/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/probe_controller.h" #include #include #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/field_trial.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { // The minimum number probing packets used. constexpr int kMinProbePacketsSent = 5; // The minimum probing duration in ms. constexpr int kMinProbeDurationMs = 15; // Maximum waiting time from the time of initiating probing to getting // the measured results back. constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000; // Value of |min_bitrate_to_probe_further_bps_| that indicates // further probing is disabled. constexpr int kExponentialProbingDisabled = 0; // Default probing bitrate limit. Applied only when the application didn't // specify max bitrate. constexpr int64_t kDefaultMaxProbingBitrateBps = 5000000; // Interval between probes when ALR periodic probing is enabled. constexpr int64_t kAlrPeriodicProbingIntervalMs = 5000; // Minimum probe bitrate percentage to probe further for repeated probes, // relative to the previous probe. For example, if 1Mbps probe results in // 80kbps, then we'll probe again at 1.6Mbps. In that case second probe won't be // sent if we get 600kbps from the first one. constexpr int kRepeatedProbeMinPercentage = 70; // If the bitrate drops to a factor |kBitrateDropThreshold| or lower // and we recover within |kBitrateDropTimeoutMs|, then we'll send // a probe at a fraction |kProbeFractionAfterDrop| of the original bitrate. constexpr double kBitrateDropThreshold = 0.66; constexpr int kBitrateDropTimeoutMs = 5000; constexpr double kProbeFractionAfterDrop = 0.85; // Timeout for probing after leaving ALR. If the bitrate drops significantly, // (as determined by the delay based estimator) and we leave ALR, then we will // send a probe if we recover within |kLeftAlrTimeoutMs| ms. constexpr int kAlrEndedTimeoutMs = 3000; // The expected uncertainty of probe result (as a fraction of the target probe // This is a limit on how often probing can be done when there is a BW // drop detected in ALR. constexpr int64_t kMinTimeBetweenAlrProbesMs = 5000; // bitrate). Used to avoid probing if the probe bitrate is close to our current // estimate. constexpr double kProbeUncertainty = 0.05; // Use probing to recover faster after large bitrate estimate drops. constexpr char kBweRapidRecoveryExperiment[] = "WebRTC-BweRapidRecoveryExperiment"; } // namespace ProbeController::ProbeController() : enable_periodic_alr_probing_(false) { Reset(0); in_rapid_recovery_experiment_ = webrtc::field_trial::FindFullName( kBweRapidRecoveryExperiment) == "Enabled"; } ProbeController::~ProbeController() {} std::vector ProbeController::SetBitrates( int64_t min_bitrate_bps, int64_t start_bitrate_bps, int64_t max_bitrate_bps, int64_t at_time_ms) { if (start_bitrate_bps > 0) { start_bitrate_bps_ = start_bitrate_bps; estimated_bitrate_bps_ = start_bitrate_bps; } else if (start_bitrate_bps_ == 0) { start_bitrate_bps_ = min_bitrate_bps; } // The reason we use the variable |old_max_bitrate_pbs| is because we // need to set |max_bitrate_bps_| before we call InitiateProbing. int64_t old_max_bitrate_bps = max_bitrate_bps_; max_bitrate_bps_ = max_bitrate_bps; switch (state_) { case State::kInit: if (network_available_) return InitiateExponentialProbing(at_time_ms); break; case State::kWaitingForProbingResult: break; case State::kProbingComplete: // If the new max bitrate is higher than the old max bitrate and the // estimate is lower than the new max bitrate then initiate probing. if (estimated_bitrate_bps_ != 0 && old_max_bitrate_bps < max_bitrate_bps_ && estimated_bitrate_bps_ < max_bitrate_bps_) { // The assumption is that if we jump more than 20% in the bandwidth // estimate or if the bandwidth estimate is within 90% of the new // max bitrate then