/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_rtcp_impl2.h" #include #include #include #include #include #include #include #include "api/transport/field_trial_based_config.h" #include "modules/rtp_rtcp/source/rtcp_packet/dlrr.h" #include "modules/rtp_rtcp/source/rtp_rtcp_config.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/ntp_time.h" #ifdef _WIN32 // Disable warning C4355: 'this' : used in base member initializer list. #pragma warning(disable : 4355) #endif namespace webrtc { namespace { const int64_t kRtpRtcpMaxIdleTimeProcessMs = 5; const int64_t kDefaultExpectedRetransmissionTimeMs = 125; constexpr TimeDelta kRttUpdateInterval = TimeDelta::Millis(1000); } // namespace ModuleRtpRtcpImpl2::RtpSenderContext::RtpSenderContext( const RtpRtcpInterface::Configuration& config) : packet_history(config.clock, config.enable_rtx_padding_prioritization), packet_sender(config, &packet_history), non_paced_sender(&packet_sender, this), packet_generator( config, &packet_history, config.paced_sender ? config.paced_sender : &non_paced_sender) {} void ModuleRtpRtcpImpl2::RtpSenderContext::AssignSequenceNumber( RtpPacketToSend* packet) { packet_generator.AssignSequenceNumber(packet); } ModuleRtpRtcpImpl2::ModuleRtpRtcpImpl2(const Configuration& configuration) : worker_queue_(TaskQueueBase::Current()), rtcp_sender_(configuration), rtcp_receiver_(configuration, this), clock_(configuration.clock), last_rtt_process_time_(clock_->TimeInMilliseconds()), next_process_time_(clock_->TimeInMilliseconds() + kRtpRtcpMaxIdleTimeProcessMs), packet_overhead_(28), // IPV4 UDP. nack_last_time_sent_full_ms_(0), nack_last_seq_number_sent_(0), remote_bitrate_(configuration.remote_bitrate_estimator), rtt_stats_(configuration.rtt_stats), rtt_ms_(0) { RTC_DCHECK(worker_queue_); process_thread_checker_.Detach(); if (!configuration.receiver_only) { rtp_sender_ = std::make_unique(configuration); // Make sure rtcp sender use same timestamp offset as rtp sender. rtcp_sender_.SetTimestampOffset( rtp_sender_->packet_generator.TimestampOffset()); } // Set default packet size limit. // TODO(nisse): Kind-of duplicates // webrtc::VideoSendStream::Config::Rtp::kDefaultMaxPacketSize. const size_t kTcpOverIpv4HeaderSize = 40; SetMaxRtpPacketSize(IP_PACKET_SIZE - kTcpOverIpv4HeaderSize); if (rtt_stats_) { rtt_update_task_ = RepeatingTaskHandle::DelayedStart( worker_queue_, kRttUpdateInterval, [this]() { PeriodicUpdate(); return kRttUpdateInterval; }); } } ModuleRtpRtcpImpl2::~ModuleRtpRtcpImpl2() { RTC_DCHECK_RUN_ON(worker_queue_); rtt_update_task_.Stop(); } // static std::unique_ptr ModuleRtpRtcpImpl2::Create( const Configuration& configuration) { RTC_DCHECK(configuration.clock); RTC_DCHECK(TaskQueueBase::Current()); return std::make_unique(configuration); } // Returns the number of milliseconds until the module want a worker thread // to call Process. int64_t ModuleRtpRtcpImpl2::TimeUntilNextProcess() { RTC_DCHECK_RUN_ON(&process_thread_checker_); return std::max(0, next_process_time_ - clock_->TimeInMilliseconds()); } // Process any pending tasks such as timeouts (non time critical events). void ModuleRtpRtcpImpl2::Process() { RTC_DCHECK_RUN_ON(&process_thread_checker_); const