/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for DelayManager class. #include "modules/audio_coding/neteq/delay_manager.h" #include #include #include "modules/audio_coding/neteq/histogram.h" #include "modules/audio_coding/neteq/mock/mock_histogram.h" #include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h" #include "rtc_base/checks.h" #include "test/field_trial.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kMaxNumberOfPackets = 240; constexpr int kMinDelayMs = 0; constexpr int kTimeStepMs = 10; constexpr int kFs = 8000; constexpr int kFrameSizeMs = 20; constexpr int kTsIncrement = kFrameSizeMs * kFs / 1000; constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs; constexpr int kDefaultHistogramQuantile = 1020054733; constexpr int kMaxIat = 64; constexpr int kForgetFactor = 32745; } // namespace using ::testing::_; using ::testing::Return; class DelayManagerTest : public ::testing::Test { protected: DelayManagerTest(); virtual void SetUp(); void RecreateDelayManager(); void SetPacketAudioLength(int lengt_ms); absl::optional InsertNextPacket(); void IncreaseTime(int inc_ms); std::unique_ptr dm_; TickTimer tick_timer_; MockStatisticsCalculator stats_; MockHistogram* mock_histogram_; uint16_t seq_no_; uint32_t ts_; bool enable_rtx_handling_ = false; bool use_mock_histogram_ = false; }; DelayManagerTest::DelayManagerTest() : dm_(nullptr), seq_no_(0x1234), ts_(0x12345678) {} void DelayManagerTest::SetUp() { RecreateDelayManager(); } void DelayManagerTest::RecreateDelayManager() { if (use_mock_histogram_) { mock_histogram_ = new MockHistogram(kMaxIat, kForgetFactor); std::unique_ptr histogram(mock_histogram_); dm_ = std::make_unique( kMaxNumberOfPackets, kMinDelayMs, kDefaultHistogramQuantile, enable_rtx_handling_, &tick_timer_, std::move(histogram)); } else { dm_ = DelayManager::Create(kMaxNumberOfPackets, kMinDelayMs, enable_rtx_handling_, &tick_timer_); } } void DelayManagerTest::SetPacketAudioLength(int lengt_ms) { dm_->SetPacketAudioLength(lengt_ms); } absl::optional DelayManagerTest::InsertNextPacket() { auto relative_delay = dm_->Update(seq_no_, ts_, kFs); seq_no_ += 1; ts_ += kTsIncrement; return relative_delay; } void DelayManagerTest::IncreaseTime(int inc_ms) { for (int t = 0; t < inc_ms; t += kTimeStepMs) { tick_timer_.Increment(); } } TEST_F(DelayManagerTest, CreateAndDestroy) { // Nothing to do here. The test fixture creates and destroys the DelayManager // object. } TEST_F(DelayManagerTest, SetPacketAudioLength) { const int kLengthMs = 30; EXPECT_EQ(0, dm_->SetPacketAudioLength(kLengthMs)); EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); // Illegal parameter value. } TEST_F(DelayManagerTest, UpdateNormal) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Second packet arrival. InsertNextPacket(); EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. EXPECT_EQ(1, dm_->base_target_level()); int lower, higher; dm_->BufferLimits(&lower, &higher); // Expect |lower| to be 75% of target level, and |higher| to be target level, // but also at least 20 ms higher than |lower|, which is the limiting case // here. EXPECT_EQ((1 << 8) * 3 / 4, lower); EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); } TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by two frame size. IncreaseTime(2 * kFrameSizeMs); // Second packet arrival. InsertNextPacket(); EXPECT_EQ(2 << 8, dm_->TargetLevel()); // In Q8. EXPECT_EQ(2, dm_->base_target_level()); int lower, higher; dm_->BufferLimits(&lower, &higher); // Expect |lower| to be 75% of target level, and |higher| to be target level, // but also at least 20 ms higher than |lower|, which is the limiting case // here. EXPECT_EQ((2 << 8) * 3 / 4, lower); EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); } TEST_F(DelayManagerTest, MaxDelay) { const int kExpectedTarget = 5; const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Second packet arrival. IncreaseTime(kTimeIncrement); InsertNextPacket(); // No limit is set. EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); int kMaxDelayPackets = kExpectedTarget - 2; int kMaxDelayMs = kMaxDelayPackets * kFrameSizeMs; EXPECT_TRUE(dm_->SetMaximumDelay(kMaxDelayMs)); IncreaseTime(kTimeIncrement); InsertNextPacket(); EXPECT_EQ(kMaxDelayPackets << 8, dm_->TargetLevel()); // Target level at least should be one packet. EXPECT_FALSE(dm_->SetMaximumDelay(kFrameSizeMs - 1)); } TEST_F(DelayManagerTest, MinDelay) { const int kExpectedTarget = 5; const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Second packet arrival. IncreaseTime(kTimeIncrement); InsertNextPacket(); // No limit is applied. EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); int kMinDelayPackets = kExpectedTarget + 2; int kMinDelayMs = kMinDelayPackets * kFrameSizeMs; dm_->SetMinimumDelay(kMinDelayMs); IncreaseTime(kFrameSizeMs); InsertNextPacket(); EXPECT_EQ(kMinDelayPackets << 8, dm_->TargetLevel()); } TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) { SetPacketAudioLength(kFrameSizeMs); // Base minimum delay should be between [0, 10000] milliseconds. EXPECT_FALSE(dm_->SetBaseMinimumDelay(-1)); EXPECT_FALSE(dm_->SetBaseMinimumDelay(10001)); EXPECT_EQ(dm_->GetBaseMinimumDelay(), 0); EXPECT_TRUE(dm_->SetBaseMinimumDelay(7999)); EXPECT_EQ(dm_->GetBaseMinimumDelay(), 7999); } TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) { SetPacketAudioLength(kFrameSizeMs); constexpr int kBaseMinimumDelayMs = 100; constexpr int kMinimumDelayMs = 200; // Base minimum delay sets lower bound on minimum. That is why when base // minimum delay is lower than minimum delay we use minimum delay. RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) { SetPacketAudioLength(kFrameSizeMs); constexpr int kBaseMinimumDelayMs = 70; constexpr int kMinimumDelayMs = 30; // Base minimum delay sets lower bound on minimum. That is why when base // minimum delay is greater than minimum delay we use base minimum delay. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) { SetPacketAudioLength(kFrameSizeMs); constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1; constexpr int kMinimumDelayMs = 12; constexpr int kMaximumDelayMs = 20; constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4; EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); // Base minimum delay is greater than minimum delay, that is why we clamp // it to current the highest possible value which is maximum delay. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs); RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); // Unset maximum value. EXPECT_TRUE(dm_->SetMaximumDelay(0)); // With maximum value unset, the highest possible value now is 75% of // currently possible maximum buffer size. EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75); } TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) { SetPacketAudioLength(kFrameSizeMs); constexpr int kMaximumDelayMs = 400; constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1; constexpr int kMinimumDelayMs = 20; // Base minimum delay is greater than minimum delay, that is why we clamp // it to current the highest possible value which is kMaximumDelayMs. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs); EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaximumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) { SetPacketAudioLength(kFrameSizeMs); constexpr int kMaximumDelayMs = 400; constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1; constexpr int kMinimumDelayMs = 20; // Base minimum delay is greater than minimum delay, and lower than maximum // delays that is why it is used. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs); EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); } TEST_F(DelayManagerTest, MinimumDelayMemorization) { // Check that when we increase base minimum delay to value higher than // minimum delay then minimum delay is still memorized. This allows to // restore effective minimum delay to memorized minimum delay value when we // decrease base minimum delay. SetPacketAudioLength(kFrameSizeMs); constexpr int kBaseMinimumDelayMsLow = 10; constexpr int kMinimumDelayMs = 20; constexpr int kBaseMinimumDelayMsHigh = 30; EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); // Minimum delay is used as it is higher than base minimum delay. EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsHigh)); // Base minimum delay is used as it is now higher than minimum delay. EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); // Check that minimum delay is memorized and is used again. EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelay) { const int kExpectedTarget = 5; const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Second packet arrival. IncreaseTime(kTimeIncrement); InsertNextPacket(); // No limit is applied. EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); IncreaseTime(kFrameSizeMs); InsertNextPacket(); EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); EXPECT_EQ(kBaseMinimumDelayPackets << 8, dm_->TargetLevel()); } TEST_F(DelayManagerTest, BaseMinimumDealyAffectTargetLevel) { const int kExpectedTarget = 5; const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Second packet arrival. IncreaseTime(kTimeIncrement); InsertNextPacket(); // No limit is applied. EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); // Minimum delay is lower than base minimum delay, that is why base minimum // delay is used to calculate target level. constexpr int kMinimumDelayPackets = kExpectedTarget + 1; constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; constexpr int kMinimumDelayMs = kMinimumDelayPackets * kFrameSizeMs; constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; EXPECT_TRUE(kMinimumDelayMs < kBaseMinimumDelayMs); EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); IncreaseTime(kFrameSizeMs); InsertNextPacket(); EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); EXPECT_EQ(kBaseMinimumDelayPackets << 8, dm_->TargetLevel()); } TEST_F(DelayManagerTest, EnableRtxHandling) { enable_rtx_handling_ = true; use_mock_histogram_ = true; RecreateDelayManager(); EXPECT_TRUE(mock_histogram_); // Insert first packet. SetPacketAudioLength(kFrameSizeMs); InsertNextPacket(); // Insert reordered packet. EXPECT_CALL(*mock_histogram_, Add(2)); dm_->Update(seq_no_ - 3, ts_ - 3 * kFrameSizeMs, kFs); // Insert another reordered packet. EXPECT_CALL(*mock_histogram_, Add(1)); dm_->Update(seq_no_ - 2, ts_ - 2 * kFrameSizeMs, kFs); // Insert the next packet in order and verify that the inter-arrival time is // estimated correctly. IncreaseTime(kFrameSizeMs); EXPECT_CALL(*mock_histogram_, Add(0)); InsertNextPacket(); } // Tests that skipped sequence numbers (simulating empty packets) are handled // correctly. // TODO(jakobi): Make delay manager independent of sequence numbers. TEST_F(DelayManagerTest, EmptyPacketsReported) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Advance the sequence number by 5, simulating that 5 empty packets were // received, but never inserted. seq_no_ += 10; for (int j = 0; j < 10; ++j) { dm_->RegisterEmptyPacket(); } // Second packet arrival. InsertNextPacket(); EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. } // Same as above, but do not call RegisterEmptyPacket. Target level stays the // same. TEST_F(DelayManagerTest, EmptyPacketsNotReported) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Advance the sequence number by 10, simulating that 10 empty packets were // received, but never inserted. seq_no_ += 10; // Second packet arrival. InsertNextPacket(); EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. } TEST_F(DelayManagerTest, Failures) { // Wrong sample rate. EXPECT_EQ(absl::nullopt, dm_->Update(0, 0, -1)); // Wrong packet size. EXPECT_EQ(-1, dm_->SetPacketAudioLength(0)); EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); // Minimum delay higher than a maximum delay is not accepted. EXPECT_TRUE(dm_->SetMaximumDelay(10)); EXPECT_FALSE(dm_->SetMinimumDelay(20)); // Maximum delay less than minimum delay is not accepted. EXPECT_TRUE(dm_->SetMaximumDelay(100)); EXPECT_TRUE(dm_->SetMinimumDelay(80)); EXPECT_FALSE(dm_->SetMaximumDelay(60)); } TEST_F(DelayManagerTest, DelayHistogramFieldTrial) { { test::ScopedFieldTrials