/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for DelayManager class. #include "modules/audio_coding/neteq/delay_manager.h" #include #include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { using ::testing::Return; using ::testing::_; class DelayManagerTest : public ::testing::Test { protected: static const int kMaxNumberOfPackets = 240; static const int kTimeStepMs = 10; static const int kFs = 8000; static const int kFrameSizeMs = 20; static const int kTsIncrement = kFrameSizeMs * kFs / 1000; DelayManagerTest(); virtual void SetUp(); virtual void TearDown(); void SetPacketAudioLength(int lengt_ms); void InsertNextPacket(); void IncreaseTime(int inc_ms); DelayManager* dm_; TickTimer tick_timer_; MockDelayPeakDetector detector_; uint16_t seq_no_; uint32_t ts_; }; DelayManagerTest::DelayManagerTest() : dm_(NULL), detector_(&tick_timer_), seq_no_(0x1234), ts_(0x12345678) {} void DelayManagerTest::SetUp() { EXPECT_CALL(detector_, Reset()) .Times(1); dm_ = new DelayManager(kMaxNumberOfPackets, &detector_, &tick_timer_); } void DelayManagerTest::SetPacketAudioLength(int lengt_ms) { EXPECT_CALL(detector_, SetPacketAudioLength(lengt_ms)); dm_->SetPacketAudioLength(lengt_ms); } void DelayManagerTest::InsertNextPacket() { EXPECT_EQ(0, dm_->Update(seq_no_, ts_, kFs)); seq_no_ += 1; ts_ += kTsIncrement; } void DelayManagerTest::IncreaseTime(int inc_ms) { for (int t = 0; t < inc_ms; t += kTimeStepMs) { tick_timer_.Increment(); } } void DelayManagerTest::TearDown() { EXPECT_CALL(detector_, Die()); delete dm_; } TEST_F(DelayManagerTest, CreateAndDestroy) { // Nothing to do here. The test fixture creates and destroys the DelayManager // object. } TEST_F(DelayManagerTest, VectorInitialization) { const DelayManager::IATVector& vec = dm_->iat_vector(); double sum = 0.0; for (size_t i = 0; i < vec.size(); i++) { EXPECT_NEAR(ldexp(pow(0.5, static_cast(i + 1)), 30), vec[i], 65537); // Tolerance 65537 in Q30 corresponds to a delta of approximately 0.00006. sum += vec[i]; } EXPECT_EQ(1 << 30, static_cast(sum)); // Should be 1 in Q30. } TEST_F(DelayManagerTest, SetPacketAudioLength) { const int kLengthMs = 30; // Expect DelayManager to pass on the new length to the detector object. EXPECT_CALL(detector_, SetPacketAudioLength(kLengthMs)) .Times(1); EXPECT_EQ(0, dm_->SetPacketAudioLength(kLengthMs)); EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); // Illegal parameter value. } TEST_F(DelayManagerTest, PeakFound) { // Expect DelayManager to pass on the question to the detector. // Call twice, and let the detector return true the first time and false the // second time. EXPECT_CALL(detector_, peak_found()) .WillOnce(Return(true)) .WillOnce(Return(false)); EXPECT_TRUE(dm_->PeakFound()); EXPECT_FALSE(dm_->PeakFound()); } TEST_F(DelayManagerTest, UpdateNormal) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to 1 packet, and (base) target level equal to 1 as well. // Return false to indicate no peaks found. EXPECT_CALL(detector_, Update(1, 1)) .WillOnce(Return(false)); InsertNextPacket(); EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. EXPECT_EQ(1, dm_->base_target_level()); int lower, higher; dm_->BufferLimits(&lower, &higher); // Expect |lower| to be 75% of target level, and |higher| to be target level, // but also at least 20 ms higher than |lower|, which is the limiting case // here. EXPECT_EQ((1 << 8) * 3 / 4, lower); EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); } TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by two frame size. IncreaseTime(2 * kFrameSizeMs); // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to 1 packet, and (base) target level equal to 1 as well. // Return false to indicate no peaks found. EXPECT_CALL(detector_, Update(2, 2)) .WillOnce(Return(false)); InsertNextPacket(); EXPECT_EQ(2 << 8, dm_->TargetLevel()); // In Q8. EXPECT_EQ(2, dm_->base_target_level()); int lower, higher; dm_->BufferLimits(&lower, &higher); // Expect |lower| to be 75% of target level, and |higher| to be target level, // but also at least 20 ms higher than |lower|, which is the limiting