/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_format_h264.h" #include #include #include "api/array_view.h" #include "common_video/h264/h264_common.h" #include "modules/include/module_common_types.h" #include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h" #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { namespace { using ::testing::Each; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::SizeIs; constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr; constexpr size_t kMaxPayloadSize = 1200; constexpr size_t kLengthFieldLength = 2; constexpr RtpPacketizer::PayloadSizeLimits kNoLimits; enum Nalu { kSlice = 1, kIdr = 5, kSei = 6, kSps = 7, kPps = 8, kStapA = 24, kFuA = 28 }; static const size_t kNalHeaderSize = 1; static const size_t kFuAHeaderSize = 2; // Bit masks for FU (A and B) indicators. enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; // Bit masks for FU (A and B) headers. enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; RTPFragmentationHeader CreateFragmentation(rtc::ArrayView sizes) { RTPFragmentationHeader fragmentation; fragmentation.VerifyAndAllocateFragmentationHeader(sizes.size()); size_t offset = 0; for (size_t i = 0; i < sizes.size(); ++i) { fragmentation.fragmentationOffset[i] = offset; fragmentation.fragmentationLength[i] = sizes[i]; offset += sizes[i]; } return fragmentation; } // Create fragmentation with single fragment of same size as |frame| RTPFragmentationHeader NoFragmentation(rtc::ArrayView frame) { size_t frame_size[] = {frame.size()}; return CreateFragmentation(frame_size); } // Create frame of given size. rtc::Buffer CreateFrame(size_t frame_size) { rtc::Buffer frame(frame_size); // Set some valid header. frame[0] = 0x01; // Generate payload to detect when shifted payload was put into a packet. for (size_t i = 1; i < frame_size; ++i) frame[i] = static_cast(i); return frame; } // Create frame with size deduced from fragmentation. rtc::Buffer CreateFrame(const RTPFragmentationHeader& fragmentation) { size_t last_frame_index = fragmentation.fragmentationVectorSize - 1; size_t frame_size = fragmentation.fragmentationOffset[last_frame_index] + fragmentation.fragmentationLength[last_frame_index]; rtc::Buffer frame = CreateFrame(frame_size); // Set some headers. // Tests can expect those are valid but shouln't rely on actual values. for (size_t i = 0; i <= last_frame_index; ++i) { frame[fragmentation.fragmentationOffset[i]] = i + 1; } return frame; } std::vector FetchAllPackets(RtpPacketizerH264* packetizer) { std::vector result; size_t num_packets = packetizer->NumPackets(); result.reserve(num_packets); RtpPacketToSend packet(kNoExtensions); while (packetizer->NextPacket(&packet)) { result.push_back(packet); } EXPECT_THAT(result, SizeIs(num_packets)); return result; } // Tests that should work with both packetization mode 0 and // packetization mode 1. class RtpPacketizerH264ModeTest : public ::testing::TestWithParam {}; TEST_P(RtpPacketizerH264ModeTest, SingleNalu) { const uint8_t frame[2] = {kIdr, 0xFF}; RtpPacketizerH264 packetizer(frame, kNoLimits, GetParam(), NoFragmentation(frame)); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(1)); EXPECT_THAT(packets[0].payload(), ElementsAreArray(frame)); } TEST_P(RtpPacketizerH264ModeTest, SingleNaluTwoPackets) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = kMaxPayloadSize; const size_t fragment_sizes[] = {kMaxPayloadSize, 100}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragment_sizes); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(2)); EXPECT_THAT(packets[0].payload(), ElementsAreArray(frame.data(), kMaxPayloadSize)); EXPECT_THAT(packets[1].payload(), ElementsAreArray(frame.data() + kMaxPayloadSize, 