Timestamp now = clock_->CurrentTime(); // TODO(bugs.webrtc.org/11581): Figure out why we need to call Process() 200 // times a second. next_process_time_ = now.ms() + kRtpRtcpMaxIdleTimeProcessMs; // TODO(bugs.webrtc.org/11581): once we don't use Process() to trigger // calls to SendRTCP(), the only remaining timer will require remote_bitrate_ // to be not null. In that case, we can disable the timer when it is null. if (remote_bitrate_ && rtcp_sender_.Sending() && rtcp_sender_.TMMBR()) { unsigned int target_bitrate = 0; std::vector ssrcs; if (remote_bitrate_->LatestEstimate(&ssrcs, &target_bitrate)) { if (!ssrcs.empty()) { target_bitrate = target_bitrate / ssrcs.size(); } rtcp_sender_.SetTargetBitrate(target_bitrate); } } // TODO(bugs.webrtc.org/11581): Run this on a separate set of delayed tasks // based off of next_time_to_send_rtcp_ in RTCPSender. if (rtcp_sender_.TimeToSendRTCPReport()) rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport); } void ModuleRtpRtcpImpl2::SetRtxSendStatus(int mode) { rtp_sender_->packet_generator.SetRtxStatus(mode); } int ModuleRtpRtcpImpl2::RtxSendStatus() const { return rtp_sender_ ? rtp_sender_->packet_generator.RtxStatus() : kRtxOff; } void ModuleRtpRtcpImpl2::SetRtxSendPayloadType(int payload_type, int associated_payload_type) { rtp_sender_->packet_generator.SetRtxPayloadType(payload_type, associated_payload_type); } absl::optional ModuleRtpRtcpImpl2::RtxSsrc() const { return rtp_sender_ ? rtp_sender_->packet_generator.RtxSsrc() : absl::nullopt; } absl::optional ModuleRtpRtcpImpl2::FlexfecSsrc() const { if (rtp_sender_) { return rtp_sender_->packet_generator.FlexfecSsrc(); } return absl::nullopt; } void ModuleRtpRtcpImpl2::IncomingRtcpPacket(const uint8_t* rtcp_packet, const size_t length) { rtcp_receiver_.IncomingPacket(rtcp_packet, length); } void ModuleRtpRtcpImpl2::RegisterSendPayloadFrequency(int payload_type, int payload_frequency) { rtcp_sender_.SetRtpClockRate(payload_type, payload_frequency); } int32_t ModuleRtpRtcpImpl2::DeRegisterSendPayload(const int8_t payload_type) { return 0; } uint32_t ModuleRtpRtcpImpl2::StartTimestamp() const { return rtp_sender_->packet_generator.TimestampOffset(); } // Configure start timestamp, default is a random number. void ModuleRtpRtcpImpl2::SetStartTimestamp(const uint32_t timestamp) { rtcp_sender_.SetTimestampOffset(timestamp); rtp_sender_->packet_generator.SetTimestampOffset(timestamp); rtp_sender_->packet_sender.SetTimestampOffset(timestamp); } uint16_t ModuleRtpRtcpImpl2::SequenceNumber() const { return rtp_sender_->packet_generator.SequenceNumber(); } // Set SequenceNumber, default is a random number. void ModuleRtpRtcpImpl2::SetSequenceNumber(const uint16_t seq_num) { rtp_sender_->packet_generator.SetSequenceNumber(seq_num); } void ModuleRtpRtcpImpl2::SetRtpState(const RtpState& rtp_state) { rtp_sender_->packet_generator.SetRtpState(rtp_state); rtcp_sender_.SetTimestampOffset(rtp_state.start_timestamp); } void ModuleRtpRtcpImpl2::SetRtxState(const RtpState& rtp_state) { rtp_sender_->packet_generator.SetRtxRtpState(rtp_state); } RtpState ModuleRtpRtcpImpl2::GetRtpState() const { RtpState state = rtp_sender_->packet_generator.GetRtpState(); return