case // here. EXPECT_EQ((2 << 8) * 3 / 4, lower); EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); } TEST_F(DelayManagerTest, UpdatePeakFound) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to 1 packet, and (base) target level equal to 1 as well. // Return true to indicate that peaks are found. Let the peak height be 5. EXPECT_CALL(detector_, Update(1, 1)) .WillOnce(Return(true)); EXPECT_CALL(detector_, MaxPeakHeight()) .WillOnce(Return(5)); InsertNextPacket(); EXPECT_EQ(5 << 8, dm_->TargetLevel()); EXPECT_EQ(1, dm_->base_target_level()); // Base target level is w/o peaks. int lower, higher; dm_->BufferLimits(&lower, &higher); // Expect |lower| to be 75% of target level, and |higher| to be target level. EXPECT_EQ((5 << 8) * 3 / 4, lower); EXPECT_EQ(5 << 8, higher); } TEST_F(DelayManagerTest, TargetDelay) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to 1 packet, and (base) target level equal to 1 as well. // Return false to indicate no peaks found. EXPECT_CALL(detector_, Update(1, 1)) .WillOnce(Return(false)); InsertNextPacket(); const int kExpectedTarget = 1; EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); // In Q8. EXPECT_EQ(1, dm_->base_target_level()); int lower, higher; dm_->BufferLimits(&lower, &higher); // Expect |lower| to be 75% of base target level, and |higher| to be // lower + 20 ms headroom. EXPECT_EQ((1 << 8) * 3 / 4, lower); EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); } TEST_F(DelayManagerTest, MaxAndRequiredDelay) { const int kExpectedTarget = 5; const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to |kExpectedTarget| packet. Return true to indicate peaks found. EXPECT_CALL(detector_, Update(kExpectedTarget, _)) .WillRepeatedly(Return(true)); EXPECT_CALL(detector_, MaxPeakHeight()) .WillRepeatedly(Return(kExpectedTarget)); IncreaseTime(kTimeIncrement); InsertNextPacket(); // No limit is set. EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); int kMaxDelayPackets = kExpectedTarget - 2; int kMaxDelayMs = kMaxDelayPackets * kFrameSizeMs; EXPECT_TRUE(dm_->SetMaximumDelay(kMaxDelayMs)); IncreaseTime(kTimeIncrement); InsertNextPacket(); EXPECT_EQ(kExpectedTarget * kFrameSizeMs, dm_->least_required_delay_ms()); EXPECT_EQ(kMaxDelayPackets << 8, dm_->TargetLevel()); // Target level at least should be one packet. EXPECT_FALSE(dm_->SetMaximumDelay(kFrameSizeMs - 1)); } TEST_F(DelayManagerTest, MinAndRequiredDelay) { const int kExpectedTarget = 5; const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to |kExpectedTarget| packet. Return true to indicate peaks found. EXPECT_CALL(detector_, Update(kExpectedTarget, _)) .WillRepeatedly(Return(true)); EXPECT_CALL(detector_, MaxPeakHeight()) .WillRepeatedly(Return(kExpectedTarget)); IncreaseTime(kTimeIncrement); InsertNextPacket(); // No limit is applied. EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); int kMinDelayPackets = kExpectedTarget + 2; int kMinDelayMs = kMinDelayPackets * kFrameSizeMs; dm_->SetMinimumDelay(kMinDelayMs); IncreaseTime(kTimeIncrement); InsertNextPacket(); EXPECT_EQ(kExpectedTarget * kFrameSizeMs, dm_->least_required_delay_ms()); EXPECT_EQ(kMinDelayPackets << 8, dm_->TargetLevel()); } // Tests that skipped sequence numbers (simulating empty packets) are handled // correctly. TEST_F(DelayManagerTest, EmptyPacketsReported) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Advance the sequence number by 5, simulating that 5 empty packets were // received, but never inserted. seq_no_ += 10; for (int j = 0; j < 10; ++j) { dm_->RegisterEmptyPacket(); } // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to 1 packet, and (base) target level equal to 1 as well. // Return false to indicate no peaks found. EXPECT_CALL(detector_, Update(1, 1)).WillOnce(Return(false)); InsertNextPacket(); EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. } // Same as above, but do not call RegisterEmptyPacket. Observe the target level // increase dramatically. TEST_F(DelayManagerTest, EmptyPacketsNotReported) { SetPacketAudioLength(kFrameSizeMs); // First packet