/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/codecs/test/videoprocessor.h" #include #include #include #include "api/video/i420_buffer.h" #include "common_types.h" // NOLINT(build/include) #include "common_video/h264/h264_common.h" #include "common_video/libyuv/include/webrtc_libyuv.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h" #include "modules/video_coding/include/video_codec_initializer.h" #include "modules/video_coding/utility/default_video_bitrate_allocator.h" #include "rtc_base/checks.h" #include "rtc_base/timeutils.h" #include "test/gtest.h" #include "third_party/libyuv/include/libyuv/scale.h" namespace webrtc { namespace test { namespace { const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000; const int kMaxBufferedInputFrames = 10; std::unique_ptr CreateBitrateAllocator( TestConfig* config) { std::unique_ptr tl_factory; if (config->codec_settings.codecType == VideoCodecType::kVideoCodecVP8) { tl_factory.reset(new TemporalLayersFactory()); config->codec_settings.VP8()->tl_factory = tl_factory.get(); } return std::unique_ptr( VideoCodecInitializer::CreateBitrateAllocator(config->codec_settings, std::move(tl_factory))); } size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame, const TestConfig& config) { if (config.codec_settings.codecType != kVideoCodecH264) return 0; std::vector nalu_indices = webrtc::H264::FindNaluIndices(encoded_frame._buffer, encoded_frame._length); RTC_CHECK(!nalu_indices.empty()); size_t max_size = 0; for (const webrtc::H264::NaluIndex& index : nalu_indices) max_size = std::max(max_size, index.payload_size); return max_size; } void GetLayerIndices(const CodecSpecificInfo& codec_specific, size_t* simulcast_svc_idx, size_t* temporal_idx) { if (codec_specific.codecType == kVideoCodecVP8) { *simulcast_svc_idx = codec_specific.codecSpecific.VP8.simulcastIdx; *temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx; } else if (codec_specific.codecType == kVideoCodecVP9) { *simulcast_svc_idx = codec_specific.codecSpecific.VP9.spatial_idx; *temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx; } if (*simulcast_svc_idx == kNoSpatialIdx) { *simulcast_svc_idx = 0; } if (*temporal_idx == kNoTemporalIdx) { *temporal_idx = 0; } } int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) { int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec; RTC_DCHECK_GE(diff_us, std::numeric_limits::min()); RTC_DCHECK_LE(diff_us, std::numeric_limits::max()); return static_cast(diff_us); } void ExtractI420BufferWithSize(const VideoFrame& image, int width, int height, rtc::Buffer* buffer) { if (image.width() != width || image.height() != height) { EXPECT_DOUBLE_EQ(static_cast(width) / height, static_cast(image.width()) / image.height()); // Same aspect ratio, no cropping needed. rtc::scoped_refptr scaled(I420Buffer::Create(width, height)); scaled->ScaleFrom(*image.video_frame_buffer()->ToI420()); size_t length = CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height()); buffer->SetSize(length); RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1); return; } // No resize. size_t length = CalcBufferSize(VideoType::kI420, image.width(), image.height()); buffer->SetSize(length); RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1); } void CalculateFrameQuality(const VideoFrame& ref_frame, const VideoFrame& dec_frame, FrameStatistics* frame_stat) { if (ref_frame.width() == dec_frame.width() || ref_frame.height() == dec_frame.height()) { frame_stat->psnr = I420PSNR(&ref_frame, &dec_frame); frame_stat->ssim = I420SSIM(&ref_frame, &dec_frame); } else { RTC_CHECK_GE(ref_frame.width(), dec_frame.width()); RTC_CHECK_GE(ref_frame.height(), dec_frame.height()); // Downscale reference frame. Use bilinear interpolation since it is used // to get lowres inputs for encoder at simulcasting. // TODO(ssilkin): Sync with VP9 SVC which uses 8-taps polyphase. rtc::scoped_refptr scaled_buffer = I420Buffer::Create(dec_frame.width(), dec_frame.height()); const I420BufferInterface& ref_buffer = *ref_frame.video_frame_buffer()->ToI420(); I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(), ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(), ref_buffer.width(), ref_buffer.height(), scaled_buffer->MutableDataY(), scaled_buffer->StrideY(), scaled_buffer->MutableDataU(), scaled_buffer->StrideU(), scaled_buffer->MutableDataV(), scaled_buffer->StrideV(), scaled_buffer->width(), scaled_buffer->height(), libyuv::kFilterBox); frame_stat->psnr = I420PSNR(*scaled_buffer, *dec_frame.video_frame_buffer()->ToI420()); frame_stat->ssim = I420SSIM(*scaled_buffer, *dec_frame.video_frame_buffer()->ToI420()); } } } // namespace VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder, VideoDecoderList* decoders, FrameReader* input_frame_reader, const TestConfig& config, Stats* stats, IvfFileWriterList* encoded_frame_writers, FrameWriterList* decoded_frame_writers) : config_(config), num_simulcast_or_spatial_layers_( std::max(config_.NumberOfSimulcastStreams(), config_.NumberOfSpatialLayers())), stats_(stats), encoder_(encoder), decoders_(decoders), bitrate_allocator_(CreateBitrateAllocator(&config_)), framerate_fps_(0), encode_callback_(this), decode_callback_(this), input_frame_reader_(input_frame_reader), merged_encoded_frames_(num_simulcast_or_spatial_layers_), encoded_frame_writers_(encoded_frame_writers), decoded_frame_writers_(decoded_frame_writers), last_inputed_frame_num_(0), last_inputed_timestamp_(0), first_encoded_frame_(num_simulcast_or_spatial_layers_, true), last_encoded_frame_num_(num_simulcast_or_spatial_layers_), first_decoded_frame_(num_simulcast_or_spatial_layers_, true), last_decoded_frame_num_(num_simulcast_or_spatial_layers_) { // Sanity checks. RTC_CHECK(rtc::TaskQueue::Current()) << "VideoProcessor must be run on a task queue."; RTC_CHECK(encoder); RTC_CHECK(decoders); RTC_CHECK_EQ(decoders->size(), num_simulcast_or_spatial_layers_); RTC_CHECK(input_frame_reader); RTC_CHECK(stats); RTC_CHECK(!encoded_frame_writers || encoded_frame_writers->size() == num_simulcast_or_spatial_layers_); RTC_CHECK(!decoded_frame_writers || decoded_frame_writers->size() == num_simulcast_or_spatial_layers_); // Setup required callbacks for the encoder and decoder and initialize them. RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_), WEBRTC_VIDEO_CODEC_OK); // Initialize codecs so that they are ready to receive frames. RTC_CHECK_EQ(encoder_->InitEncode(&config_.codec_settings, static_cast(config_.NumberOfCores()), config_.max_payload_size_bytes), WEBRTC_VIDEO_CODEC_OK); for (auto& decoder : *decoders_) { RTC_CHECK_EQ(decoder->InitDecode(&config_.codec_settings, static_cast(config_.NumberOfCores())), WEBRTC_VIDEO_CODEC_OK); RTC_CHECK_EQ(decoder->RegisterDecodeCompleteCallback(&decode_callback_), WEBRTC_VIDEO_CODEC_OK); } } VideoProcessor::~VideoProcessor() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // Explicitly reset codecs, in case they don't do that themselves when they // go out of scope. RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK); encoder_->RegisterEncodeCompleteCallback(nullptr); for (auto& decoder : *decoders_) { RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK); decoder->RegisterDecodeCompleteCallback(nullptr); } for (size_t simulcast_svc_idx = 0; simulcast_svc_idx < num_simulcast_or_spatial_layers_; ++simulcast_svc_idx) { uint8_t* buffer = merged_encoded_frames_.at(simulcast_svc_idx)._buffer; if (buffer) { delete[] buffer; } } } void VideoProcessor::ProcessFrame() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); const size_t frame_number = last_inputed_frame_num_++; // Get input frame and store for future quality calculation. rtc::scoped_refptr buffer = input_frame_reader_->ReadFrame(); RTC_CHECK(buffer) << "Tried to read too many frames from the file."; const size_t timestamp = last_inputed_timestamp_ + kVideoPayloadTypeFrequency / framerate_fps_; VideoFrame input_frame(buffer, static_cast(timestamp), static_cast(timestamp / kMsToRtpTimestamp), webrtc::kVideoRotation_0); input_frames_.emplace(frame_number, input_frame); last_inputed_timestamp_ = timestamp; // Create frame statistics object for all simulcast/spatial layers. for (size_t simulcast_svc_idx = 0; simulcast_svc_idx < num_simulcast_or_spatial_layers_; ++simulcast_svc_idx) { stats_->AddFrame(timestamp, simulcast_svc_idx); } // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. const int64_t encode_start_ns = rtc::TimeNanos(); for (size_t