state; } RtpState ModuleRtpRtcpImpl2::GetRtxState() const { return rtp_sender_->packet_generator.GetRtxRtpState(); } void ModuleRtpRtcpImpl2::SetRid(const std::string& rid) { if (rtp_sender_) { rtp_sender_->packet_generator.SetRid(rid); } } void ModuleRtpRtcpImpl2::SetMid(const std::string& mid) { if (rtp_sender_) { rtp_sender_->packet_generator.SetMid(mid); } // TODO(bugs.webrtc.org/4050): If we end up supporting the MID SDES item for // RTCP, this will need to be passed down to the RTCPSender also. } void ModuleRtpRtcpImpl2::SetCsrcs(const std::vector& csrcs) { rtcp_sender_.SetCsrcs(csrcs); rtp_sender_->packet_generator.SetCsrcs(csrcs); } // TODO(pbos): Handle media and RTX streams separately (separate RTCP // feedbacks). RTCPSender::FeedbackState ModuleRtpRtcpImpl2::GetFeedbackState() { // TODO(bugs.webrtc.org/11581): Called by potentially multiple threads. // Mostly "Send*" methods. Make sure it's only called on the // construction thread. RTCPSender::FeedbackState state; // This is called also when receiver_only is true. Hence below // checks that rtp_sender_ exists. if (rtp_sender_) { StreamDataCounters rtp_stats; StreamDataCounters rtx_stats; rtp_sender_->packet_sender.GetDataCounters(&rtp_stats, &rtx_stats); state.packets_sent = rtp_stats.transmitted.packets + rtx_stats.transmitted.packets; state.media_bytes_sent = rtp_stats.transmitted.payload_bytes + rtx_stats.transmitted.payload_bytes; state.send_bitrate = rtp_sender_->packet_sender.GetSendRates().Sum().bps(); } state.receiver = &rtcp_receiver_; uint32_t received_ntp_secs = 0; uint32_t received_ntp_frac = 0; state.remote_sr = 0; if (rtcp_receiver_.NTP(&received_ntp_secs, &received_ntp_frac, /*rtcp_arrival_time_secs=*/&state.last_rr_ntp_secs, /*rtcp_arrival_time_frac=*/&state.last_rr_ntp_frac, /*rtcp_timestamp=*/nullptr, /*remote_sender_packet_count=*/nullptr, /*remote_sender_octet_count=*/nullptr, /*remote_sender_reports_count=*/nullptr)) { state.remote_sr = ((received_ntp_secs & 0x0000ffff) << 16) + ((received_ntp_frac & 0xffff0000) >> 16); } state.last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); return state; } // TODO(nisse): This method shouldn't be called for a receive-only // stream. Delete rtp_sender_ check as soon as all applications are // updated. int32_t ModuleRtpRtcpImpl2::SetSendingStatus(const bool sending) { if (rtcp_sender_.Sending() != sending) { // Sends RTCP BYE when going from true to false rtcp_sender_.SetSendingStatus(GetFeedbackState(), sending); } return 0; } bool ModuleRtpRtcpImpl2::Sending() const { return rtcp_sender_.Sending(); } // TODO(nisse): This method shouldn't be called for a receive-only // stream. Delete rtp_sender_ check as soon as all applications are // updated. void ModuleRtpRtcpImpl2::SetSendingMediaStatus(const bool sending) { if (rtp_sender_) { rtp_sender_->packet_generator.SetSendingMediaStatus(sending); } else { RTC_DCHECK(!sending); } } bool ModuleRtpRtcpImpl2::SendingMedia() const { return rtp_sender_ ? rtp_sender_->packet_generator.SendingMedia() : false; } bool ModuleRtpRtcpImpl2::IsAudioConfigured() const { return rtp_sender_ ? rtp_sender_->packet_generator.IsAudioConfigured() : false; } void