/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/packet_buffer.h" #include #include #include #include #include "absl/types/variant.h" #include "api/video/encoded_frame.h" #include "common_video/h264/h264_common.h" #include "modules/rtp_rtcp/source/rtp_video_header.h" #include "modules/video_coding/codecs/h264/include/h264_globals.h" #include "modules/video_coding/frame_object.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/mod_ops.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace video_coding { PacketBuffer::PacketBuffer(Clock* clock, size_t start_buffer_size, size_t max_buffer_size) : clock_(clock), max_size_(max_buffer_size), first_seq_num_(0), first_packet_received_(false), is_cleared_to_first_seq_num_(false), buffer_(start_buffer_size), unique_frames_seen_(0), sps_pps_idr_is_h264_keyframe_( field_trial::IsEnabled("WebRTC-SpsPpsIdrIsH264Keyframe")) { RTC_DCHECK_LE(start_buffer_size, max_buffer_size); // Buffer size must always be a power of 2. RTC_DCHECK((start_buffer_size & (start_buffer_size - 1)) == 0); RTC_DCHECK((max_buffer_size & (max_buffer_size - 1)) == 0); } PacketBuffer::~PacketBuffer() { Clear(); } PacketBuffer::InsertResult PacketBuffer::InsertPacket(VCMPacket* packet) { PacketBuffer::InsertResult result; rtc::CritScope lock(&crit_); OnTimestampReceived(packet->timestamp); uint16_t seq_num = packet->seqNum; size_t index = seq_num % buffer_.size(); if (!first_packet_received_) { first_seq_num_ = seq_num; first_packet_received_ = true; } else if (AheadOf(first_seq_num_, seq_num)) { // If we have explicitly cleared past this packet then it's old, // don't insert it, just silently ignore it. if (is_cleared_to_first_seq_num_) { delete[] packet->dataPtr; packet->dataPtr = nullptr; return result; } first_seq_num_ = seq_num; } if (buffer_[index].used) { // Duplicate packet, just delete the payload. if (buffer_[index].seq_num() == packet->seqNum) { delete[] packet->dataPtr; packet->dataPtr = nullptr; return result; } // The packet buffer is full, try to expand the buffer. while (ExpandBufferSize() && buffer_[seq_num % buffer_.size()].used) { } index = seq_num % buffer_.size(); // Packet buffer is still full since we were unable to expand the buffer. if (buffer_[index].used) { // Clear the buffer, delete payload, and return false to signal that a // new keyframe is needed. RTC_LOG(LS_WARNING) << "Clear PacketBuffer and request key frame."; Clear(); delete[] packet->dataPtr; packet->dataPtr = nullptr; result.buffer_cleared = true; return result; } } StoredPacket& new_entry = buffer_[index]; new_entry.continuous = false; new_entry.used = true; new_entry.data = *packet; packet->dataPtr = nullptr; UpdateMissingPackets(packet->seqNum); int64_t now_ms = clock_->TimeInMilliseconds(); last_received_packet_ms_ = now_ms; if (packet->video_header.frame_type == VideoFrameType::kVideoFrameKey) last_received_keyframe_packet_ms_ = now_ms; result.frames = FindFrames(seq_num); return result; } void PacketBuffer::ClearTo(uint16_t seq_num) { rtc::CritScope lock(&crit_); // We have already cleared past this sequence number, no need to do anything. if (is_cleared_to_first_seq_num_ && AheadOf(first_seq_num_, seq_num)) { return; } // If the packet buffer was cleared between a frame was created and returned. if (!first_packet_received_) return; // Avoid iterating over the buffer more than once by capping the number of // iterations to the |size_| of the buffer. ++seq_num; size_t diff = ForwardDiff(first_seq_num_, seq_num); size_t iterations = std::min(diff, buffer_.size()); for (size_t i = 0; i < iterations; ++i) { size_t index = first_seq_num_ % buffer_.size(); if (AheadOf(seq_num, buffer_[index].seq_num())) { delete[] buffer_[index].data.dataPtr; buffer_[index].data.dataPtr = nullptr; buffer_[index].used = false; } ++first_seq_num_; } // If |diff| is larger than |iterations| it means that we don't increment // |first_seq_num_| until we reach |seq_num|, so we set it here. first_seq_num_ = seq_num; is_cleared_to_first_seq_num_ = true; auto clear_to_it = missing_packets_.upper_bound(seq_num); if (clear_to_it != missing_packets_.begin()) { --clear_to_it; missing_packets_.erase(missing_packets_.begin(), clear_to_it); } } void PacketBuffer::ClearInterval(uint16_t start_seq_num, uint16_t stop_seq_num) { size_t iterations = ForwardDiff(start_seq_num, stop_seq_num + 1); RTC_DCHECK_LE(iterations, buffer_.size()); uint16_t seq_num = start_seq_num; for (size_t i = 0; i < iterations; ++i) { size_t index = seq_num % buffer_.size(); RTC_DCHECK_EQ(buffer_[index].seq_num(), seq_num); delete[] buffer_[index].data.dataPtr; buffer_[index].data.dataPtr = nullptr; buffer_[index].used = false; ++seq_num; } } void PacketBuffer::Clear() { rtc::CritScope lock(&crit_); for (StoredPacket& entry : buffer_) { delete[] entry.data.dataPtr; entry.data.dataPtr = nullptr; entry.used = false; } first_packet_received_ = false; is_cleared_to_first_seq_num_ = false; last_received_packet_ms_.reset(); last_received_keyframe_packet_ms_.reset(); newest_inserted_seq_num_.reset(); missing_packets_.clear(); } PacketBuffer::InsertResult PacketBuffer::InsertPadding(uint16_t seq_num) { PacketBuffer::InsertResult result; rtc::CritScope lock(&crit_); UpdateMissingPackets(seq_num); result.frames = FindFrames(static_cast(seq_num + 1)); return result; } absl::optional PacketBuffer::LastReceivedPacketMs() const { rtc::CritScope lock(&crit_); return last_received_packet_ms_; } absl::optional PacketBuffer::LastReceivedKeyframePacketMs() const { rtc::CritScope lock(&crit_); return last_received_keyframe_packet_ms_; } int PacketBuffer::GetUniqueFramesSeen() const { rtc::CritScope lock(&crit_); return unique_frames_seen_; } bool PacketBuffer::ExpandBufferSize() { if (buffer_.size() == max_size_) { RTC_LOG(LS_WARNING) << "PacketBuffer is already at max size (" << max_size_ << "), failed to increase size."; return false; } size_t new_size = std::min(max_size_, 2 * buffer_.size()); std::vector new_buffer(new_size); for (StoredPacket& entry : buffer_) { if (entry.used) { new_buffer[entry.seq_num() % new_size] = entry; } } buffer_ = std::move(new_buffer); RTC_LOG(LS_INFO) << "PacketBuffer size expanded to " << new_size; return true; } bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const { size_t index = seq_num % buffer_.size(); int prev_index = index > 0 ? index - 1 : buffer_.size() - 1; const StoredPacket& entry = buffer_[index]; const StoredPacket& prev_entry = buffer_[prev_index]; if (!entry.used) return false; if (entry.seq_num() != seq_num) return false; if (entry.frame_begin()) return true; if (!prev_entry.used) return false; if (prev_entry.seq_num() != static_cast(entry.seq_num() - 1)) return false; if (prev_entry.data.timestamp != entry.data.timestamp) return false; if (prev_entry.continuous) return true; return false; } std::vector> PacketBuffer::FindFrames( uint16_t seq_num) { std::vector> found_frames; for (size_t i = 0; i < buffer_.size() && PotentialNewFrame(seq_num); ++i) { size_t index = seq_num % buffer_.size(); buffer_[index].continuous = true; // If all packets of the frame is continuous, find the first packet of the // frame and create an RtpFrameObject. if (buffer_[index].frame_end()) { size_t frame_size = 0; int max_nack_count = -1; uint16_t start_seq_num = seq_num; int64_t min_recv_time = buffer_[index].data.packet_info.receive_time_ms(); int64_t max_recv_time = buffer_[index].data.packet_info.receive_time_ms(); RtpPacketInfos::vector_type packet_infos; // Find the start index by searching