/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef API_UNITS_TIMESTAMP_H_ #define API_UNITS_TIMESTAMP_H_ #ifdef UNIT_TEST #include // no-presubmit-check TODO(webrtc:8982) #endif // UNIT_TEST #include #include #include #include "api/units/time_delta.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_conversions.h" namespace webrtc { namespace timestamp_impl { constexpr int64_t kPlusInfinityVal = std::numeric_limits::max(); constexpr int64_t kMinusInfinityVal = std::numeric_limits::min(); } // namespace timestamp_impl // Timestamp represents the time that has passed since some unspecified epoch. // The epoch is assumed to be before any represented timestamps, this means that // negative values are not valid. The most notable feature is that the // difference of two Timestamps results in a TimeDelta. class Timestamp { public: Timestamp() = delete; static constexpr Timestamp PlusInfinity() { return Timestamp(timestamp_impl::kPlusInfinityVal); } static constexpr Timestamp MinusInfinity() { return Timestamp(timestamp_impl::kMinusInfinityVal); } template static constexpr Timestamp Seconds() { static_assert(seconds >= 0, ""); static_assert(seconds < timestamp_impl::kPlusInfinityVal / 1000000, ""); return Timestamp(seconds * 1000000); } template static constexpr Timestamp Millis() { static_assert(ms >= 0, ""); static_assert(ms < timestamp_impl::kPlusInfinityVal / 1000, ""); return Timestamp(ms * 1000); } template static constexpr Timestamp Micros() { static_assert(us >= 0, ""); static_assert(us < timestamp_impl::kPlusInfinityVal, ""); return Timestamp(us); } template < typename T, typename std::enable_if::value>::type* = nullptr> static Timestamp seconds(T seconds) { RTC_DCHECK_GE(seconds, 0); RTC_DCHECK_LT(seconds, timestamp_impl::kPlusInfinityVal / 1000000); return Timestamp(rtc::dchecked_cast(seconds) * 1000000); } template < typename T, typename std::enable_if::value>::type* = nullptr> static Timestamp ms(T milliseconds) { RTC_DCHECK_GE(milliseconds, 0); RTC_DCHECK_LT(milliseconds, timestamp_impl::kPlusInfinityVal / 1000); return Timestamp(rtc::dchecked_cast(milliseconds) * 1000); } template < typename T, typename std::enable_if::value>::type* = nullptr> static Timestamp us(T microseconds) { RTC_DCHECK_GE(microseconds, 0); RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal); return Timestamp(rtc::dchecked_cast(microseconds)); } template ::value>::type* = nullptr> static Timestamp seconds(T seconds) { return Timestamp::us(seconds * 1e6); } template ::value>::type* = nullptr> static Timestamp ms(T milliseconds) { return Timestamp::us(milliseconds * 1e3); } template ::value>::type* = nullptr> static Timestamp us(T microseconds) { if (microseconds == std::numeric_limits::infinity()) { return PlusInfinity(); } else if (microseconds == -std::numeric_limits::infinity()) { return MinusInfinity(); } else { RTC_DCHECK(!std::isnan(microseconds)); RTC_DCHECK_GE(microseconds, 0); RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal); return Timestamp(rtc::dchecked_cast(microseconds)); } } template typename std::enable_if::value, T>::type seconds() const { RTC_DCHECK(IsFinite()); return rtc::dchecked_cast(UnsafeSeconds()); } template typename std::enable_if::value, T>::type ms() const { RTC_DCHECK(IsFinite()); return rtc::dchecked_cast(UnsafeMillis()); } template typename std::enable_if::value, T>::type us() const { RTC_DCHECK(IsFinite()); return rtc::dchecked_cast(microseconds_); } template constexpr typename std::enable_if::value, T>::type seconds() const { return us() * 1e-6; } template constexpr typename std::enable_if::value, T>::type