ModuleRtpRtcpImpl2::SetAsPartOfAllocation(bool part_of_allocation) { RTC_CHECK(rtp_sender_); rtp_sender_->packet_sender.ForceIncludeSendPacketsInAllocation( part_of_allocation); } bool ModuleRtpRtcpImpl2::OnSendingRtpFrame(uint32_t timestamp, int64_t capture_time_ms, int payload_type, bool force_sender_report) { if (!Sending()) return false; rtcp_sender_.SetLastRtpTime(timestamp, capture_time_ms, payload_type); // Make sure an RTCP report isn't queued behind a key frame. if (rtcp_sender_.TimeToSendRTCPReport(force_sender_report)) rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport); return true; } bool ModuleRtpRtcpImpl2::TrySendPacket(RtpPacketToSend* packet, const PacedPacketInfo& pacing_info) { RTC_DCHECK(rtp_sender_); // TODO(sprang): Consider if we can remove this check. if (!rtp_sender_->packet_generator.SendingMedia()) { return false; } rtp_sender_->packet_sender.SendPacket(packet, pacing_info); return true; } void ModuleRtpRtcpImpl2::SetFecProtectionParams( const FecProtectionParams& delta_params, const FecProtectionParams& key_params) { RTC_DCHECK(rtp_sender_); rtp_sender_->packet_sender.SetFecProtectionParameters(delta_params, key_params); } std::vector> ModuleRtpRtcpImpl2::FetchFecPackets() { RTC_DCHECK(rtp_sender_); auto fec_packets = rtp_sender_->packet_sender.FetchFecPackets(); if (!fec_packets.empty()) { // Don't assign sequence numbers for FlexFEC packets. const bool generate_sequence_numbers = !rtp_sender_->packet_sender.FlexFecSsrc().has_value(); if (generate_sequence_numbers) { for (auto& fec_packet : fec_packets) { rtp_sender_->packet_generator.AssignSequenceNumber(fec_packet.get()); } } } return fec_packets; } void ModuleRtpRtcpImpl2::OnPacketsAcknowledged( rtc::ArrayView sequence_numbers) { RTC_DCHECK(rtp_sender_); rtp_sender_->packet_history.CullAcknowledgedPackets(sequence_numbers); } bool ModuleRtpRtcpImpl2::SupportsPadding() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.SupportsPadding(); } bool ModuleRtpRtcpImpl2::SupportsRtxPayloadPadding() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.SupportsRtxPayloadPadding(); } std::vector> ModuleRtpRtcpImpl2::GeneratePadding(size_t target_size_bytes) { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.GeneratePadding( target_size_bytes, rtp_sender_->packet_sender.MediaHasBeenSent()); } std::vector ModuleRtpRtcpImpl2::GetSentRtpPacketInfos( rtc::ArrayView sequence_numbers) const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_sender.GetSentRtpPacketInfos(sequence_numbers); } size_t ModuleRtpRtcpImpl2::ExpectedPerPacketOverhead() const { if (!rtp_sender_) { return 0; } return rtp_sender_->packet_generator.ExpectedPerPacketOverhead(); } size_t ModuleRtpRtcpImpl2::MaxRtpPacketSize() const { RTC_DCHECK(rtp_sender_); return rtp_sender_->packet_generator.MaxRtpPacketSize(); } void ModuleRtpRtcpImpl2::SetMaxRtpPacketSize(size_t rtp_packet_size) { RTC_DCHECK_LE(rtp_packet_size, IP_PACKET_SIZE) << "rtp packet size too large: " << rtp_packet_size; RTC_DCHECK_GT(rtp_packet_size, packet_overhead_) << "rtp packet size too small: " << rtp_packet_size; rtcp_sender_.SetMaxRtpPacketSize(rtp_packet_size); if (rtp_sender_) { rtp_sender_->packet_generator.SetMaxRtpPacketSize(rtp_packet_size); } } RtcpMode ModuleRtpRtcpImpl2::RTCP() const { return rtcp_sender_.Status(); } // Configure RTCP status i.e on/off. void ModuleRtpRtcpImpl2::SetRTCPStatus(const RtcpMode method) { rtcp_sender_.SetRTCPStatus(method); } int32_t ModuleRtpRtcpImpl2::SetCNAME(const char* c_name) { return rtcp_sender_.SetCNAME(c_name); } int32_t ModuleRtpRtcpImpl2::RemoteNTP(uint32_t* received_ntpsecs, uint32_t* received_ntpfrac, uint32_t* rtcp_arrival_time_secs, uint32_t* rtcp_arrival_time_frac, uint32_t* rtcp_timestamp) const { return rtcp_receiver_.NTP(received_ntpsecs, received_ntpfrac, rtcp_arrival_time_secs, rtcp_arrival_time_frac, rtcp_timestamp, /*remote_sender_packet_count=*/nullptr, /*remote_sender_octet_count=*/nullptr, /*remote_sender_reports_count=*/nullptr) ? 0 : -1; } // TODO(tommi): Check if |avg_rtt_ms|, |min_rtt_ms|, |max_rtt_ms| params are // actually used in practice (some callers ask for it but don't use it). It // could be that only |rtt| is needed and if so, then the fast path could be to // just call rtt_ms() and rely on the calculation being done periodically. int32_t ModuleRtpRtcpImpl2::RTT(const uint32_t remote_ssrc, int64_t* rtt, int64_t* avg_rtt, int64_t* min_rtt, int64_t* max_rtt) const { int32_t ret = rtcp_receiver_.RTT(remote_ssrc, rtt, avg_rtt, min_rtt, max_rtt); if (rtt && *rtt == 0) { // Try to get RTT from RtcpRttStats class. *rtt = rtt_ms(); } return ret; } int64_t ModuleRtpRtcpImpl2::ExpectedRetransmissionTimeMs() const { int64_t expected_retransmission_time_ms = rtt_ms(); if (expected_retransmission_time_ms > 0) { return expected_retransmission_time_ms; } // No rtt available (|kRttUpdateInterval| not yet passed?), so try to // poll avg_rtt_ms directly from rtcp receiver. if (rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), nullptr, &expected_retransmission_time_ms, nullptr, nullptr) == 0) { return expected_retransmission_time_ms; } return kDefaultExpectedRetransmissionTimeMs; } // Force a send of an RTCP packet. // Normal SR and RR are triggered via the process function. int32_t ModuleRtpRtcpImpl2::SendRTCP(RTCPPacketType packet_type) { return rtcp_sender_.SendRTCP(GetFeedbackState(), packet_type); } void ModuleRtpRtcpImpl2::GetSendStreamDataCounters( StreamDataCounters* rtp_counters, StreamDataCounters* rtx_counters) const { rtp_sender_->packet_sender.GetDataCounters(rtp_counters, rtx_counters); } // Received RTCP report. std::vector ModuleRtpRtcpImpl2::GetLatestReportBlockData() const { return rtcp_receiver_.GetLatestReportBlockData(); } absl::optional ModuleRtpRtcpImpl2::GetSenderReportStats() const { SenderReportStats stats; uint32_t remote_timestamp_secs; uint32_t remote_timestamp_frac; uint32_t arrival_timestamp_secs; uint32_t arrival_timestamp_frac; if (rtcp_receiver_.NTP(&remote_timestamp_secs, &remote_timestamp_frac, &arrival_timestamp_secs, &arrival_timestamp_frac, /*rtcp_timestamp=*/nullptr, &stats.packets_sent, &stats.bytes_sent, &stats.reports_count)) { stats.last_remote_timestamp.Set(remote_timestamp_secs, remote_timestamp_frac); stats.last_arrival_timestamp.Set(arrival_timestamp_secs, arrival_timestamp_frac); return stats; } return absl::nullopt; } // (REMB) Receiver