/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "modules/audio_coding/codecs/isac/fix/include/audio_encoder_isacfix.h" #include "modules/audio_coding/codecs/isac/main/include/audio_encoder_isac.h" #include "modules/audio_coding/neteq/tools/input_audio_file.h" #include "rtc_base/buffer.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/strings/string_builder.h" #include "test/gtest.h" #include "test/testsupport/fileutils.h" namespace webrtc { namespace { const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz std::vector LoadSpeechData() { webrtc::test::InputAudioFile input_file( webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm")); std::vector speech_data(kIsacNumberOfSamples); input_file.Read(kIsacNumberOfSamples, speech_data.data()); return speech_data; } template IsacBandwidthInfo GetBwInfo(typename T::instance_type* inst) { IsacBandwidthInfo bi; T::GetBandwidthInfo(inst, &bi); EXPECT_TRUE(bi.in_use); return bi; } // Encodes one packet. Returns the packet duration in milliseconds. template int EncodePacket(typename T::instance_type* inst, const IsacBandwidthInfo* bi, const int16_t* speech_data, rtc::Buffer* output) { output->SetSize(1000); for (int duration_ms = 10;; duration_ms += 10) { if (bi) T::SetBandwidthInfo(inst, bi); int encoded_bytes = T::Encode(inst, speech_data, output->data()); if (encoded_bytes > 0 || duration_ms >= 60) { EXPECT_GT(encoded_bytes, 0); EXPECT_LE(static_cast(encoded_bytes), output->size()); output->SetSize(encoded_bytes); return duration_ms; } } } template std::vector DecodePacket(typename T::instance_type* inst, const rtc::Buffer& encoded) { std::vector decoded(kIsacNumberOfSamples); int16_t speech_type; int nsamples = T::DecodeInternal(inst, encoded.data(), encoded.size(), &decoded.front(), &speech_type); EXPECT_GT(nsamples, 0); EXPECT_LE(static_cast(nsamples), decoded.size()); decoded.resize(nsamples); return decoded; } class BoundedCapacityChannel final { public: BoundedCapacityChannel(int sample_rate_hz, int rate_bits_per_second) : current_time_rtp_(0), channel_rate_bytes_per_sample_(rate_bits_per_second / (8.0 * sample_rate_hz)) {} // Simulate sending the given number of bytes at the given RTP time. Returns // the new current RTP time after the sending is done. int Send(int send_time_rtp, int nbytes) { current_time_rtp_ = std::max(current_time_rtp_, send_time_rtp) + nbytes / channel_rate_bytes_per_sample_; return current_time_rtp_; } private: int current_time_rtp_; // The somewhat strange unit for channel rate, bytes per sample, is because // RTP time is measured in samples: const double channel_rate_bytes_per_sample_; }; // Test that the iSAC encoder produces identical output whether or not we use a // conjoined encoder+decoder pair or a separate encoder and decoder that // communicate BW estimation info explicitly. template void TestGetSetBandwidthInfo(const int16_t* speech_data, int rate_bits_per_second, int sample_rate_hz, int frame_size_ms) { const int bit_rate = 32000; // Conjoined encoder/decoder pair: typename T::instance_type* encdec; ASSERT_EQ(0, T::Create(&encdec)); ASSERT_EQ(0, T::EncoderInit(encdec, adaptive ? 0 : 1)); T::DecoderInit(encdec); ASSERT_EQ(0, T::SetEncSampRate(encdec, sample_rate_hz)); if (adaptive) ASSERT_EQ(0, T::ControlBwe(encdec, bit_rate, frame_size_ms, false)); else ASSERT_EQ(0, T::Control(encdec, bit_rate, frame_size_ms)); // Disjoint encoder/decoder pair: typename T::instance_type* enc; ASSERT_EQ(0, T::Create(&enc)); ASSERT_EQ(0, T::EncoderInit(enc, adaptive ? 