/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "system_wrappers/include/rtp_to_ntp_estimator.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { // Number of RTCP SR reports to use to map between RTP and NTP. const size_t kNumRtcpReportsToUse = 2; // Calculates the RTP timestamp frequency from two pairs of NTP/RTP timestamps. bool CalculateFrequency(int64_t ntp_ms1, uint32_t rtp_timestamp1, int64_t ntp_ms2, uint32_t rtp_timestamp2, double* frequency_khz) { if (ntp_ms1 <= ntp_ms2) return false; *frequency_khz = static_cast(rtp_timestamp1 - rtp_timestamp2) / static_cast(ntp_ms1 - ntp_ms2); return true; } // Detects if there has been a wraparound between |old_timestamp| and // |new_timestamp|, and compensates by adding 2^32 if that is the case. bool CompensateForWrapAround(uint32_t new_timestamp, uint32_t old_timestamp, int64_t* compensated_timestamp) { int64_t wraps = CheckForWrapArounds(new_timestamp, old_timestamp); if (wraps < 0) { // Reordering, don't use this packet. return false; } *compensated_timestamp = new_timestamp + (wraps << 32); return true; } bool Contains(const std::list& measurements, const RtpToNtpEstimator::RtcpMeasurement& other) { for (const auto& measurement : measurements) { if (measurement.IsEqual(other)) return true; } return false; } } // namespace RtpToNtpEstimator::RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t timestamp) : ntp_time(ntp_secs, ntp_frac), rtp_timestamp(timestamp) {} bool RtpToNtpEstimator::RtcpMeasurement::IsEqual( const RtcpMeasurement& other) const { // Use || since two equal timestamps will result in zero frequency and in // RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency. return (ntp_time == other.ntp_time) || (rtp_timestamp == other.rtp_timestamp); } // Class for converting an RTP timestamp to the NTP domain. RtpToNtpEstimator::RtpToNtpEstimator() : consecutive_invalid_samples_(0) {} RtpToNtpEstimator::~RtpToNtpEstimator() {} void RtpToNtpEstimator::UpdateParameters() { if (measurements_.size() != kNumRtcpReportsToUse) return; int64_t timestamp_new = measurements_.front().rtp_timestamp; int64_t timestamp_old = measurements_.back().rtp_timestamp; if (!CompensateForWrapAround(timestamp_new, timestamp_old, ×tamp_new)) return; int64_t ntp_ms_new = measurements_.front().ntp_time.ToMs(); int64_t ntp_ms_old = measurements_.back().ntp_time.ToMs(); if (!CalculateFrequency(ntp_ms_new, timestamp_new, ntp_ms_old, timestamp_old, ¶ms_.frequency_khz)) { return; } params_.offset_ms = timestamp_new - params_.frequency_khz * ntp_ms_new; params_.calculated = true; } bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t rtp_timestamp, bool* new_rtcp_sr) { *new_rtcp_sr = false; RtcpMeasurement new_measurement(ntp_secs, ntp_frac, rtp_timestamp); if (Contains(measurements_, new_measurement)) { // RTCP SR report already added. return true; } if (!new_measurement.ntp_time.Valid()) return false; int64_t ntp_ms_new = new_measurement.ntp_time.ToMs(); bool invalid_sample = false; for (const auto& measurement : measurements_) { if (ntp_ms_new <= measurement.ntp_time.ToMs()) { // Old report. invalid_sample = true; break; } int64_t timestamp_new = new_measurement.rtp_timestamp; if (!CompensateForWrapAround(timestamp_new, measurement.rtp_timestamp, ×tamp_new)) { invalid_sample = true; break; } if (timestamp_new <= measurement.rtp_timestamp) { LOG(LS_WARNING) << "Newer RTCP SR report with older RTP timestamp, dropping"; invalid_sample = true; break; } } if (invalid_sample) { ++consecutive_invalid_samples_; if (consecutive_invalid_samples_ < kMaxInvalidSamples) { return false; } LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " "clearing measurements."; measurements_.clear(); } consecutive_invalid_samples_ = 0; // Insert new RTCP SR report. if (measurements_.size() == kNumRtcpReportsToUse) measurements_.pop_back(); measurements_.push_front(new_measurement); *new_rtcp_sr = true; // List updated, calculate new parameters. UpdateParameters(); return true; } bool RtpToNtpEstimator::Estimate(int64_t rtp_timestamp, int64_t* rtp_timestamp_ms) const { if (!params_.calculated || measurements_.empty()) return false; uint32_t rtp_timestamp_old = measurements_.back().rtp_timestamp; int64_t rtp_timestamp_unwrapped; if (!CompensateForWrapAround(rtp_timestamp, rtp_timestamp_old, &rtp_timestamp_unwrapped)) { return false; } // params_.calculated should not be true unless params_.frequency_khz has been // set to something non-zero. RTC_DCHECK_NE(params_.frequency_khz, 0.0); double rtp_ms = (static_cast(rtp_timestamp_unwrapped) - params_.offset_ms) / params_.frequency_khz + 0.5f; if (rtp_ms < 0) return false; *rtp_timestamp_ms = rtp_ms; return true; } int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) { if (new_timestamp < old_timestamp) { // This difference should be less than -2^31 if we have had a wrap around // (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is // cast to a int32_t, it should be positive. if (static_cast(new_timestamp - old_timestamp) > 0) { // Forward wrap around. return 1; } } else if (static_cast(old_timestamp - new_timestamp) > 0) { // This difference should be less than -2^31 if we have had a backward wrap // around. Since it is cast to a int32_t, it should be positive. return -1; } return 0; } } // namespace webrtc