Estimated Max Bitrate. void ModuleRtpRtcpImpl2::SetRemb(int64_t bitrate_bps, std::vector ssrcs) { rtcp_sender_.SetRemb(bitrate_bps, std::move(ssrcs)); } void ModuleRtpRtcpImpl2::UnsetRemb() { rtcp_sender_.UnsetRemb(); } void ModuleRtpRtcpImpl2::SetExtmapAllowMixed(bool extmap_allow_mixed) { rtp_sender_->packet_generator.SetExtmapAllowMixed(extmap_allow_mixed); } void ModuleRtpRtcpImpl2::RegisterRtpHeaderExtension(absl::string_view uri, int id) { bool registered = rtp_sender_->packet_generator.RegisterRtpHeaderExtension(uri, id); RTC_CHECK(registered); } int32_t ModuleRtpRtcpImpl2::DeregisterSendRtpHeaderExtension( const RTPExtensionType type) { return rtp_sender_->packet_generator.DeregisterRtpHeaderExtension(type); } void ModuleRtpRtcpImpl2::DeregisterSendRtpHeaderExtension( absl::string_view uri) { rtp_sender_->packet_generator.DeregisterRtpHeaderExtension(uri); } void ModuleRtpRtcpImpl2::SetTmmbn(std::vector bounding_set) { rtcp_sender_.SetTmmbn(std::move(bounding_set)); } // Send a Negative acknowledgment packet. int32_t ModuleRtpRtcpImpl2::SendNACK(const uint16_t* nack_list, const uint16_t size) { uint16_t nack_length = size; uint16_t start_id = 0; int64_t now_ms = clock_->TimeInMilliseconds(); if (TimeToSendFullNackList(now_ms)) { nack_last_time_sent_full_ms_ = now_ms; } else { // Only send extended list. if (nack_last_seq_number_sent_ == nack_list[size - 1]) { // Last sequence number is the same, do not send list. return 0; } // Send new sequence numbers. for (int i = 0; i < size; ++i) { if (nack_last_seq_number_sent_ == nack_list[i]) { start_id = i + 1; break; } } nack_length = size - start_id; } // Our RTCP NACK implementation is limited to kRtcpMaxNackFields sequence // numbers per RTCP packet. if (nack_length > kRtcpMaxNackFields) { nack_length = kRtcpMaxNackFields; } nack_last_seq_number_sent_ = nack_list[start_id + nack_length - 1]; return rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpNack, nack_length, &nack_list[start_id]); } void ModuleRtpRtcpImpl2::SendNack( const std::vector& sequence_numbers) { rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpNack, sequence_numbers.size(), sequence_numbers.data()); } bool ModuleRtpRtcpImpl2::TimeToSendFullNackList(int64_t now) const { // Use RTT from RtcpRttStats class if provided. int64_t rtt = rtt_ms(); if (rtt == 0) { rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL); } const int64_t kStartUpRttMs = 100; int64_t wait_time = 5 + ((rtt * 3) >> 1); // 5 + RTT * 1.5. if (rtt == 0) { wait_time = kStartUpRttMs; } // Send a full NACK list once within every |wait_time|. return now - nack_last_time_sent_full_ms_ > wait_time; } // Store the sent packets, needed to answer to Negative acknowledgment requests. void ModuleRtpRtcpImpl2::SetStorePacketsStatus(const bool enable, const uint16_t number_to_store) { rtp_sender_->packet_history.SetStorePacketsStatus( enable ? RtpPacketHistory::StorageMode::kStoreAndCull : RtpPacketHistory::StorageMode::kDisabled, number_to_store); } bool ModuleRtpRtcpImpl2::StorePackets() const { return rtp_sender_->packet_history.GetStorageMode() != RtpPacketHistory::StorageMode::kDisabled; } void