the probing attempt was successful. mid_call_probing_succcess_threshold_ = std::min(estimated_bitrate_bps_ * 1.2, max_bitrate_bps_ * 0.9); mid_call_probing_waiting_for_result_ = true; mid_call_probing_bitrate_bps_ = max_bitrate_bps_; RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated", max_bitrate_bps_ / 1000); return InitiateProbing(at_time_ms, {max_bitrate_bps}, false); } break; } return std::vector(); } std::vector ProbeController::OnMaxTotalAllocatedBitrate( int64_t max_total_allocated_bitrate, int64_t at_time_ms) { // TODO(philipel): Should |max_total_allocated_bitrate| be used as a limit for // ALR probing? if (state_ == State::kProbingComplete && max_total_allocated_bitrate != max_total_allocated_bitrate_ && estimated_bitrate_bps_ != 0 && (max_bitrate_bps_ <= 0 || estimated_bitrate_bps_ < max_bitrate_bps_) && estimated_bitrate_bps_ < max_total_allocated_bitrate) { max_total_allocated_bitrate_ = max_total_allocated_bitrate; return InitiateProbing(at_time_ms, {max_total_allocated_bitrate}, false); } max_total_allocated_bitrate_ = max_total_allocated_bitrate; return std::vector(); } std::vector ProbeController::OnNetworkAvailability( NetworkAvailability msg) { network_available_ = msg.network_available; if (!network_available_ && state_ == State::kWaitingForProbingResult) { state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } if (network_available_ && state_ == State::kInit && start_bitrate_bps_ > 0) return InitiateExponentialProbing(msg.at_time.ms()); return std::vector(); } std::vector ProbeController::InitiateExponentialProbing( int64_t at_time_ms) { RTC_DCHECK(network_available_); RTC_DCHECK(state_ == State::kInit); RTC_DCHECK_GT(start_bitrate_bps_, 0); // When probing at 1.8 Mbps ( 6x 300), this represents a threshold of // 1.2 Mbps to continue probing. return InitiateProbing( at_time_ms, {3 * start_bitrate_bps_, 6 * start_bitrate_bps_}, true); } std::vector ProbeController::SetEstimatedBitrate( int64_t bitrate_bps, int64_t at_time_ms) { int64_t now_ms = at_time_ms; if (mid_call_probing_waiting_for_result_ && bitrate_bps >= mid_call_probing_succcess_threshold_) { RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Success", mid_call_probing_bitrate_bps_ / 1000); RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.ProbedKbps", bitrate_bps / 1000); mid_call_probing_waiting_for_result_ = false; } std::vector pending_probes; if (state_ == State::kWaitingForProbingResult) { // Continue probing if probing results indicate channel has greater // capacity. RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate_bps << " Minimum to probe further: " << min_bitrate_to_probe_further_bps_; if (min_bitrate_to_probe_further_bps_ != kExponentialProbingDisabled && bitrate_bps > min_bitrate_to_probe_further_bps_) { // Double the probing bitrate. pending_probes = InitiateProbing(now_ms, {2 * bitrate_bps}, true); } } if (bitrate_bps < kBitrateDropThreshold * estimated_bitrate_bps_) { time_of_last_large_drop_ms_ = now_ms; bitrate_before_last_large_drop_bps_ = estimated_bitrate_bps_; } estimated_bitrate_bps_ = bitrate_bps; return pending_probes; } void ProbeController::EnablePeriodicAlrProbing(bool enable) { enable_periodic_alr_probing_ = enable; } void ProbeController::SetAlrStartTimeMs( absl::optional alr_start_time_ms) { alr_start_time_ms_ = alr_start_time_ms; } void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) { alr_end_time_ms_.emplace(alr_end_time_ms); } std::vector ProbeController::RequestProbe( int64_t at_time_ms) { // Called once we have returned to normal state after a large drop in // estimated bandwidth. The current response is to initiate a single probe // session (if not already probing) at the previous bitrate. // // If the probe session fails, the assumption is that this drop was a // real one from a competing