field_trial( "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998/"); RecreateDelayManager(); EXPECT_EQ(1030792151, dm_->histogram_quantile()); // 0.96 in Q30. EXPECT_EQ( 32702, dm_->histogram()->base_forget_factor_for_testing()); // 0.998 in Q15. EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing()); } { test::ScopedFieldTrials field_trial( "WebRTC-Audio-NetEqDelayHistogram/Enabled-97.5-0.998/"); RecreateDelayManager(); EXPECT_EQ(1046898278, dm_->histogram_quantile()); // 0.975 in Q30. EXPECT_EQ( 32702, dm_->histogram()->base_forget_factor_for_testing()); // 0.998 in Q15. EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing()); } // Test parameter for new call start adaptation. { test::ScopedFieldTrials field_trial( "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-1/"); RecreateDelayManager(); EXPECT_EQ(dm_->histogram()->start_forget_weight_for_testing().value(), 1.0); } { test::ScopedFieldTrials field_trial( "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-1.5/"); RecreateDelayManager(); EXPECT_EQ(dm_->histogram()->start_forget_weight_for_testing().value(), 1.5); } { test::ScopedFieldTrials field_trial( "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-0.5/"); RecreateDelayManager(); EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing()); } } TEST_F(DelayManagerTest, RelativeArrivalDelay) { use_mock_histogram_ = true; RecreateDelayManager(); SetPacketAudioLength(kFrameSizeMs); InsertNextPacket(); IncreaseTime(kFrameSizeMs); EXPECT_CALL(*mock_histogram_, Add(0)); // Not delayed. InsertNextPacket(); IncreaseTime(2 * kFrameSizeMs); EXPECT_CALL(*mock_histogram_, Add(1)); // 20ms delayed. dm_->Update(seq_no_, ts_, kFs); IncreaseTime(2 * kFrameSizeMs); EXPECT_CALL(*mock_histogram_, Add(2)); // 40ms delayed. dm_->Update(seq_no_ + 1, ts_ + kTsIncrement, kFs); EXPECT_CALL(*mock_histogram_, Add(1)); // Reordered, 20ms delayed. dm_->Update(seq_no_, ts_, kFs); } TEST_F(DelayManagerTest, MaxDelayHistory) { use_mock_histogram_ = true; RecreateDelayManager(); SetPacketAudioLength(kFrameSizeMs); InsertNextPacket(); // Insert 20 ms iat delay in the delay history. IncreaseTime(2 * kFrameSizeMs); EXPECT_CALL(*mock_histogram_, Add(1)); // 20ms delayed. InsertNextPacket(); // Insert next packet with a timestamp difference larger than maximum history // size. This removes the previously inserted iat delay from the history. constexpr int kMaxHistoryMs = 2000; IncreaseTime(kMaxHistoryMs + kFrameSizeMs); ts_ += kFs * kMaxHistoryMs / 1000; EXPECT_CALL(*mock_histogram_, Add(0)); // Not delayed. dm_->Update(seq_no_, ts_, kFs); } TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) { SetPacketAudioLength(kFrameSizeMs); EXPECT_EQ(absl::nullopt, InsertNextPacket()); IncreaseTime(kFrameSizeMs); EXPECT_EQ(0, InsertNextPacket()); IncreaseTime(2 * kFrameSizeMs); EXPECT_EQ(20, InsertNextPacket()); } TEST_F(DelayManagerTest, DecelerationTargetLevelOffset) { SetPacketAudioLength(kFrameSizeMs); // Deceleration target level offset follows the value hardcoded in // delay_manager.cc. constexpr int kDecelerationTargetLevelOffsetMs = 85 << 8; // In Q8. // Border value where |x * 3/4 = target_level - x|. constexpr int kBoarderTargetLevel = kDecelerationTargetLevelOffsetMs * 4; { // Test that for a low target level, default behaviour is intact. const int target_level_ms = kBoarderTargetLevel / kFrameSizeMs - 1; int lower, higher; // In Q8. dm_->BufferLimits(target_level_ms, &lower, &higher); // Default behaviour of taking 75% of target level. EXPECT_EQ(target_level_ms * 3 / 4, lower); EXPECT_EQ(target_level_ms, higher); } { // Test that for the high target level, |lower| is below target level by // fixed |kOffset|. const int target_level_ms = kBoarderTargetLevel / kFrameSizeMs + 1; int lower, higher; // In Q8. dm_->BufferLimits(target_level_ms, &lower, &higher); EXPECT_EQ(target_level_ms - kDecelerationTargetLevelOffsetMs / kFrameSizeMs, lower); EXPECT_EQ(target_level_ms, higher); } } } // namespace webrtc