0 : 1)); ASSERT_EQ(0, T::SetEncSampRate(enc, sample_rate_hz)); if (adaptive) ASSERT_EQ(0, T::ControlBwe(enc, bit_rate, frame_size_ms, false)); else ASSERT_EQ(0, T::Control(enc, bit_rate, frame_size_ms)); typename T::instance_type* dec; ASSERT_EQ(0, T::Create(&dec)); T::DecoderInit(dec); T::SetInitialBweBottleneck(dec, bit_rate); T::SetEncSampRateInDecoder(dec, sample_rate_hz); // 0. Get initial BW info from decoder. auto bi = GetBwInfo(dec); BoundedCapacityChannel channel1(sample_rate_hz, rate_bits_per_second), channel2(sample_rate_hz, rate_bits_per_second); int elapsed_time_ms = 0; for (int i = 0; elapsed_time_ms < 10000; ++i) { rtc::StringBuilder ss; ss << " i = " << i; SCOPED_TRACE(ss.str()); // 1. Encode 3 * 10 ms or 6 * 10 ms. The separate encoder is given the BW // info before each encode call. rtc::Buffer bitstream1, bitstream2; int duration1_ms = EncodePacket(encdec, nullptr, speech_data, &bitstream1); int duration2_ms = EncodePacket(enc, &bi, speech_data, &bitstream2); EXPECT_EQ(duration1_ms, duration2_ms); if (adaptive) EXPECT_TRUE(duration1_ms == 30 || duration1_ms == 60); else EXPECT_EQ(frame_size_ms, duration1_ms); ASSERT_EQ(bitstream1.size(), bitstream2.size()); EXPECT_EQ(bitstream1, bitstream2); // 2. Deliver the encoded data to the decoders. const int send_time = elapsed_time_ms * (sample_rate_hz / 1000); EXPECT_EQ(0, T::UpdateBwEstimate( encdec, bitstream1.data(), bitstream1.size(), i, send_time, channel1.Send(send_time, rtc::checked_cast(bitstream1.size())))); EXPECT_EQ(0, T::UpdateBwEstimate( dec, bitstream2.data(), bitstream2.size(), i, send_time, channel2.Send(send_time, rtc::checked_cast(bitstream2.size())))); // 3. Decode, and get new BW info from the separate decoder. ASSERT_EQ(0, T::SetDecSampRate(encdec, sample_rate_hz)); ASSERT_EQ(0, T::SetDecSampRate(dec, sample_rate_hz)); auto decoded1 = DecodePacket(encdec, bitstream1); auto decoded2 = DecodePacket(dec, bitstream2); EXPECT_EQ(decoded1, decoded2); bi = GetBwInfo(dec); elapsed_time_ms += duration1_ms; } EXPECT_EQ(0, T::Free(encdec)); EXPECT_EQ(0, T::Free(enc)); EXPECT_EQ(0, T::Free(dec)); } enum class IsacType { Fix, Float }; std::ostream& operator<<(std::ostream& os, IsacType t) { os << (t == IsacType::Fix ? "fix" : "float"); return os; } struct IsacTestParam { IsacType isac_type; bool adaptive; int channel_rate_bits_per_second; int sample_rate_hz; int frame_size_ms; friend std::ostream& operator<<(std::ostream& os, const IsacTestParam& itp) { os << '{' << itp.isac_type << ',' << (itp.adaptive ? "adaptive" : "nonadaptive") << ',' << itp.channel_rate_bits_per_second << ',' << itp.sample_rate_hz << ',' << itp.frame_size_ms << '}'; return os; } }; class IsacCommonTest : public testing::TestWithParam {}; } // namespace TEST_P(IsacCommonTest, GetSetBandwidthInfo) { auto p = GetParam(); auto test_fun = [p] { if (p.isac_type == IsacType::Fix) { if (p.adaptive) return TestGetSetBandwidthInfo; else return TestGetSetBandwidthInfo; } else { if (p.adaptive) return TestGetSetBandwidthInfo; else return TestGetSetBandwidthInfo; } }(); test_fun(LoadSpeechData().data(), p.channel_rate_bits_per_second, p.sample_rate_hz, p.frame_size_ms); } std::vector TestCases() { static const IsacType types[] = {IsacType::Fix, IsacType::Float}; static const bool adaptives[] = {true, false}; static const int channel_rates[] = {12000, 15000, 19000, 22000}; static const int sample_rates[] = {16000, 32000}; static const int frame_sizes[] = {30, 60}; std::vector cases; for (IsacType type : types) for (bool adaptive : adaptives) for (int channel_rate : channel_rates) for (int sample_rate : sample_rates) if (!(type == IsacType::Fix && sample_rate == 32000)) for (int frame_size : frame_sizes) if (!(sample_rate == 32000 && frame_size == 60)) cases.push_back( {type, adaptive, channel_rate, sample_rate, frame_size}); return cases; } INSTANTIATE_TEST_CASE_P(, IsacCommonTest, testing::ValuesIn(TestCases())); } // namespace webrtc