backward until the packet with // the |frame_begin| flag is set. int start_index = index; size_t tested_packets = 0; int64_t frame_timestamp = buffer_[start_index].data.timestamp; // Identify H.264 keyframes by means of SPS, PPS, and IDR. bool is_h264 = buffer_[start_index].data.codec() == kVideoCodecH264; bool has_h264_sps = false; bool has_h264_pps = false; bool has_h264_idr = false; bool is_h264_keyframe = false; int idr_width = -1; int idr_height = -1; while (true) { ++tested_packets; frame_size += buffer_[start_index].data.sizeBytes; max_nack_count = std::max(max_nack_count, buffer_[start_index].data.timesNacked); min_recv_time = std::min(min_recv_time, buffer_[start_index].data.packet_info.receive_time_ms()); max_recv_time = std::max(max_recv_time, buffer_[start_index].data.packet_info.receive_time_ms()); // Should use |push_front()| since the loop traverses backwards. But // it's too inefficient to do so on a vector so we'll instead fix the // order afterwards. packet_infos.push_back(buffer_[start_index].data.packet_info); if (!is_h264 && buffer_[start_index].frame_begin()) break; if (is_h264) { const auto* h264_header = absl::get_if( &buffer_[start_index].data.video_header.video_type_header); if (!h264_header || h264_header->nalus_length >= kMaxNalusPerPacket) return found_frames; for (size_t j = 0; j < h264_header->nalus_length; ++j) { if (h264_header->nalus[j].type == H264::NaluType::kSps) { has_h264_sps = true; } else if (h264_header->nalus[j].type == H264::NaluType::kPps) { has_h264_pps = true; } else if (h264_header->nalus[j].type == H264::NaluType::kIdr) { has_h264_idr = true; } } if ((sps_pps_idr_is_h264_keyframe_ && has_h264_idr && has_h264_sps && has_h264_pps) || (!sps_pps_idr_is_h264_keyframe_ && has_h264_idr)) { is_h264_keyframe = true; // Store the resolution of key frame which is the packet with // smallest index and valid resolution; typically its IDR or SPS // packet; there may be packet preceeding this packet, IDR's // resolution will be applied to them. if (buffer_[start_index].data.width() > 0 && buffer_[start_index].data.height() > 0) { idr_width = buffer_[start_index].data.width(); idr_height = buffer_[start_index].data.height(); } } } if (tested_packets == buffer_.size()) break; start_index = start_index > 0 ? start_index - 1 : buffer_.size() - 1; // In the case of H264 we don't have a frame_begin bit (yes, // |frame_begin| might be set to true but that is a lie). So instead // we traverese backwards as long as we have a previous packet and // the timestamp of that packet is the same as this one. This may cause // the PacketBuffer to hand out incomplete frames. // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7106 if (is_h264 && (!buffer_[start_index].used || buffer_[start_index].data.timestamp != frame_timestamp)) { break; } --start_seq_num; } // Fix the order since the packet-finding loop traverses backwards. std::reverse(packet_infos.begin(), packet_infos.end()); if (is_h264) { // Warn if this is an unsafe frame. if (has_h264_idr && (!has_h264_sps || !has_h264_pps)) { RTC_LOG(LS_WARNING) << "Received H.264-IDR frame " << "(SPS: " << has_h264_sps << ", PPS: " << has_h264_pps << "). Treating as " << (sps_pps_idr_is_h264_keyframe_ ? "delta" : "key") << " frame since WebRTC-SpsPpsIdrIsH264Keyframe is " << (sps_pps_idr_is_h264_keyframe_ ? "enabled." : "disabled"); } // Now that we have decided whether to treat this frame as a key frame // or delta frame in the frame buffer, we update the field that // determines if the RtpFrameObject is a key frame or delta frame. const size_t first_packet_index = start_seq_num % buffer_.size(); if (is_h264_keyframe) { buffer_[first_packet_index].data.video_header.frame_type = VideoFrameType::kVideoFrameKey; if (idr_width > 0 && idr_height > 0) { // IDR frame was finalized and we have the correct resolution for // IDR; update first packet to have same resolution as IDR. buffer_[first_packet_index].data.video_header.width = idr_width; buffer_[first_packet_index].data.video_header.height = idr_height; } } else { buffer_[first_packet_index].data.video_header.frame_type = VideoFrameType::kVideoFrameDelta; } // With IPPP, if this is not a keyframe, make sure there are no gaps // in the packet sequence numbers up until this point. const uint8_t h264tid = buffer_[start_index].data.video_header.frame_marking.temporal_id; if (h264tid == kNoTemporalIdx && !is_h264_keyframe && missing_packets_.upper_bound(start_seq_num) != missing_packets_.begin()) { return found_frames; } } missing_packets_.erase(missing_packets_.begin(), missing_packets_.upper_bound(seq_num)); const VCMPacket* first_packet = GetPacket(start_seq_num); const VCMPacket* last_packet = GetPacket(seq_num); auto frame = std::make_unique( start_seq_num, seq_num, last_packet->markerBit, max_nack_count, min_recv_time, max_recv_time, first_packet->timestamp, first_packet->ntp_time_ms_, last_packet->video_header.video_timing, first_packet->payloadType, first_packet->codec(), last_packet->video_header.rotation, last_packet->video_header.content_type, first_packet->video_header, last_packet->video_header.color_space, first_packet->generic_descriptor, RtpPacketInfos(std::move(packet_infos)), GetEncodedImageBuffer(frame_size, start_seq_num, seq_num)); found_frames.emplace_back(std::move(frame)); ClearInterval(start_seq_num, seq_num); } ++seq_num; } return found_frames; } rtc::scoped_refptr PacketBuffer::GetEncodedImageBuffer( size_t frame_size, uint16_t first_seq_num, uint16_t last_seq_num) { size_t index = first_seq_num % buffer_.size(); size_t end = (last_seq_num + 1) % buffer_.size(); auto buffer = EncodedImageBuffer::Create(frame_size); size_t offset = 0; do { RTC_DCHECK(buffer_[index].used); size_t length = buffer_[index].data.sizeBytes; RTC_CHECK_LE(offset + length, buffer->size()); memcpy(buffer->data() + offset, buffer_[index].data.dataPtr, length); offset += length; index = (index + 1) % buffer_.size(); } while (index != end); return buffer; } VCMPacket* PacketBuffer::GetPacket(uint16_t seq_num) { StoredPacket& entry = buffer_[seq_num % buffer_.size()]; if (!entry.used || seq_num != entry.seq_num()) { return nullptr; } return &entry.data; } void PacketBuffer::UpdateMissingPackets(uint16_t seq_num) { if (!newest_inserted_seq_num_) newest_inserted_seq_num_ = seq_num; const int kMaxPaddingAge = 1000; if (AheadOf(seq_num, *newest_inserted_seq_num_)) { uint16_t old_seq_num = seq_num - kMaxPaddingAge; auto erase_to = missing_packets_.lower_bound(old_seq_num); missing_packets_.erase(missing_packets_.begin(), erase_to); // Guard against inserting a large amount of missing packets if there is a // jump in the sequence number. if (AheadOf(old_seq_num, *newest_inserted_seq_num_)) *newest_inserted_seq_num_ = old_seq_num; ++*newest_inserted_seq_num_; while (AheadOf(seq_num, *newest_inserted_seq_num_)) { missing_packets_.insert(*newest_inserted_seq_num_); ++*newest_inserted_seq_num_; } } else { missing_packets_.erase(seq_num); } } void PacketBuffer::OnTimestampReceived(uint32_t rtp_timestamp) { const size_t kMaxTimestampsHistory = 1000; if (rtp_timestamps_history_set_.insert(rtp_timestamp).second) { rtp_timestamps_history_queue_.push(rtp_timestamp); ++unique_frames_seen_; if (rtp_timestamps_history_set_.size() > kMaxTimestampsHistory) { uint32_t discarded_timestamp = rtp_timestamps_history_queue_.front(); rtp_timestamps_history_set_.erase(discarded_timestamp); rtp_timestamps_history_queue_.pop(); } } } } // namespace video_coding } // namespace webrtc