/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/render_delay_controller.h" #include #include #include #include #include #include "api/audio/echo_canceller3_config.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "modules/audio_processing/aec3/echo_path_delay_estimator.h" #include "modules/audio_processing/aec3/render_delay_controller_metrics.h" #include "rtc_base/atomicops.h" #include "rtc_base/constructormagic.h" namespace webrtc { namespace { constexpr int kSkewHistorySizeLog2 = 8; // Estimator of API call skew between render and capture. class SkewEstimator { public: // Resets the estimation. void Reset() { skew_ = 0; next_index_ = 0; sufficient_skew_stored_ = false; } // Updates the skew data for a render call. void LogRenderCall() { ++skew_; } // Updates and computes the skew at a capture call. Returns an optional which // is non-null if a reliable skew has been found. rtc::Optional GetSkewFromCapture() { --skew_; skew_history_[next_index_] = skew_; if (++next_index_ == skew_history_.size()) { next_index_ = 0; sufficient_skew_stored_ = true; } if (!sufficient_skew_stored_) { return rtc::nullopt; } return std::accumulate(skew_history_.begin(), skew_history_.end(), 0) >> kSkewHistorySizeLog2; } private: int skew_ = 0; std::array skew_history_; size_t next_index_ = 0; bool sufficient_skew_stored_ = false; }; class RenderDelayControllerImpl final : public RenderDelayController { public: RenderDelayControllerImpl(const EchoCanceller3Config& config, int non_causal_offset, int sample_rate_hz); ~RenderDelayControllerImpl() override; void Reset() override; void LogRenderCall() override; rtc::Optional GetDelay( const DownsampledRenderBuffer& render_buffer, rtc::ArrayView capture) override; private: static int instance_count_; std::unique_ptr data_dumper_; const int delay_headroom_blocks_; const int hysteresis_limit_1_blocks_; const int hysteresis_limit_2_blocks_; rtc::Optional delay_; EchoPathDelayEstimator delay_estimator_; std::vector delay_buf_; int delay_buf_index_ = 0; RenderDelayControllerMetrics metrics_; SkewEstimator skew_estimator_; rtc::Optional delay_samples_; rtc::Optional skew_; int delay_change_counter_ = 0; size_t soft_reset_counter_ = 0; RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(RenderDelayControllerImpl); }; DelayEstimate ComputeBufferDelay( const rtc::Optional& current_delay, int delay_headroom_blocks, int hysteresis_limit_1_blocks, int hysteresis_limit_2_blocks, int offset_blocks, DelayEstimate estimated_delay) { // The below division is not exact and the truncation is intended. const int echo_path_delay_blocks = estimated_delay.delay >> kBlockSizeLog2; // Compute the buffer delay increase required to achieve the desired latency. size_t new_delay_blocks = std::max( echo_path_delay_blocks + offset_blocks - delay_headroom_blocks, 0); // Add hysteresis. if (current_delay) { size_t current_delay_blocks = current_delay->delay; if (new_delay_blocks > current_delay_blocks) { if (new_delay_blocks <= current_delay_blocks + hysteresis_limit_1_blocks) { new_delay_blocks = current_delay_blocks; } } else if (new_delay_blocks < current_delay_blocks) { size_t hysteresis_limit = std::max( static_cast(current_delay_blocks) - hysteresis_limit_2_blocks, 0); if (new_delay_blocks >= hysteresis_limit) { new_delay_blocks = current_delay_blocks; } } } return DelayEstimate(estimated_delay.quality, new_delay_blocks); } int RenderDelayControllerImpl::instance_count_ = 0; RenderDelayControllerImpl::RenderDelayControllerImpl( const EchoCanceller3Config& config, int non_causal_offset, int