ms() const { return us() * 1e-3; } template constexpr typename std::enable_if::value, T>::type us() const { return IsPlusInfinity() ? std::numeric_limits::infinity() : IsMinusInfinity() ? -std::numeric_limits::infinity() : microseconds_; } constexpr int64_t seconds_or(int64_t fallback_value) const { return IsFinite() ? UnsafeSeconds() : fallback_value; } constexpr int64_t ms_or(int64_t fallback_value) const { return IsFinite() ? UnsafeMillis() : fallback_value; } constexpr int64_t us_or(int64_t fallback_value) const { return IsFinite() ? microseconds_ : fallback_value; } constexpr bool IsFinite() const { return !IsInfinite(); } constexpr bool IsInfinite() const { return microseconds_ == timedelta_impl::kPlusInfinityVal || microseconds_ == timedelta_impl::kMinusInfinityVal; } constexpr bool IsPlusInfinity() const { return microseconds_ == timedelta_impl::kPlusInfinityVal; } constexpr bool IsMinusInfinity() const { return microseconds_ == timedelta_impl::kMinusInfinityVal; } Timestamp operator+(const TimeDelta& other) const { if (IsPlusInfinity() || other.IsPlusInfinity()) { RTC_DCHECK(!IsMinusInfinity()); RTC_DCHECK(!other.IsMinusInfinity()); return PlusInfinity(); } else if (IsMinusInfinity() || other.IsMinusInfinity()) { RTC_DCHECK(!IsPlusInfinity()); RTC_DCHECK(!other.IsPlusInfinity()); return MinusInfinity(); } return Timestamp::us(us() + other.us()); } Timestamp operator-(const TimeDelta& other) const { if (IsPlusInfinity() || other.IsMinusInfinity()) { RTC_DCHECK(!IsMinusInfinity()); RTC_DCHECK(!other.IsPlusInfinity()); return PlusInfinity(); } else if (IsMinusInfinity() || other.IsPlusInfinity()) { RTC_DCHECK(!IsPlusInfinity()); RTC_DCHECK(!other.IsMinusInfinity()); return MinusInfinity(); } return Timestamp::us(us() - other.us()); } TimeDelta operator-(const Timestamp& other) const { if (IsPlusInfinity() || other.IsMinusInfinity()) { RTC_DCHECK(!IsMinusInfinity()); RTC_DCHECK(!other.IsPlusInfinity()); return TimeDelta::PlusInfinity(); } else if (IsMinusInfinity() || other.IsPlusInfinity()) { RTC_DCHECK(!IsPlusInfinity()); RTC_DCHECK(!other.IsMinusInfinity()); return TimeDelta::MinusInfinity(); } return TimeDelta::us(us() - other.us()); } Timestamp& operator-=(const TimeDelta& other) { *this = *this - other; return *this; } Timestamp& operator+=(const TimeDelta& other) { *this = *this + other; return *this; } constexpr bool operator==(const Timestamp& other) const { return microseconds_ == other.microseconds_; } constexpr bool operator!=(const Timestamp& other) const { return microseconds_ != other.microseconds_; } constexpr bool operator<=(const Timestamp& other) const { return microseconds_ <= other.microseconds_; } constexpr bool operator>=(const Timestamp& other) const { return microseconds_ >= other.microseconds_; } constexpr bool operator>(const Timestamp& other) const { return microseconds_ > other.microseconds_; } constexpr bool operator<(const Timestamp& other) const { return microseconds_ < other.microseconds_; } private: explicit constexpr Timestamp(int64_t us) : microseconds_(us) {} constexpr int64_t UnsafeSeconds() const { return (microseconds_ + 500000) / 1000000; } constexpr int64_t UnsafeMillis() const { return (microseconds_ + 500) / 1000; } int64_t microseconds_; }; std::string ToString(const Timestamp& value); #ifdef UNIT_TEST inline std::ostream& operator<<( // no-presubmit-check TODO(webrtc:8982) std::ostream& stream, // no-presubmit-check TODO(webrtc:8982) Timestamp value) { return stream << ToString(value); } #endif // UNIT_TEST } // namespace webrtc #endif // API_UNITS_TIMESTAMP_H_