/* * Copyright 2018 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_queue.h" #include #include #include #include #include #include #include #include "rtc_base/checks.h" #include "rtc_base/critical_section.h" #include "rtc_base/event.h" #include "rtc_base/logging.h" #include "rtc_base/platform_thread.h" #include "rtc_base/ref_count.h" #include "rtc_base/ref_counted_object.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/time_utils.h" namespace rtc { namespace { using Priority = TaskQueue::Priority; ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { switch (priority) { case Priority::HIGH: return kRealtimePriority; case Priority::LOW: return kLowPriority; case Priority::NORMAL: return kNormalPriority; default: RTC_NOTREACHED(); return kNormalPriority; } return kNormalPriority; } } // namespace class TaskQueue::Impl : public RefCountInterface { public: Impl(const char* queue_name, TaskQueue* queue, Priority priority); ~Impl() override; static TaskQueue::Impl* Current(); static TaskQueue* CurrentQueue(); // Used for DCHECKing the current queue. bool IsCurrent() const; template >::value>::type* = nullptr> void PostTask(Closure&& closure) { PostTask(NewClosure(std::forward(closure))); } void PostTask(std::unique_ptr task); void PostTaskAndReply(std::unique_ptr task, std::unique_ptr reply, TaskQueue::Impl* reply_queue); void PostDelayedTask(std::unique_ptr task, uint32_t milliseconds); class WorkerThread : public PlatformThread { public: WorkerThread(ThreadRunFunction func, void* obj, const char* thread_name, ThreadPriority priority) : PlatformThread(func, obj, thread_name, priority) {} }; using OrderId = uint64_t; struct DelayedEntryTimeout { int64_t next_fire_at_ms_{}; OrderId order_{}; bool operator<(const DelayedEntryTimeout& o) const { return std::tie(next_fire_at_ms_, order_) < std::tie(o.next_fire_at_ms_, o.order_); } }; struct NextTask { bool final_task_{false}; std::unique_ptr run_task_; int64_t sleep_time_ms_{}; }; protected: NextTask GetNextTask(); private: // The ThreadQueue::Current() method requires that the current thread // returns the task queue if the current thread is the active task // queue and this variable holds the value needed in thread_local to // on the initialized worker thread holding the queue. static thread_local TaskQueue::Impl* thread_context_; static void ThreadMain(void* context); void ProcessTasks(); void NotifyWake(); // The back pointer from the owner task queue object // from this implementation detail. TaskQueue* const queue_; // Indicates if the thread has started. Event started_; // Indicates if the thread has stopped. Event stopped_; // Signaled whenever a new task is pending. Event flag_notify_; // Contains the active worker thread assigned to processing // tasks (including delayed tasks). WorkerThread thread_; rtc::CriticalSection pending_lock_; // Indicates if the worker thread needs to shutdown now. bool thread_should_quit_ RTC_GUARDED_BY(pending_lock_){false}; // Holds the next order to use for the next task to be // put into one of the pending queues. OrderId thread_posting_order_ RTC_GUARDED_BY(pending_lock_){}; // The list of all pending tasks that need to be processed in the // FIFO queue ordering on the worker thread. std::queue>> pending_queue_ RTC_GUARDED_BY(pending_lock_); // The list of all pending tasks that need to be processed at a future // time based upon a delay. On the off change the delayed task should // happen at exactly the same time interval as another task then the // task is processed based on FIFO ordering. std::priority_queue was // considered but rejected due to its inability to extract the // std::unique_ptr out of the queue without the presence of a hack. std::map> delayed_queue_ RTC_GUARDED_BY(pending_lock_); }; // static thread_local TaskQueue::Impl* TaskQueue::Impl::thread_context_ = nullptr; TaskQueue::Impl::Impl(const char* queue_name, TaskQueue* queue, Priority priority) : queue_(queue), started_(/*manual_reset=*/false, /*initially_signaled=*/false), stopped_(/*manual_reset=*/false, /*initially_signaled=*/false), flag_notify_(/*manual_reset=*/false, /*initially_signaled=*/false), thread_(&TaskQueue::Impl::ThreadMain, this, queue_name, TaskQueuePriorityToThreadPriority(priority)) { RTC_DCHECK(queue_name); thread_.Start(); started_.Wait(Event::kForever); } TaskQueue::Impl::~Impl() { RTC_DCHECK(!IsCurrent()); { CritScope lock(&pending_lock_); thread_should_quit_ = true; } NotifyWake(); stopped_.Wait(Event::kForever); thread_.Stop(); } // static TaskQueue::Impl* TaskQueue::Impl::Current() { return thread_context_; } // static TaskQueue* TaskQueue::Impl::CurrentQueue() { TaskQueue::Impl* current = Current(); return current ? current->queue_ : nullptr; } bool TaskQueue::Impl::IsCurrent() const { return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); } void TaskQueue::Impl::PostTask(std::unique_ptr task) { { CritScope lock(&pending_lock_); OrderId order = thread_posting_order_++; pending_queue_.push(std::pair>( order, std::move(task))); } NotifyWake(); } void TaskQueue::Impl::PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) { auto fire_at = rtc::TimeMillis() + milliseconds; DelayedEntryTimeout delay; delay.next_fire_at_ms_ = fire_at; { CritScope lock(&pending_lock_); delay.order_ = ++thread_posting_order_; delayed_queue_[delay] = std::move(task); } NotifyWake(); } void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr task, std::unique_ptr reply, TaskQueue::Impl* reply_queue) { QueuedTask* task_ptr = task.release(); QueuedTask* reply_task_ptr = reply.release(); PostTask([task_ptr, reply_task_ptr, reply_queue]() { if (task_ptr->Run()) delete task_ptr; reply_queue->PostTask(std::unique_ptr(reply_task_ptr)); }); } TaskQueue::Impl::NextTask TaskQueue::Impl::GetNextTask() { NextTask result{}; auto tick = rtc::TimeMillis(); CritScope lock(&pending_lock_); if (thread_should_quit_) { result.final_task_ = true; return result; } if (delayed_queue_.size() > 0) { auto delayed_entry = delayed_queue_.begin(); const auto& delay_info = delayed_entry->first; auto& delay_run = delayed_entry->second; if (tick >= delay_info.next_fire_at_ms_) { if (pending_queue_.size() > 0) { auto& entry = pending_queue_.front(); auto& entry_order = entry.first; auto& entry_run = entry.second; if (entry_order < delay_info.order_) { result.run_task_ = std::move(entry_run); pending_queue_.pop(); return result; } } result.run_task_ = std::move(delay_run); delayed_queue_.erase(delayed_entry); return result; } result.sleep_time_ms_ = delay_info.next_fire_at_ms_ - tick; } if (pending_queue_.size() > 0) { auto& entry = pending_queue_.front(); result.run_task_ = std::move(entry.second); pending_queue_.pop(); } return result; } // static void TaskQueue::Impl::ThreadMain(void* context) { TaskQueue::Impl* me = static_cast(context); me->ProcessTasks(); } void TaskQueue::Impl::ProcessTasks() { thread_context_ = this; started_.Set(); while (true) { auto task = GetNextTask(); if (task.final_task_) break; if (task.run_task_) { // process entry immediately then try again QueuedTask* release_ptr = task.run_task_.release(); if (release_ptr->Run()) delete release_ptr; // attempt to sleep again continue; } if (0 == task.sleep_time_ms_) flag_notify_.Wait(Event::kForever); else flag_notify_.Wait(task.sleep_time_ms_); } stopped_.Set(); } void TaskQueue::Impl::NotifyWake() { // The queue holds pending tasks to complete. Either tasks are to be // executed immediately or tasks are to be run at some future delayed time. // For immediate tasks the task queue's thread is busy running the task and // the thread will not be waiting on the flag_notify_ event. If no immediate // tasks are available but a delayed task is pending then the thread will be // waiting on flag_notify_ with a delayed time-out of the nearest timed task // to run. If no immediate or pending tasks are available, the thread will // wait on flag_notify_ until signaled that a task has been added (or the // thread to be told to shutdown). // In all cases, when a new immediate task, delayed task, or request to // shutdown the thread is added the flag_notify_ is signaled after. If the // thread was waiting then the thread will wake up immediately and re-assess // what task needs to be run next (i.e. run a task now, wait for the nearest // timed delayed task, or shutdown the thread). If the thread was not waiting // then the thread will remained signaled to wake up the next time any // attempt to wait on the flag_notify_ event occurs. // Any immediate or delayed pending task (or request to shutdown the thread) // must always be added to the queue prior to signaling flag_notify_ to wake // up the possibly sleeping thread. This prevents a race condition where the // thread is notified to wake up but the task queue's thread finds nothing to // do so it waits once again to be signaled where such a signal may never // happen. flag_notify_.Set(); } // Boilerplate for the PIMPL pattern. TaskQueue::TaskQueue(const char* queue_name, Priority priority) : impl_(new RefCountedObject(queue_name, this, priority)) { } TaskQueue::~TaskQueue() {} // static TaskQueue* TaskQueue::Current() { return TaskQueue::Impl::CurrentQueue(); } // Used for DCHECKing the current queue. bool TaskQueue::IsCurrent() const { return impl_->IsCurrent(); } void TaskQueue::PostTask(std::unique_ptr task) { return TaskQueue::impl_->PostTask(std::move(task)); } void TaskQueue::PostTaskAndReply(std::unique_ptr task, std::unique_ptr reply, TaskQueue* reply_queue) { return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply), reply_queue->impl_.get()); } void TaskQueue::PostTaskAndReply(std::unique_ptr task, std::unique_ptr reply) { return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply), impl_.get()); } void TaskQueue::PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) { return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds); } } // namespace rtc