100)); } TEST_P(RtpPacketizerH264ModeTest, SingleNaluFirstPacketReductionAppliesOnlyToFirstFragment) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 200; limits.first_packet_reduction_len = 5; const size_t fragments[] = {195, 200, 200}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(3)); const uint8_t* next_fragment = frame.data(); EXPECT_THAT(packets[0].payload(), ElementsAreArray(next_fragment, 195)); next_fragment += 195; EXPECT_THAT(packets[1].payload(), ElementsAreArray(next_fragment, 200)); next_fragment += 200; EXPECT_THAT(packets[2].payload(), ElementsAreArray(next_fragment, 200)); } TEST_P(RtpPacketizerH264ModeTest, SingleNaluLastPacketReductionAppliesOnlyToLastFragment) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 200; limits.last_packet_reduction_len = 5; const size_t fragments[] = {200, 200, 195}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(3)); const uint8_t* next_fragment = frame.data(); EXPECT_THAT(packets[0].payload(), ElementsAreArray(next_fragment, 200)); next_fragment += 200; EXPECT_THAT(packets[1].payload(), ElementsAreArray(next_fragment, 200)); next_fragment += 200; EXPECT_THAT(packets[2].payload(), ElementsAreArray(next_fragment, 195)); } TEST_P(RtpPacketizerH264ModeTest, SingleNaluFirstAndLastPacketReductionSumsForSinglePacket) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 200; limits.first_packet_reduction_len = 20; limits.last_packet_reduction_len = 30; rtc::Buffer frame = CreateFrame(150); RtpPacketizerH264 packetizer(frame, limits, GetParam(), NoFragmentation(frame)); std::vector packets = FetchAllPackets(&packetizer); EXPECT_THAT(packets, SizeIs(1)); } INSTANTIATE_TEST_SUITE_P( PacketMode, RtpPacketizerH264ModeTest, ::testing::Values(H264PacketizationMode::SingleNalUnit, H264PacketizationMode::NonInterleaved)); // Aggregation tests. TEST(RtpPacketizerH264Test, StapA) { size_t fragments[] = {2, 2, 0x123}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, kNoLimits, H264PacketizationMode::NonInterleaved, fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(1)); auto payload = packets[0].payload(); EXPECT_EQ(payload.size(), kNalHeaderSize + 3 * kLengthFieldLength + frame.size()); EXPECT_EQ(payload[0], kStapA); payload = payload.subview(kNalHeaderSize); // 1st fragment. EXPECT_THAT(payload.subview(0, kLengthFieldLength), ElementsAre(0, 2)); // Size. EXPECT_THAT(payload.subview(kLengthFieldLength, 2), ElementsAreArray(frame.data(), 2)); payload = payload.subview(kLengthFieldLength + 2); // 2nd fragment. EXPECT_THAT(payload.subview(0, kLengthFieldLength), ElementsAre(0, 2)); // Size. EXPECT_THAT(payload.subview(kLengthFieldLength, 2), ElementsAreArray(frame.data() + 2, 2)); payload = payload.subview(kLengthFieldLength + 2); // 3rd fragment. EXPECT_THAT(payload.subview(0, kLengthFieldLength), ElementsAre(0x1, 0x23)); // Size. EXPECT_THAT(payload.subview(kLengthFieldLength), ElementsAreArray(frame.data() + 4, 0x123)); } TEST(RtpPacketizerH264Test, SingleNalUnitModeHasNoStapA) { // This is the same setup as for the StapA test. size_t fragments[] = {2, 2, 0x123}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, kNoLimits, H264PacketizationMode::SingleNalUnit, fragmentation); std::vector packets = FetchAllPackets(&packetizer); // The three fragments should be returned as three packets. ASSERT_THAT(packets, SizeIs(3)); EXPECT_EQ(packets[0].payload_size(), 2u); EXPECT_EQ(packets[1].payload_size(), 2u); EXPECT_EQ(packets[2].payload_size(), 0x123u); } TEST(RtpPacketizerH264Test, StapARespectsFirstPacketReduction) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1000; limits.first_packet_reduction_len = 100; const size_t kFirstFragmentSize = limits.max_payload_len - limits.first_packet_reduction_len; size_t