sample_rate_hz) : data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), delay_headroom_blocks_( static_cast(config.delay.delay_headroom_blocks)), hysteresis_limit_1_blocks_( static_cast(config.delay.hysteresis_limit_1_blocks)), hysteresis_limit_2_blocks_( static_cast(config.delay.hysteresis_limit_2_blocks)), delay_estimator_(data_dumper_.get(), config), delay_buf_(kBlockSize * non_causal_offset, 0.f) { RTC_DCHECK(ValidFullBandRate(sample_rate_hz)); delay_estimator_.LogDelayEstimationProperties(sample_rate_hz, delay_buf_.size()); } RenderDelayControllerImpl::~RenderDelayControllerImpl() = default; void RenderDelayControllerImpl::Reset() { delay_ = rtc::nullopt; delay_samples_ = rtc::nullopt; skew_ = rtc::nullopt; std::fill(delay_buf_.begin(), delay_buf_.end(), 0.f); delay_estimator_.Reset(false); skew_estimator_.Reset(); delay_change_counter_ = 0; soft_reset_counter_ = 0; } void RenderDelayControllerImpl::LogRenderCall() { skew_estimator_.LogRenderCall(); } rtc::Optional RenderDelayControllerImpl::GetDelay( const DownsampledRenderBuffer& render_buffer, rtc::ArrayView capture) { RTC_DCHECK_EQ(kBlockSize, capture.size()); // Estimate the delay with a delayed capture. RTC_DCHECK_LT(delay_buf_index_ + kBlockSize - 1, delay_buf_.size()); rtc::ArrayView capture_delayed(&delay_buf_[delay_buf_index_], kBlockSize); auto delay_samples = delay_estimator_.EstimateDelay(render_buffer, capture_delayed); std::copy(capture.begin(), capture.end(), delay_buf_.begin() + delay_buf_index_); delay_buf_index_ = (delay_buf_index_ + kBlockSize) % delay_buf_.size(); // Compute the latest skew update. rtc::Optional skew = skew_estimator_.GetSkewFromCapture(); if (delay_samples) { if (!delay_samples_ || delay_samples->delay != delay_samples_->delay) { delay_change_counter_ = 0; } delay_samples_ = delay_samples; } if (delay_change_counter_ < 2 * kNumBlocksPerSecond) { ++delay_change_counter_; // If a new delay estimate is recently obtained, store the skew for that. skew_ = skew; } else { // A reliable skew should have been obtained after 2 seconds. RTC_DCHECK(skew_); RTC_DCHECK(skew); } ++soft_reset_counter_; int offset_blocks = 0; if (skew_ && skew && delay_samples_ && delay_samples_->quality == DelayEstimate::Quality::kRefined) { // Compute the skew offset and add a margin. offset_blocks = *skew_ - *skew; if (offset_blocks != 0 && soft_reset_counter_ > 10 * kNumBlocksPerSecond) { // Soft reset the delay estimator if there is a significant offset // detected. delay_estimator_.Reset(true); soft_reset_counter_ = 0; } } if (delay_samples_) { // Compute the render delay buffer delay. delay_ = ComputeBufferDelay( delay_, delay_headroom_blocks_, hysteresis_limit_1_blocks_, hysteresis_limit_2_blocks_, offset_blocks, *delay_samples_); } metrics_.Update(delay_samples_ ? rtc::Optional(delay_samples_->delay) : rtc::nullopt, delay_ ? delay_->delay : 0); data_dumper_->DumpRaw("aec3_render_delay_controller_delay", delay_samples ? delay_samples->delay : 0); data_dumper_->DumpRaw("aec3_render_delay_controller_buffer_delay", delay_ ? delay_->delay : 0); data_dumper_->DumpRaw("aec3_render_delay_controller_new_skew", skew ? *skew : 0); data_dumper_->DumpRaw("aec3_render_delay_controller_old_skew", skew_ ? *skew_ : 0); data_dumper_->DumpRaw("aec3_render_delay_controller_offset", offset_blocks); return delay_; } } // namespace RenderDelayController* RenderDelayController::Create( const EchoCanceller3Config& config, int non_causal_offset, int sample_rate_hz) { return new RenderDelayControllerImpl(config, non_causal_offset, sample_rate_hz); } } // namespace webrtc