ModuleRtpRtcpImpl2::SendCombinedRtcpPacket( std::vector> rtcp_packets) { rtcp_sender_.SendCombinedRtcpPacket(std::move(rtcp_packets)); } int32_t ModuleRtpRtcpImpl2::SendLossNotification(uint16_t last_decoded_seq_num, uint16_t last_received_seq_num, bool decodability_flag, bool buffering_allowed) { return rtcp_sender_.SendLossNotification( GetFeedbackState(), last_decoded_seq_num, last_received_seq_num, decodability_flag, buffering_allowed); } void ModuleRtpRtcpImpl2::SetRemoteSSRC(const uint32_t ssrc) { // Inform about the incoming SSRC. rtcp_sender_.SetRemoteSSRC(ssrc); rtcp_receiver_.SetRemoteSSRC(ssrc); } RtpSendRates ModuleRtpRtcpImpl2::GetSendRates() const { RTC_DCHECK_RUN_ON(worker_queue_); return rtp_sender_->packet_sender.GetSendRates(); } void ModuleRtpRtcpImpl2::OnRequestSendReport() { SendRTCP(kRtcpSr); } void ModuleRtpRtcpImpl2::OnReceivedNack( const std::vector& nack_sequence_numbers) { if (!rtp_sender_) return; if (!StorePackets() || nack_sequence_numbers.empty()) { return; } // Use RTT from RtcpRttStats class if provided. int64_t rtt = rtt_ms(); if (rtt == 0) { rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL); } rtp_sender_->packet_generator.OnReceivedNack(nack_sequence_numbers, rtt); } void ModuleRtpRtcpImpl2::OnReceivedRtcpReportBlocks( const ReportBlockList& report_blocks) { if (rtp_sender_) { uint32_t ssrc = SSRC(); absl::optional rtx_ssrc; if (rtp_sender_->packet_generator.RtxStatus() != kRtxOff) { rtx_ssrc = rtp_sender_->packet_generator.RtxSsrc(); } for (const RTCPReportBlock& report_block : report_blocks) { if (ssrc == report_block.source_ssrc) { rtp_sender_->packet_generator.OnReceivedAckOnSsrc( report_block.extended_highest_sequence_number); } else if (rtx_ssrc && *rtx_ssrc == report_block.source_ssrc) { rtp_sender_->packet_generator.OnReceivedAckOnRtxSsrc( report_block.extended_highest_sequence_number); } } } } void ModuleRtpRtcpImpl2::set_rtt_ms(int64_t rtt_ms) { RTC_DCHECK_RUN_ON(worker_queue_); { MutexLock lock(&mutex_rtt_); rtt_ms_ = rtt_ms; } if (rtp_sender_) { rtp_sender_->packet_history.SetRtt(rtt_ms); } } int64_t ModuleRtpRtcpImpl2::rtt_ms() const { MutexLock lock(&mutex_rtt_); return rtt_ms_; } void ModuleRtpRtcpImpl2::SetVideoBitrateAllocation( const VideoBitrateAllocation& bitrate) { rtcp_sender_.SetVideoBitrateAllocation(bitrate); } RTPSender* ModuleRtpRtcpImpl2::RtpSender() { return rtp_sender_ ? &rtp_sender_->packet_generator : nullptr; } const RTPSender* ModuleRtpRtcpImpl2::RtpSender() const { return rtp_sender_ ? &rtp_sender_->packet_generator : nullptr; } void ModuleRtpRtcpImpl2::PeriodicUpdate() { RTC_DCHECK_RUN_ON(worker_queue_); Timestamp check_since = clock_->CurrentTime() - kRttUpdateInterval; absl::optional rtt = rtcp_receiver_.OnPeriodicRttUpdate(check_since, rtcp_sender_.Sending()); if (rtt) { rtt_stats_->OnRttUpdate(rtt->ms()); set_rtt_ms(rtt->ms()); } // kTmmbrTimeoutIntervalMs is 25 seconds, so an order of seconds. // Instead of this polling approach, consider having an optional timer in the // RTCPReceiver class that is started/stopped based on the state of // rtcp_sender_.TMMBR(). if (rtcp_sender_.TMMBR() && rtcp_receiver_.UpdateTmmbrTimers()) rtcp_receiver_.NotifyTmmbrUpdated(); } } // namespace webrtc