flow or a network change. bool in_alr = alr_start_time_ms_.has_value(); bool alr_ended_recently = (alr_end_time_ms_.has_value() && at_time_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs); if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) { if (state_ == State::kProbingComplete) { uint32_t suggested_probe_bps = kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_; uint32_t min_expected_probe_result_bps = (1 - kProbeUncertainty) * suggested_probe_bps; int64_t time_since_drop_ms = at_time_ms - time_of_last_large_drop_ms_; int64_t time_since_probe_ms = at_time_ms - last_bwe_drop_probing_time_ms_; if (min_expected_probe_result_bps > estimated_bitrate_bps_ && time_since_drop_ms < kBitrateDropTimeoutMs && time_since_probe_ms > kMinTimeBetweenAlrProbesMs) { RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing."; // Track how often we probe in response to bandwidth drop in ALR. RTC_HISTOGRAM_COUNTS_10000( "WebRTC.BWE.BweDropProbingIntervalInS", (at_time_ms - last_bwe_drop_probing_time_ms_) / 1000); return InitiateProbing(at_time_ms, {suggested_probe_bps}, false); last_bwe_drop_probing_time_ms_ = at_time_ms; } } } return std::vector(); } std::vector ProbeController::InitiateCapacityProbing( int64_t bitrate_bps, int64_t at_time_ms) { if (state_ != State::kWaitingForProbingResult) { RTC_DCHECK(network_available_); return InitiateProbing(at_time_ms, {2 * bitrate_bps}, true); } return std::vector(); } void ProbeController::Reset(int64_t at_time_ms) { network_available_ = true; state_ = State::kInit; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; time_last_probing_initiated_ms_ = 0; estimated_bitrate_bps_ = 0; start_bitrate_bps_ = 0; max_bitrate_bps_ = 0; int64_t now_ms = at_time_ms; last_bwe_drop_probing_time_ms_ = now_ms; alr_end_time_ms_.reset(); mid_call_probing_waiting_for_result_ = false; time_of_last_large_drop_ms_ = now_ms; bitrate_before_last_large_drop_bps_ = 0; max_total_allocated_bitrate_ = 0; } std::vector ProbeController::Process(int64_t at_time_ms) { int64_t now_ms = at_time_ms; if (now_ms - time_last_probing_initiated_ms_ > kMaxWaitingTimeForProbingResultMs) { mid_call_probing_waiting_for_result_ = false; if (state_ == State::kWaitingForProbingResult) { RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout"; state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } } if (enable_periodic_alr_probing_ && state_ == State::kProbingComplete) { // Probe bandwidth periodically when in ALR state. if (alr_start_time_ms_ && estimated_bitrate_bps_ > 0) { int64_t next_probe_time_ms = std::max(*alr_start_time_ms_, time_last_probing_initiated_ms_) + kAlrPeriodicProbingIntervalMs; if (now_ms >= next_probe_time_ms) { return InitiateProbing(now_ms, {estimated_bitrate_bps_ * 2}, true); } } } return std::vector(); } std::vector ProbeController::InitiateProbing( int64_t now_ms, std::initializer_list bitrates_to_probe, bool probe_further) { std::vector pending_probes; for (int64_t bitrate : bitrates_to_probe) { RTC_DCHECK_GT(bitrate, 0); int64_t max_probe_bitrate_bps = max_bitrate_bps_ > 0 ? max_bitrate_bps_ : kDefaultMaxProbingBitrateBps; if (bitrate > max_probe_bitrate_bps) { bitrate = max_probe_bitrate_bps; probe_further = false; } ProbeClusterConfig config; config.at_time = Timestamp::ms(now_ms); config.target_data_rate = DataRate::bps(rtc::dchecked_cast(bitrate)); config.target_duration = TimeDelta::ms(kMinProbeDurationMs); config.target_probe_count = kMinProbePacketsSent; pending_probes.push_back(config); } time_last_probing_initiated_ms_ = now_ms; if (probe_further) { state_ = State::kWaitingForProbingResult; min_bitrate_to_probe_further_bps_ = (*(bitrates_to_probe.end() - 1)) * kRepeatedProbeMinPercentage / 100; } else { state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } return pending_probes; } } // namespace webrtc