simulcast_svc_idx = 0; simulcast_svc_idx < num_simulcast_or_spatial_layers_; ++simulcast_svc_idx) { FrameStatistics* frame_stat = stats_->GetFrame(frame_number, simulcast_svc_idx); frame_stat->encode_start_ns = encode_start_ns; } // Encode. const std::vector frame_types = config_.FrameTypeForFrame(frame_number); const int encode_return_code = encoder_->Encode(input_frame, nullptr, &frame_types); for (size_t simulcast_svc_idx = 0; simulcast_svc_idx < num_simulcast_or_spatial_layers_; ++simulcast_svc_idx) { FrameStatistics* frame_stat = stats_->GetFrame(frame_number, simulcast_svc_idx); frame_stat->encode_return_code = encode_return_code; } } void VideoProcessor::SetRates(size_t bitrate_kbps, size_t framerate_fps) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); framerate_fps_ = static_cast(framerate_fps); bitrate_allocation_ = bitrate_allocator_->GetAllocation( static_cast(bitrate_kbps * 1000), framerate_fps_); const int set_rates_result = encoder_->SetRateAllocation(bitrate_allocation_, framerate_fps_); RTC_DCHECK_GE(set_rates_result, 0) << "Failed to update encoder with new rate " << bitrate_kbps << "."; } void VideoProcessor::FrameEncoded( const webrtc::EncodedImage& encoded_image, const webrtc::CodecSpecificInfo& codec_specific) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. const int64_t encode_stop_ns = rtc::TimeNanos(); const VideoCodecType codec_type = codec_specific.codecType; if (config_.encoded_frame_checker) { config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image); } // Layer metadata. size_t simulcast_svc_idx = 0; size_t temporal_idx = 0; GetLayerIndices(codec_specific, &simulcast_svc_idx, &temporal_idx); const size_t frame_wxh = encoded_image._encodedWidth * encoded_image._encodedHeight; frame_wxh_to_simulcast_svc_idx_[frame_wxh] = simulcast_svc_idx; FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp( encoded_image._timeStamp, simulcast_svc_idx); const size_t frame_number = frame_stat->frame_number; // Ensure that the encode order is monotonically increasing, within this // simulcast/spatial layer. RTC_CHECK(first_encoded_frame_[simulcast_svc_idx] || last_encoded_frame_num_[simulcast_svc_idx] < frame_number); // Ensure SVC spatial layers are delivered in ascending order. if (!first_encoded_frame_[simulcast_svc_idx] && config_.NumberOfSpatialLayers() > 1) { for (size_t i = 0; i < simulcast_svc_idx; ++i) { RTC_CHECK_EQ(last_encoded_frame_num_[i], frame_number); } for (size_t i = simulcast_svc_idx + 1; i < num_simulcast_or_spatial_layers_; ++i) { RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]); } } first_encoded_frame_[simulcast_svc_idx] = false; last_encoded_frame_num_[simulcast_svc_idx] = frame_number; // Update frame statistics. frame_stat->encoding_successful = true; frame_stat->encode_time_us = GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns); if (codec_type == kVideoCodecVP9) { const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9; frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted; // TODO(ssilkin): Implement bitrate allocation for VP9 SVC. For now set // target for base layers equal to total target to avoid devision by zero // at analysis. frame_stat->target_bitrate_kbps = bitrate_allocation_.get_sum_kbps(); } else { frame_stat->target_bitrate_kbps = (bitrate_allocation_.GetBitrate(simulcast_svc_idx, temporal_idx) + 500) / 1000; } frame_stat->length_bytes = encoded_image._length; frame_stat->frame_type = encoded_image._frameType; frame_stat->temporal_layer_idx = temporal_idx; frame_stat->simulcast_svc_idx = simulcast_svc_idx; frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_); frame_stat->qp = encoded_image.qp_; // Decode. const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image; if (config_.NumberOfSpatialLayers() > 1) { encoded_image_for_decode = MergeAndStoreEncodedImageForSvcDecoding( encoded_image, codec_type, frame_number, simulcast_svc_idx); } frame_stat->decode_start_ns = rtc::TimeNanos(); frame_stat->decode_return_code = decoders_->at(simulcast_svc_idx) ->Decode(*encoded_image_for_decode, false, nullptr); if (encoded_frame_writers_) { RTC_CHECK( encoded_frame_writers_->at(simulcast_svc_idx) ->WriteFrame(encoded_image, config_.codec_settings.codecType)); } } void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // For the highest measurement accuracy of the decode time, the start/stop // time recordings should wrap the Decode call as tightly as possible. const int64_t decode_stop_ns = rtc::TimeNanos(); // Layer metadata. const size_t simulcast_svc_idx = frame_wxh_to_simulcast_svc_idx_.at(decoded_frame.size()); FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp( decoded_frame.timestamp(), simulcast_svc_idx); const size_t frame_number = frame_stat->frame_number; // Ensure that the decode order is monotonically increasing, within this // simulcast/spatial layer. RTC_CHECK(first_decoded_frame_[simulcast_svc_idx] || last_decoded_frame_num_[simulcast_svc_idx] < frame_number); first_decoded_frame_[simulcast_svc_idx] = false; last_decoded_frame_num_[simulcast_svc_idx] = frame_number; // Update frame statistics. frame_stat->decoding_successful = true; frame_stat->decode_time_us = GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns); frame_stat->decoded_width = decoded_frame.width(); frame_stat->decoded_height = decoded_frame.height(); // Skip quality metrics calculation to not affect CPU usage. if (!config_.measure_cpu) { const auto reference_frame = input_frames_.find(frame_number); RTC_CHECK(reference_frame != input_frames_.cend()) << "The codecs are either buffering too much, dropping too much, or " "being too slow relative the input frame rate."; CalculateFrameQuality(reference_frame->second, decoded_frame, frame_stat); } // Erase all buffered input frames that we have moved past for all // simulcast/spatial layers. Never buffer more than |kMaxBufferedInputFrames| // frames, to protect against long runs of consecutive frame drops for a // particular layer. const auto min_last_decoded_frame_num = std::min_element( last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend()); const size_t min_buffered_frame_num = std::max(0, static_cast(frame_number) - kMaxBufferedInputFrames + 1); RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend()); const auto input_frames_erase_before = input_frames_.lower_bound( std::max(*min_last_decoded_frame_num, min_buffered_frame_num)); input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before); if (decoded_frame_writers_) { ExtractI420BufferWithSize(decoded_frame, config_.codec_settings.width, config_.codec_settings.height, &tmp_i420_buffer_); RTC_CHECK_EQ(tmp_i420_buffer_.size(), decoded_frame_writers_->at(simulcast_svc_idx)->FrameLength()); RTC_CHECK(decoded_frame_writers_->at(simulcast_svc_idx) ->WriteFrame(tmp_i420_buffer_.data())); } } const webrtc::EncodedImage* VideoProcessor::MergeAndStoreEncodedImageForSvcDecoding( const EncodedImage& encoded_image, const VideoCodecType codec, size_t frame_number, size_t simulcast_svc_idx) { // Should only be called for SVC. RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1); EncodedImage base_image; RTC_CHECK_EQ(base_image._length, 0); // Each SVC layer is decoded with dedicated decoder. Add data of base layers // to current coded frame buffer. if (simulcast_svc_idx > 0) { base_image = merged_encoded_frames_.at(simulcast_svc_idx - 1); RTC_CHECK_EQ(base_image._timeStamp, encoded_image._timeStamp); } const size_t payload_size_bytes = base_image._length + encoded_image._length; const size_t buffer_size_bytes = payload_size_bytes + EncodedImage::GetBufferPaddingBytes(codec); uint8_t* copied_buffer = new uint8_t[buffer_size_bytes]; RTC_CHECK(copied_buffer); if (base_image._length) { RTC_CHECK(base_image._buffer); memcpy(copied_buffer, base_image._buffer, base_image._length); } memcpy(copied_buffer + base_image._length, encoded_image._buffer, encoded_image._length); EncodedImage copied_image = encoded_image; copied_image = encoded_image; copied_image._buffer = copied_buffer; copied_image._length = payload_size_bytes; copied_image._size = buffer_size_bytes; // Replace previous EncodedImage for this spatial layer. uint8_t* old_buffer = merged_encoded_frames_.at(simulcast_svc_idx)._buffer; if (old_buffer) { delete[] old_buffer; } merged_encoded_frames_.at(simulcast_svc_idx) = copied_image; return &merged_encoded_frames_.at(simulcast_svc_idx); } } // namespace test } // namespace webrtc