fragments[] = {kFirstFragmentSize, 2, 2}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(2)); // Expect 1st packet is single nalu. EXPECT_THAT(packets[0].payload(), ElementsAreArray(frame.data(), kFirstFragmentSize)); // Expect 2nd packet is aggregate of last two fragments. const uint8_t* tail = frame.data() + kFirstFragmentSize; EXPECT_THAT(packets[1].payload(), ElementsAre(kStapA, // 0, 2, tail[0], tail[1], // 0, 2, tail[2], tail[3])); } TEST(RtpPacketizerH264Test, StapARespectsLastPacketReduction) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1000; limits.last_packet_reduction_len = 100; const size_t kLastFragmentSize = limits.max_payload_len - limits.last_packet_reduction_len; size_t fragments[] = {2, 2, kLastFragmentSize}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(2)); // Expect 1st packet is aggregate of 1st two fragments. EXPECT_THAT(packets[0].payload(), ElementsAre(kStapA, // 0, 2, frame[0], frame[1], // 0, 2, frame[2], frame[3])); // Expect 2nd packet is single nalu. EXPECT_THAT(packets[1].payload(), ElementsAreArray(frame.data() + 4, kLastFragmentSize)); } TEST(RtpPacketizerH264Test, TooSmallForStapAHeaders) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1000; const size_t kLastFragmentSize = limits.max_payload_len - 3 * kLengthFieldLength - 4; size_t fragments[] = {2, 2, kLastFragmentSize}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(2)); // Expect 1st packet is aggregate of 1st two fragments. EXPECT_THAT(packets[0].payload(), ElementsAre(kStapA, // 0, 2, frame[0], frame[1], // 0, 2, frame[2], frame[3])); // Expect 2nd packet is single nalu. EXPECT_THAT(packets[1].payload(), ElementsAreArray(frame.data() + 4, kLastFragmentSize)); } // Fragmentation + aggregation. TEST(RtpPacketizerH264Test, MixedStapAFUA) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 100; const size_t kFuaPayloadSize = 70; const size_t kFuaNaluSize = kNalHeaderSize + 2 * kFuaPayloadSize; const size_t kStapANaluSize = 20; size_t fragments[] = {kFuaNaluSize, kStapANaluSize, kStapANaluSize}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); std::vector packets = FetchAllPackets(&packetizer); ASSERT_THAT(packets, SizeIs(3)); const uint8_t* next_fragment = frame.data() + kNalHeaderSize; // First expect two FU-A packets. EXPECT_THAT(packets[0].payload().subview(0, kFuAHeaderSize), ElementsAre(kFuA, FuDefs::kSBit | frame[0])); EXPECT_THAT(packets[0].payload().subview(kFuAHeaderSize), ElementsAreArray(next_fragment, kFuaPayloadSize)); next_fragment += kFuaPayloadSize; EXPECT_THAT(packets[1].payload().subview(0, kFuAHeaderSize), ElementsAre(kFuA, FuDefs::kEBit | frame[0])); EXPECT_THAT(packets[1].payload().subview(kFuAHeaderSize), ElementsAreArray(next_fragment, kFuaPayloadSize)); next_fragment += kFuaPayloadSize; // Then expect one STAP-A packet with two nal units. EXPECT_THAT(packets[2].payload()[0], kStapA); auto payload = packets[2].payload().subview(kNalHeaderSize); EXPECT_THAT(payload.subview(0, kLengthFieldLength), ElementsAre(0, kStapANaluSize)); EXPECT_THAT(payload.subview(kLengthFieldLength, kStapANaluSize), ElementsAreArray(next_fragment, kStapANaluSize)); payload = payload.subview(kLengthFieldLength + kStapANaluSize); next_fragment += kStapANaluSize; EXPECT_THAT(payload.subview(0, kLengthFieldLength), ElementsAre(0, kStapANaluSize)); EXPECT_THAT(payload.subview(kLengthFieldLength), ElementsAreArray(next_fragment, kStapANaluSize)); } TEST(RtpPacketizerH264Test, LastFragmentFitsInSingleButNotLastPacket) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1178; limits.first_packet_reduction_len = 0; limits.last_packet_reduction_len = 20; limits.single_packet_reduction_len = 20; // Actual sizes, which triggered this bug. size_t