/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "system_wrappers/include/rtp_to_ntp_estimator.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { // Number of RTCP SR reports to use to map between RTP and NTP. const size_t kNumRtcpReportsToUse = 2; // Number of parameters samples used to smooth. const size_t kNumSamplesToSmooth = 20; // Calculates the RTP timestamp frequency from two pairs of NTP/RTP timestamps. bool CalculateFrequency(int64_t ntp_ms1, uint32_t rtp_timestamp1, int64_t ntp_ms2, uint32_t rtp_timestamp2, double* frequency_khz) { if (ntp_ms1 <= ntp_ms2) return false; *frequency_khz = static_cast(rtp_timestamp1 - rtp_timestamp2) / static_cast(ntp_ms1 - ntp_ms2); return true; } bool Contains(const std::list& measurements, const RtpToNtpEstimator::RtcpMeasurement& other) { for (const auto& measurement : measurements) { if (measurement.IsEqual(other)) return true; } return false; } } // namespace bool RtpToNtpEstimator::Parameters::operator<(const Parameters& other) const { if (frequency_khz < other.frequency_khz - 1e-6) { return true; } else if (frequency_khz > other.frequency_khz + 1e-6) { return false; } else { return offset_ms < other.offset_ms - 1e-6; } } bool RtpToNtpEstimator::Parameters::operator==(const Parameters& other) const { return !(other < *this || *this < other); } bool RtpToNtpEstimator::Parameters::operator!=(const Parameters& other) const { return other < *this || *this < other; } bool RtpToNtpEstimator::Parameters::operator<=(const Parameters& other) const { return !(other < *this); } RtpToNtpEstimator::RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac, int64_t unwrapped_timestamp) : ntp_time(ntp_secs, ntp_frac), unwrapped_rtp_timestamp(unwrapped_timestamp) {} bool RtpToNtpEstimator::RtcpMeasurement::IsEqual( const RtcpMeasurement& other) const { // Use || since two equal timestamps will result in zero frequency and in // RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency. return (ntp_time == other.ntp_time) || (unwrapped_rtp_timestamp == other.unwrapped_rtp_timestamp); } // Class for converting an RTP timestamp to the NTP domain. RtpToNtpEstimator::RtpToNtpEstimator() : consecutive_invalid_samples_(0), smoothing_filter_(kNumSamplesToSmooth), params_calculated_(false) {} RtpToNtpEstimator::~RtpToNtpEstimator() {} void RtpToNtpEstimator::UpdateParameters() { if (measurements_.size() != kNumRtcpReportsToUse) return; Parameters params; int64_t timestamp_new = measurements_.front().unwrapped_rtp_timestamp; int64_t timestamp_old = measurements_.back().unwrapped_rtp_timestamp; int64_t ntp_ms_new = measurements_.front().ntp_time.ToMs(); int64_t ntp_ms_old = measurements_.back().ntp_time.ToMs(); if (!CalculateFrequency(ntp_ms_new, timestamp_new, ntp_ms_old, timestamp_old, ¶ms.frequency_khz)) { return; } params.offset_ms = timestamp_new - params.frequency_khz * ntp_ms_new; params_calculated_ = true; smoothing_filter_.Insert(params); } bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t rtp_timestamp, bool* new_rtcp_sr) { *new_rtcp_sr = false; int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp); RtcpMeasurement new_measurement(ntp_secs, ntp_frac, unwrapped_rtp_timestamp); if (Contains(measurements_, new_measurement)) { // RTCP SR report already added. return true; } if (!new_measurement.ntp_time.Valid()) return false; int64_t ntp_ms_new = new_measurement.ntp_time.ToMs(); bool invalid_sample = false; if (!measurements_.empty()) { int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp; int64_t old_ntp_ms = measurements_.front().ntp_time.ToMs(); if (ntp_ms_new <= old_ntp_ms) { invalid_sample = true; } else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) { RTC_LOG(LS_WARNING) << "Newer RTCP SR report with older RTP timestamp, dropping"; invalid_sample = true; } else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) { // Sanity check. No jumps too far into the future in rtp. invalid_sample = true; } } if (invalid_sample) { ++consecutive_invalid_samples_; if (consecutive_invalid_samples_ < kMaxInvalidSamples) { return false; } RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " "clearing measurements."; measurements_.clear(); smoothing_filter_.Reset(); params_calculated_ = false; } consecutive_invalid_samples_ = 0; // Insert new RTCP SR report. if (measurements_.size() == kNumRtcpReportsToUse) measurements_.pop_back(); measurements_.push_front(new_measurement); *new_rtcp_sr = true; // List updated, calculate new parameters. UpdateParameters(); return true; } bool RtpToNtpEstimator::Estimate(int64_t rtp_timestamp, int64_t* rtp_timestamp_ms) const { if (!params_calculated_) return false; int64_t rtp_timestamp_unwrapped = unwrapper_.Unwrap(rtp_timestamp); Parameters params = smoothing_filter_.GetFilteredValue(); // params_calculated_ should not be true unless ms params.frequency_khz has // been calculated to something non zero. RTC_DCHECK_NE(params.frequency_khz, 0.0); double rtp_ms = (static_cast(rtp_timestamp_unwrapped) - params.offset_ms) / params.frequency_khz + 0.5f; if (rtp_ms < 0) return false; *rtp_timestamp_ms = rtp_ms; return true; } const rtc::Optional RtpToNtpEstimator::params() const { rtc::Optional res; if (params_calculated_) { res.emplace(smoothing_filter_.GetFilteredValue()); } return res; } } // namespace webrtc