arrival. InsertNextPacket(); // Advance time by one frame size. IncreaseTime(kFrameSizeMs); // Advance the sequence number by 5, simulating that 5 empty packets were // received, but never inserted. seq_no_ += 10; // Second packet arrival. // Expect detector update method to be called once with inter-arrival time // equal to 1 packet, and (base) target level equal to 1 as well. // Return false to indicate no peaks found. EXPECT_CALL(detector_, Update(10, 10)).WillOnce(Return(false)); InsertNextPacket(); // Note 10 times higher target value. EXPECT_EQ(10 * 1 << 8, dm_->TargetLevel()); // In Q8. } TEST_F(DelayManagerTest, Failures) { // Wrong sample rate. EXPECT_EQ(-1, dm_->Update(0, 0, -1)); // Wrong packet size. EXPECT_EQ(-1, dm_->SetPacketAudioLength(0)); EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); // Minimum delay higher than a maximum delay is not accepted. EXPECT_TRUE(dm_->SetMaximumDelay(10)); EXPECT_FALSE(dm_->SetMinimumDelay(20)); // Maximum delay less than minimum delay is not accepted. EXPECT_TRUE(dm_->SetMaximumDelay(100)); EXPECT_TRUE(dm_->SetMinimumDelay(80)); EXPECT_FALSE(dm_->SetMaximumDelay(60)); } // Test if the histogram is stretched correctly if the packet size is decreased. TEST(DelayManagerIATScalingTest, StretchTest) { using IATVector = DelayManager::IATVector; // Test a straightforward 60ms to 20ms change. IATVector iat = {12, 0, 0, 0, 0, 0}; IATVector expected_result = {4, 4, 4, 0, 0, 0}; IATVector stretched_iat = DelayManager::ScaleHistogram(iat, 60, 20); EXPECT_EQ(stretched_iat, expected_result); // Test an example where the last bin in the stretched histogram should // contain the sum of the elements that don't fit into the new histogram. iat = {18, 15, 12, 9, 6, 3, 0}; expected_result = {6, 6, 6, 5, 5, 5, 30}; stretched_iat = DelayManager::ScaleHistogram(iat, 60, 20); EXPECT_EQ(stretched_iat, expected_result); // Test a 120ms to 60ms change. iat = {18, 16, 14, 4, 0}; expected_result = {9, 9, 8, 8, 18}; stretched_iat = DelayManager::ScaleHistogram(iat, 120, 60); EXPECT_EQ(stretched_iat, expected_result); // Test a 120ms to 20ms change. iat = {19, 12, 0, 0, 0, 0, 0, 0}; expected_result = {3, 3, 3, 3, 3, 3, 2, 11}; stretched_iat = DelayManager::ScaleHistogram(iat, 120, 20); EXPECT_EQ(stretched_iat, expected_result); // Test a 70ms to 40ms change. iat = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0}; expected_result = {7, 5, 5, 3, 3, 2, 2, 1, 2, 2, 6, 22}; stretched_iat = DelayManager::ScaleHistogram(iat, 70, 40); EXPECT_EQ(stretched_iat, expected_result); // Test a 30ms to 20ms change. iat = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0}; expected_result = {8, 6, 6, 3, 2, 2, 1, 3, 3, 8, 7, 11}; stretched_iat = DelayManager::ScaleHistogram(iat, 30, 20); EXPECT_EQ(stretched_iat, expected_result); } // Test if the histogram is compressed correctly if the packet size is // increased. TEST(DelayManagerIATScalingTest, CompressionTest) { using IATVector = DelayManager::IATVector; // Test a 20 to 60 ms change. IATVector iat = {12, 11, 10, 3, 2, 1}; IATVector expected_result = {33, 6, 0, 0, 0, 0}; IATVector compressed_iat = DelayManager::ScaleHistogram(iat, 20, 60); EXPECT_EQ(compressed_iat, expected_result); // Test a 60ms to 120ms change. iat = {18, 16, 14, 4, 1}; expected_result = {34, 18, 1, 0, 0}; compressed_iat = DelayManager::ScaleHistogram(iat, 60, 120); EXPECT_EQ(compressed_iat, expected_result); // Test a 20ms to 120ms change. iat = {18, 12, 5, 4, 4, 3, 5, 1}; expected_result = {46, 6, 0, 0, 0, 0, 0, 0}; compressed_iat = DelayManager::ScaleHistogram(iat, 20, 120); EXPECT_EQ(compressed_iat, expected_result); // Test a 70ms to 80ms change. iat = {13, 7, 5, 3, 1, 5, 12, 11, 3}; expected_result = {11, 8, 6, 2, 5, 12, 13, 3, 0}; compressed_iat = DelayManager::ScaleHistogram(iat, 70, 80); EXPECT_EQ(compressed_iat, expected_result); // Test a 50ms to 110ms change. iat = {13, 7, 5, 3, 1, 5, 12, 11, 3}; expected_result = {18, 8, 16, 16, 2, 0, 0, 0, 0}; compressed_iat = DelayManager::ScaleHistogram(iat, 50, 110); EXPECT_EQ(compressed_iat, expected_result); } } // namespace webrtc