fragments[] = {20, 8, 18, 1161}; RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); rtc::Buffer frame = CreateFrame(fragmentation); RtpPacketizerH264 packetizer( frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); std::vector packets = FetchAllPackets(&packetizer); // Last packet has to be of correct size. // Incorrect implementation might miss this constraint and not split the last // fragment in two packets. EXPECT_LE(static_cast(packets.back().payload_size()), limits.max_payload_len - limits.last_packet_reduction_len); } // Splits frame with payload size |frame_payload_size| without fragmentation, // Returns sizes of the payloads excluding fua headers. std::vector TestFua(size_t frame_payload_size, const RtpPacketizer::PayloadSizeLimits& limits) { rtc::Buffer frame = CreateFrame(kNalHeaderSize + frame_payload_size); RtpPacketizerH264 packetizer(frame, limits, H264PacketizationMode::NonInterleaved, NoFragmentation(frame)); std::vector packets = FetchAllPackets(&packetizer); EXPECT_GE(packets.size(), 2u); // Single packet indicates it is not FuA. std::vector fua_header; std::vector payload_sizes; for (const RtpPacketToSend& packet : packets) { auto payload = packet.payload(); EXPECT_GT(payload.size(), kFuAHeaderSize); fua_header.push_back((payload[0] << 8) | payload[1]); payload_sizes.push_back(payload.size() - kFuAHeaderSize); } EXPECT_TRUE(fua_header.front() & FuDefs::kSBit); EXPECT_TRUE(fua_header.back() & FuDefs::kEBit); // Clear S and E bits before testing all are duplicating same original header. fua_header.front() &= ~FuDefs::kSBit; fua_header.back() &= ~FuDefs::kEBit; EXPECT_THAT(fua_header, Each(Eq((kFuA << 8) | frame[0]))); return payload_sizes; } // Fragmentation tests. TEST(RtpPacketizerH264Test, FUAOddSize) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1200; EXPECT_THAT(TestFua(1200, limits), ElementsAre(600, 600)); } TEST(RtpPacketizerH264Test, FUAWithFirstPacketReduction) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1200; limits.first_packet_reduction_len = 4; limits.single_packet_reduction_len = 4; EXPECT_THAT(TestFua(1198, limits), ElementsAre(597, 601)); } TEST(RtpPacketizerH264Test, FUAWithLastPacketReduction) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1200; limits.last_packet_reduction_len = 4; limits.single_packet_reduction_len = 4; EXPECT_THAT(TestFua(1198, limits), ElementsAre(601, 597)); } TEST(RtpPacketizerH264Test, FUAWithSinglePacketReduction) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1199; limits.single_packet_reduction_len = 200; EXPECT_THAT(TestFua(1000, limits), ElementsAre(500, 500)); } TEST(RtpPacketizerH264Test, FUAEvenSize) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1200; EXPECT_THAT(TestFua(1201, limits), ElementsAre(600, 601)); } TEST(RtpPacketizerH264Test, FUARounding) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1448; EXPECT_THAT(TestFua(10123, limits), ElementsAre(1265, 1265, 1265, 1265, 1265, 1266, 1266, 1266)); } TEST(RtpPacketizerH264Test, FUABig) { RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = 1200; // Generate 10 full sized packets, leave room for FU-A headers. EXPECT_THAT( TestFua(10 * (1200 - kFuAHeaderSize), limits), ElementsAre(1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198)); } TEST(RtpPacketizerH264Test, RejectsOverlongDataInPacketizationMode0) { RtpPacketizer::PayloadSizeLimits limits; rtc::Buffer frame = CreateFrame(kMaxPayloadSize + 1); RTPFragmentationHeader fragmentation = NoFragmentation(frame); RtpPacketizerH264 packetizer( frame, limits, H264PacketizationMode::SingleNalUnit, fragmentation); std::vector packets = FetchAllPackets(&packetizer); EXPECT_THAT(packets, IsEmpty()); } } // namespace } // namespace webrtc