_bps[sl_idx] < max_bitrate_bps) { excess_rate = 0; } else { excess_rate = spatial_layer_bitrate_bps[sl_idx] - max_bitrate_bps; spatial_layer_bitrate_bps[sl_idx] = max_bitrate_bps; } if (spatial_layer_bitrate_bps[sl_idx] < min_bitrate_bps) { enough_bitrate = false; break; } } if (enough_bitrate || num_spatial_layers == 1) { break; } } } for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) { std::vector temporal_layer_bitrate_bps = SplitBitrate(num_temporal_layers, spatial_layer_bitrate_bps[sl_idx], kTemporalLayeringRateScalingFactor); // Distribute rate across temporal layers. Allocate more bits to lower // layers since they are used for prediction of higher layers and their // references are far apart. if (num_temporal_layers == 1) { bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[0]); } else if (num_temporal_layers == 2) { bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[1]); bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_bitrate_bps[0]); } else { RTC_CHECK_EQ(num_temporal_layers, 3); // In case of three temporal layers the high layer has two frames and the // middle layer has one frame within GOP (in between two consecutive low // layer frames). Thus high layer requires more bits (comparing pure // bitrate of layer, excluding bitrate of base layers) to keep quality on // par with lower layers. bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[2]); bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_bitrate_bps[0]); bitrate_allocation.SetBitrate(sl_idx, 2, temporal_layer_bitrate_bps[1]); } } return bitrate_allocation; } uint32_t SvcRateAllocator::GetPreferredBitrateBps(uint32_t framerate) { return GetAllocation(codec_.maxBitrate * 1000, framerate).get_sum_bps(); } std::vector SvcRateAllocator::SplitBitrate(size_t num_layers, size_t total_bitrate, float rate_scaling_factor) { std::vector bitrates; double denominator = 0.0; for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) { denominator += std::pow(rate_scaling_factor, layer_idx); } double numerator = std::pow(rate_scaling_factor, num_layers - 1); for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) { bitrates.push_back(numerator * total_bitrate / denominator); numerator /= rate_scaling_factor; } const size_t sum = std::accumulate(bitrates.begin(), bitrates.end(), 0); // Ensure the sum of split bitrates doesn't exceed the total bitrate. RTC_DCHECK_LE(sum, total_bitrate); // Keep the sum of split bitrates equal to the total bitrate by adding bits, // which were lost due to rounding, to the latest layer. bitrates.back() += total_bitrate - sum; return bitrates; } } // namespace webrtc