/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc/agc_manager_direct.h" #include #include #include "common_audio/include/audio_util.h" #include "modules/audio_processing/agc/gain_control.h" #include "modules/audio_processing/agc/gain_map_internal.h" #include "modules/audio_processing/include/audio_frame_view.h" #include "rtc_base/atomic_ops.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_minmax.h" #include "system_wrappers/include/field_trial.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { // Amount of error we tolerate in the microphone level (presumably due to OS // quantization) before we assume the user has manually adjusted the microphone. constexpr int kLevelQuantizationSlack = 25; constexpr int kDefaultCompressionGain = 7; constexpr int kMaxCompressionGain = 12; constexpr int kMinCompressionGain = 2; // Controls the rate of compression changes towards the target. constexpr float kCompressionGainStep = 0.05f; constexpr int kMaxMicLevel = 255; static_assert(kGainMapSize > kMaxMicLevel, "gain map too small"); constexpr int kMinMicLevel = 12; // Prevent very large microphone level changes. constexpr int kMaxResidualGainChange = 15; // Maximum additional gain allowed to compensate for microphone level // restrictions from clipping events. constexpr int kSurplusCompressionGain = 6; // History size for the clipping predictor evaluator (unit: number of 10 ms // frames). constexpr int kClippingPredictorEvaluatorHistorySize = 32; using ClippingPredictorConfig = AudioProcessing::Config::GainController1:: AnalogGainController::ClippingPredictor; // Returns whether a fall-back solution to choose the maximum level should be // chosen. bool UseMaxAnalogChannelLevel() { return field_trial::IsEnabled("WebRTC-UseMaxAnalogAgcChannelLevel"); } // Returns kMinMicLevel if no field trial exists or if it has been disabled. // Returns a value between 0 and 255 depending on the field-trial string. // Example: 'WebRTC-Audio-AgcMinMicLevelExperiment/Enabled-80' => returns 80. int GetMinMicLevel() { RTC_LOG(LS_INFO) << "[agc] GetMinMicLevel"; constexpr char kMinMicLevelFieldTrial[] = "WebRTC-Audio-AgcMinMicLevelExperiment"; if (!webrtc::field_trial::IsEnabled(kMinMicLevelFieldTrial)) { RTC_LOG(LS_INFO) << "[agc] Using default min mic level: " << kMinMicLevel; return kMinMicLevel; } const auto field_trial_string = webrtc::field_trial::FindFullName(kMinMicLevelFieldTrial); int min_mic_level = -1; sscanf(field_trial_string.c_str(), "Enabled-%d", &min_mic_level); if (min_mic_level >= 0 && min_mic_level <= 255) { RTC_LOG(LS_INFO) << "[agc] Experimental min mic level: " << min_mic_level; return min_mic_level; } else { RTC_LOG(LS_WARNING) << "[agc] Invalid parameter for " << kMinMicLevelFieldTrial << ", ignored."; return kMinMicLevel; } } int ClampLevel(int mic_level, int min_mic_level) { return rtc::SafeClamp(mic_level, min_mic_level, kMaxMicLevel); } int LevelFromGainError(int gain_error, int level, int min_mic_level) { RTC_DCHECK_GE(level, 0); RTC_DCHECK_LE(level, kMaxMicLevel); if (gain_error == 0) { return level; } int new_level = level; if (gain_error > 0) { while (kGainMap[new_level] - kGainMap[level] < gain_error && new_level < kMaxMicLevel) { ++new_level; } } else { while (kGainMap[new_level] - kGainMap[level] > gain_error && new_level > min_mic_level) { --new_level; } } return new_level; } // Returns the proportion of samples in the buffer which are at full-scale // (and presumably clipped). float ComputeClippedRatio(const float* const* audio, size_t num_channels, size_t samples_per_channel) { RTC_DCHECK_GT(samples_per_channel, 0); int num_clipped = 0; for (size_t ch = 0; ch < num_channels; ++ch) { int num_clipped_in_ch = 0; for (size_t i = 0; i < samples_per_channel; ++i) { RTC_DCHECK(audio[ch]); if (audio[ch][i] >= 32767.f || audio[ch][i] <= -32768.f) { ++num_clipped_in_ch; } } num_clipped = std::max(num_clipped, num_clipped_in_ch); } return static_cast(num_clipped) / (samples_per_channel); } void LogClippingPredictorMetrics(const ClippingPredictorEvaluator& evaluator) { absl::optional metrics = ComputeClippingPredictionMetrics(evaluator.counters()); if (metrics.has_value()) { RTC_LOG(LS_INFO) << "Clipping predictor metrics: P " << metrics->precision << " R " << metrics->recall << " F1 score " << metrics->f1_score; RTC_DCHECK_GE(metrics->f1_score, 0.0f); RTC_DCHECK_LE(metrics->f1_score, 1.0f); RTC_DCHECK_GE(metrics->precision, 0.0f); RTC_DCHECK_LE(metrics->precision, 1.0f); RTC_DCHECK_GE(metrics->recall, 0.0f); RTC_DCHECK_LE(metrics->recall, 1.0f); RTC_HISTOGRAM_COUNTS_LINEAR( /*name=*/"WebRTC.Audio.Agc.ClippingPredictor.F1Score", /*sample=*/std::round(metrics->f1_score * 100.0f), /*min=*/0, /*max=*/100, /*bucket_count=*/50); RTC_HISTOGRAM_COUNTS_LINEAR( /*name=*/"WebRTC.Audio.Agc.ClippingPredictor.Precision", /*sample=*/std::round(metrics->precision * 100.0f), /*min=*/0, /*max=*/100, /*bucket_count=*/50); RTC_HISTOGRAM_COUNTS_LINEAR( /*name=*/"WebRTC.Audio.Agc.ClippingPredictor.Recall", /*sample=*/std::round(metrics->recall * 100.0f), /*min=*/0, /*max=*/100, /*bucket_count=*/50); } } void LogClippingMetrics(int clipping_rate) { RTC_LOG(LS_INFO) << "Input clipping rate: " << clipping_rate << "%"; RTC_HISTOGRAM_COUNTS_LINEAR(/*name=*/"WebRTC.Audio.Agc.InputClippingRate", /*sample=*/clipping_rate, /*min=*/0, /*max=*/100, /*bucket_count=*/50); } } // namespace MonoAgc::MonoAgc(ApmDataDumper* data_dumper, int startup_min_level, int clipped_level_min, bool disable_digital_adaptive, int min_mic_level) : min_mic_level_(min_mic_level), disable_digital_adaptive_(disable_digital_adaptive), agc_(std::make_unique()), max_level_(kMaxMicLevel), max_compression_gain_(kMaxCompressionGain), target_compression_(kDefaultCompressionGain), compression_(target_compression_), compression_accumulator_(compression_), startup_min_level_(ClampLevel(startup_min_level, min_mic_level_)), clipped_level_min_(clipped_level_min) {} MonoAgc::~MonoAgc() = default; void MonoAgc::Initialize() { max_level_ = kMaxMicLevel; max_compression_gain_ = kMaxCompressionGain; target_compression_ = disable_digital_adaptive_ ? 0 : kDefaultCompressionGain; compression_ = disable_digital_adaptive_ ? 0 : target_compression_; compression_accumulator_ = compression_; capture_output_used_ = true; check_volume_on_next_process_ = true; } void MonoAgc::Process(const int16_t* audio, size_t samples_per_channel, int sample_rate_hz) { new_compression_to_set_ = absl::nullopt; if (check_volume_on_next_process_) { check_volume_on_next_process_ = false; // We have to wait until the first process call to check the volume, // because Chromium doesn't guarantee it to be valid any earlier. CheckVolumeAndReset(); } agc_->Process(audio, samples_per_channel, sample_rate_hz); UpdateGain(); if (!disable_digital_adaptive_) { UpdateCompressor(); } } void MonoAgc::HandleClipping(int clipped_level_step) { // Always decrease the maximum level, even if the current level is below // threshold. SetMaxLevel(std::max(clipped_level_min_, max_level_ - clipped_level_step)); if (log_to_histograms_) { RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed", level_ - clipped_level_step >= clipped_level_min_); } if (level_ > clipped_level_min_) { // Don't try to adjust the level if we're already below the limit. As // a consequence, if the user has brought the level above the limit, we // will still not react until the postproc updates the level. SetLevel(std::max(clipped_level_min_, level_ - clipped_level_step)); // Reset the AGCs for all channels since the level has changed. agc_->Reset(); } } void MonoAgc::SetLevel(int new_level) { int voe_level = stream_analog_level_; if (voe_level == 0) { RTC_DLOG(LS_INFO) << "[agc] VolumeCallbacks returned level=0, taking no action."; return; } if (voe_level < 0 || voe_level > kMaxMicLevel) { RTC_LOG(LS_ERROR) << "VolumeCallbacks returned an invalid level=" << voe_level; return; } if (voe_level > level_ + kLevelQuantizationSlack || voe_level < level_ - kLevelQuantizationSlack) { RTC_DLOG(LS_INFO) << "[agc] Mic volume was manually adjusted. Updating " "stored level from " << level_ << " to " << voe_level; level_ = voe_level; // Always allow the user to increase the volume. if (level_ > max_level_) { SetMaxLevel(level_); } // Take no action in this case, since we can't be sure when the volume // was manually adjusted. The compressor will still provide some of the // desired gain change. agc_->Reset(); return; } new_level = std::min(new_level, max_level_); if (new_level == level_) { return; } stream_analog_level_ = new_level; RTC_DLOG(LS_INFO) << "[agc] voe_level=" << voe_level << ", level_=" << level_ << ", new_level=" << new_level; level_ = new_level; } void MonoAgc::SetMaxLevel(int level) { RTC_DCHECK_GE(level, clipped_level_min_); max_level_ = level; // Scale the `kSurplusCompressionGain` linearly across the restricted // level range. max_compression_gain_ = kMaxCompressionGain + std::floor((1.f * kMaxMicLevel - max_level_) / (kMaxMicLevel - clipped_level_min_) * kSurplusCompressionGain + 0.5f); RTC_DLOG(LS_INFO) << "[agc] max_level_=" << max_level_ << ", max_compression_gain_=" << max_compression_gain_; } void MonoAgc::HandleCaptureOutputUsedChange(bool capture_output_used) { if (capture_output_used_ == capture_output_used) { return; } capture_output_used_ = capture_output_used; if (capture_output_used) { // When we start using the output, we should reset things to be safe. check_volume_on_next_process_ = true; } } int MonoAgc::CheckVolumeAndReset() { int level = stream_analog_level_; // Reasons for taking action at startup: // 1) A person starting a call is expected to be heard. // 2) Independent of interpretation of `level` == 0 we should raise it so the // AGC can do its job properly. if (level == 0 && !startup_) { RTC_DLOG(LS_INFO) << "[agc] VolumeCallbacks returned level=0, taking no action."; return 0; } if (level < 0 || level > kMaxMicLevel) { RTC_LOG(LS_ERROR) << "[agc] VolumeCallbacks returned an invalid level=" << level; return -1; } RTC_DLOG(LS_INFO) << "[agc] Initial GetMicVolume()=" << level; int minLevel = startup_ ? startup_min_level_ : min_mic_level_; if (level < minLevel) { level = minLevel; RTC_DLOG(LS_INFO) << "[agc] Initial volume too low, raising to " << level; stream_analog_level_ = level; } agc_->Reset(); level_ = level; startup_ = false; return 0; } // Requests the RMS error from AGC and distributes the required gain change // between the digital compression stage and volume slider. We use the // compressor first, providing a slack region around the current slider // position to reduce movement. // // If the slider needs to be moved, we check first if the user has adjusted // it, in which case we take no action and cache the updated level. void MonoAgc::UpdateGain() { int rms_error = 0; if (!agc_->GetRmsErrorDb(&rms_error)) { // No error update ready. return; } // The compressor will always add at least kMinCompressionGain. In effect, // this adjusts our target gain upward by the same amount and rms_error // needs to reflect that. rms_error += kMinCompressionGain; // Handle as much error as possible with the compressor first. int raw_compression = rtc::SafeClamp(rms_error, kMinCompressionGain, max_compression_gain_); // Deemphasize the compression gain error. Move halfway between the current // target and the newly received target. This serves to soften perceptible // intra-talkspurt adjustments, at the cost of some adaptation speed. if ((raw_compression == max_compression_gain_ && target_compression_ == max_compression_gain_ - 1) || (raw_compression == kMinCompressionGain && target_compression_ == kMinCompressionGain + 1)) { // Special case to allow the target to reach the endpoints of the // compression range. The deemphasis would otherwise halt it at 1 dB shy. target_compression_ = raw_compression; } else { target_compression_ = (raw_compression - target_compression_) / 2 + target_compression_; } // Residual error will be handled by adjusting the volume slider. Use the // raw rather than deemphasized compression here as we would otherwise // shrink the amount of slack the compressor provides. const int residual_gain = rtc::SafeClamp(rms_error - raw_compression, -kMaxResidualGainChange, kMaxResidualGainChange); RTC_DLOG(LS_INFO) << "[agc] rms_error=" << rms_error << ", target_compression=" << target_compression_ << ", residual_gain=" << residual_gain; if (residual_gain == 0) return; int old_level = level_; SetLevel(LevelFromGainError(residual_gain, level_, min_mic_level_)); if (old_level != level_) { // level_ was updated by SetLevel; log the new value. RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.AgcSetLevel", level_, 1, kMaxMicLevel, 50); // Reset the AGC since the level has changed. agc_->Reset(); } } void MonoAgc::UpdateCompressor() { calls_since_last_gain_log_++; if (calls_since_last_gain_log_ == 100) { calls_since_last_gain_log_ = 0; RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainApplied", compression_, 0, kMaxCompressionGain, kMaxCompressionGain + 1); } if (compression_ == target_compression_) { return; } // Adapt the compression gain slowly towards the target, in order to avoid // highly perceptible changes. if (target_compression_ > compression_) { compression_accumulator_ += kCompressionGainStep; } else { compression_accumulator_ -= kCompressionGainStep; } // The compressor accepts integer gains in dB. Adjust the gain when // we've come within half a stepsize of the nearest integer. (We don't // check for equality due to potential floating point imprecision). int new_compression = compression_; int nearest_neighbor = std::floor(compression_accumulator_ + 0.5); if (std::fabs(compression_accumulator_ - nearest_neighbor) < kCompressionGainStep / 2) { new_compression = nearest_neighbor; } // Set the new compression gain. if (new_compression != compression_) { RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainUpdated", new_compression, 0, kMaxCompressionGain, kMaxCompressionGain + 1); compression_ = new_compression; compression_accumulator_ = new_compression; new_compression_to_set_ = compression_; } } int AgcManagerDirect::instance_counter_ = 0; AgcManagerDirect::AgcManagerDirect( Agc* agc, int startup_min_level, int clipped_level_min, int sample_rate_hz, int clipped_level_step, float clipped_ratio_threshold, int clipped_wait_frames, const ClippingPredictorConfig& clipping_config) : AgcManagerDirect(/*num_capture_channels*/ 1, startup_min_level, clipped_level_min, /*disable_digital_adaptive*/ false, sample_rate_hz, clipped_level_step, clipped_ratio_threshold, clipped_wait_frames, clipping_config) { RTC_DCHECK(channel_agcs_[0]); RTC_DCHECK(agc); channel_agcs_[0]->set_agc(agc); } AgcManagerDirect::AgcManagerDirect( int num_capture_channels, int startup_min_level, int clipped_level_min, bool disable_digital_adaptive, int sample_rate_hz, int clipped_level_step, float clipped_ratio_threshold, int clipped_wait_frames, const ClippingPredictorConfig& clipping_config) : data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_counter_))), use_min_channel_level_(!UseMaxAnalogChannelLevel()), sample_rate_hz_(sample_rate_hz), num_capture_channels_(num_capture_channels), disable_digital_adaptive_(disable_digital_adaptive), frames_since_clipped_(clipped_wait_frames), capture_output_used_(true), clipped_level_step_(clipped_level_step), clipped_ratio_threshold_(clipped_ratio_threshold), clipped_wait_frames_(clipped_wait_frames), channel_agcs_(num_capture_channels), new_compressions_to_set_(num_capture_channels), clipping_predictor_( CreateClippingPredictor(num_capture_channels, clipping_config)), use_clipping_predictor_step_(!!clipping_predictor_ && clipping_config.use_predicted_step), clipping_predictor_evaluator_(kClippingPredictorEvaluatorHistorySize), clipping_predictor_log_counter_(0), clipping_rate_log_(0.0f), clipping_rate_log_counter_(0) { const int min_mic_level = GetMinMicLevel(); for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { ApmDataDumper* data_dumper_ch = ch == 0 ? data_dumper_.get() : nullptr; channel_agcs_[ch] = std::make_unique( data_dumper_ch, startup_min_level, clipped_level_min, disable_digital_adaptive_, min_mic_level); } RTC_DCHECK(!channel_agcs_.empty()); RTC_DCHECK_GT(clipped_level_step, 0); RTC_DCHECK_LE(clipped_level_step, 255); RTC_DCHECK_GT(clipped_ratio_threshold, 0.f); RTC_DCHECK_LT(clipped_ratio_threshold, 1.f); RTC_DCHECK_GT(clipped_wait_frames, 0); channel_agcs_[0]->ActivateLogging(); } AgcManagerDirect::~AgcManagerDirect() {} void AgcManagerDirect::Initialize() { RTC_DLOG(LS_INFO) << "AgcManagerDirect::Initialize"; data_dumper_->InitiateNewSetOfRecordings(); for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { channel_agcs_[ch]->Initialize(); } capture_output_used_ = true; AggregateChannelLevels(); clipping_predictor_evaluator_.Reset(); clipping_predictor_log_counter_ = 0; clipping_rate_log_ = 0.0f; clipping_rate_log_counter_ = 0; } void AgcManagerDirect::SetupDigitalGainControl( GainControl* gain_control) const { RTC_DCHECK(gain_control); if (gain_control->set_mode(GainControl::kFixedDigital) != 0) { RTC_LOG(LS_ERROR) << "set_mode(GainControl::kFixedDigital) failed."; } const int target_level_dbfs = disable_digital_adaptive_ ? 0 : 2; if (gain_control->set_target_level_dbfs(target_level_dbfs) != 0) { RTC_LOG(LS_ERROR) << "set_target_level_dbfs() failed."; } const int compression_gain_db = disable_digital_adaptive_ ? 0 : kDefaultCompressionGain; if (gain_control->set_compression_gain_db(compression_gain_db) != 0) { RTC_LOG(LS_ERROR) << "set_compression_gain_db() failed."; } const bool enable_limiter = !disable_digital_adaptive_; if (gain_control->enable_limiter(enable_limiter) != 0) { RTC_LOG(LS_ERROR) << "enable_limiter() failed."; } } void AgcManagerDirect::AnalyzePreProcess(const AudioBuffer* audio) { RTC_DCHECK(audio); AnalyzePreProcess(audio->channels_const(), audio->num_frames()); } void AgcManagerDirect::AnalyzePreProcess(const float* const* audio, size_t samples_per_channel) { RTC_DCHECK(audio); AggregateChannelLevels(); if (!capture_output_used_) { return; } if (!!clipping_predictor_) { AudioFrameView frame = AudioFrameView( audio, num_capture_channels_, static_cast(samples_per_channel)); clipping_predictor_->Analyze(frame); } // Check for clipped samples, as the AGC has difficulty detecting pitch // under clipping distortion. We do this in the preprocessing phase in order // to catch clipped echo as well. // // If we find a sufficiently clipped frame, drop the current microphone level // and enforce a new maximum level, dropped the same amount from the current // maximum. This harsh treatment is an effort to avoid repeated clipped echo // events. As compensation for this restriction, the maximum compression // gain is increased, through SetMaxLevel(). float clipped_ratio = ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel); clipping_rate_log_ = std::max(clipped_ratio, clipping_rate_log_); clipping_rate_log_counter_++; constexpr int kNumFramesIn30Seconds = 3000; if (clipping_rate_log_counter_ == kNumFramesIn30Seconds) { LogClippingMetrics(std::round(100.0f * clipping_rate_log_)); clipping_rate_log_ = 0.0f; clipping_rate_log_counter_ = 0; } if (frames_since_clipped_ < clipped_wait_frames_) { ++frames_since_clipped_; return; } const bool clipping_detected = clipped_ratio > clipped_ratio_threshold_; bool clipping_predicted = false; int predicted_step = 0; if (!!clipping_predictor_) { for (int channel = 0; channel < num_capture_channels_; ++channel) { const auto step = clipping_predictor_->EstimateClippedLevelStep( channel, stream_analog_level_, clipped_level_step_, channel_agcs_[channel]->min_mic_level(), kMaxMicLevel); if (step.has_value()) { predicted_step = std::max(predicted_step, step.value()); clipping_predicted = true; } } // Clipping prediction evaluation. absl::optional prediction_interval = clipping_predictor_evaluator_.Observe(clipping_detected, clipping_predicted); if (prediction_interval.has_value()) { RTC_HISTOGRAM_COUNTS_LINEAR( "WebRTC.Audio.Agc.ClippingPredictor.PredictionInterval", prediction_interval.value(), /*min=*/0, /*max=*/49, /*bucket_count=*/50); } clipping_predictor_log_counter_++; if (clipping_predictor_log_counter_ == kNumFramesIn30Seconds) { LogClippingPredictorMetrics(clipping_predictor_evaluator_); clipping_predictor_log_counter_ = 0; } } if (clipping_detected) { RTC_DLOG(LS_INFO) << "[agc] Clipping detected. clipped_ratio=" << clipped_ratio; } int step = clipped_level_step_; if (clipping_predicted) { predicted_step = std::max(predicted_step, clipped_level_step_); RTC_DLOG(LS_INFO) << "[agc] Clipping predicted. step=" << predicted_step; if (use_clipping_predictor_step_) { step = predicted_step; } } if (clipping_detected || (clipping_predicted && use_clipping_predictor_step_)) { for (auto& state_ch : channel_agcs_) { state_ch->HandleClipping(step); } frames_since_clipped_ = 0; if (!!clipping_predictor_) { clipping_predictor_->Reset(); clipping_predictor_evaluator_.RemoveExpectations(); } } AggregateChannelLevels(); } void AgcManagerDirect::Process(const AudioBuffer* audio) { AggregateChannelLevels(); if (!capture_output_used_) { return; } for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { int16_t* audio_use = nullptr; std::array audio_data; int num_frames_per_band; if (audio) { FloatS16ToS16(audio->split_bands_const_f(ch)[0], audio->num_frames_per_band(), audio_data.data()); audio_use = audio_data.data(); num_frames_per_band = audio->num_frames_per_band(); } else { // Only used for testing. // TODO(peah): Change unittests to only allow on non-null audio input. num_frames_per_band = 320; } channel_agcs_[ch]->Process(audio_use, num_frames_per_band, sample_rate_hz_); new_compressions_to_set_[ch] = channel_agcs_[ch]->new_compression(); } AggregateChannelLevels(); } absl::optional AgcManagerDirect::GetDigitalComressionGain() { return new_compressions_to_set_[channel_controlling_gain_]; } void AgcManagerDirect::HandleCaptureOutputUsedChange(bool capture_output_used) { for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { channel_agcs_[ch]->HandleCaptureOutputUsedChange(capture_output_used); } capture_output_used_ = capture_output_used; } float AgcManagerDirect::voice_probability() const { float max_prob = 0.f; for (const auto& state_ch : channel_agcs_) { max_prob = std::max(max_prob, state_ch->voice_probability()); } return max_prob; } void AgcManagerDirect::set_stream_analog_level(int level) { for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { channel_agcs_[ch]->set_stream_analog_level(level); } AggregateChannelLevels(); } void AgcManagerDirect::AggregateChannelLevels() { stream_analog_level_ = channel_agcs_[0]->stream_analog_level(); channel_controlling_gain_ = 0; if (use_min_channel_level_) { for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) { int level = channel_agcs_[ch]->stream_analog_level(); if (level < stream_analog_level_) { stream_analog_level_ = level; channel_controlling_gain_ = static_cast(ch); } } } else { for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) { int level = channel_agcs_[ch]->stream_analog_level(); if (level > stream_analog_level_) { stream_analog_level_ = level; channel_controlling_gain_ = static_cast(ch); } } } } } // namespace webrtc