/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_queue.h" #include #include #include #include #include #include #include #include #include #include #include #include "base/third_party/libevent/event.h" #include "rtc_base/checks.h" #include "rtc_base/criticalsection.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/platform_thread.h" #include "rtc_base/platform_thread_types.h" #include "rtc_base/refcount.h" #include "rtc_base/refcountedobject.h" #include "rtc_base/scoped_ref_ptr.h" #include "rtc_base/system/unused.h" #include "rtc_base/task_queue_posix.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/timeutils.h" namespace rtc { using internal::GetQueuePtrTls; using internal::AutoSetCurrentQueuePtr; namespace { static const char kQuit = 1; static const char kRunTask = 2; using Priority = TaskQueue::Priority; // This ignores the SIGPIPE signal on the calling thread. // This signal can be fired when trying to write() to a pipe that's being // closed or while closing a pipe that's being written to. // We can run into that situation so we ignore this signal and continue as // normal. // As a side note for this implementation, it would be great if we could safely // restore the sigmask, but unfortunately the operation of restoring it, can // itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS) // The SIGPIPE signal by default causes the process to be terminated, so we // don't want to risk that. // An alternative to this approach is to ignore the signal for the whole // process: // signal(SIGPIPE, SIG_IGN); void IgnoreSigPipeSignalOnCurrentThread() { sigset_t sigpipe_mask; sigemptyset(&sigpipe_mask); sigaddset(&sigpipe_mask, SIGPIPE); pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr); } struct TimerEvent { explicit TimerEvent(std::unique_ptr task) : task(std::move(task)) {} ~TimerEvent() { event_del(&ev); } event ev; std::unique_ptr task; }; bool SetNonBlocking(int fd) { const int flags = fcntl(fd, F_GETFL); RTC_CHECK(flags != -1); return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1; } // TODO(tommi): This is a hack to support two versions of libevent that we're // compatible with. The method we really want to call is event_assign(), // since event_set() has been marked as deprecated (and doesn't accept // passing event_base__ as a parameter). However, the version of libevent // that we have in Chromium, doesn't have event_assign(), so we need to call // event_set() there. void EventAssign(struct event* ev, struct event_base* base, int fd, short events, void (*callback)(int, short, void*), void* arg) { #if defined(_EVENT2_EVENT_H_) RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg)); #else event_set(ev, fd, events, callback, arg); RTC_CHECK_EQ(0, event_base_set(base, ev)); #endif } ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { switch (priority) { case Priority::HIGH: return kRealtimePriority; case Priority::LOW: return kLowPriority; case Priority::NORMAL: return kNormalPriority; default: RTC_NOTREACHED(); break; } return kNormalPriority; } } // namespace class TaskQueue::Impl : public RefCountInterface { public: explicit Impl(const char* queue_name, TaskQueue* queue, Priority priority = Priority::NORMAL); ~Impl() override; static TaskQueue::Impl* Current(); static TaskQueue* CurrentQueue(); // Used for DCHECKing the current queue. bool IsCurrent() const; void PostTask(std::unique_ptr task); void PostDelayedTask(std::unique_ptr task, uint32_t milliseconds); private: static void ThreadMain(void* context); static void OnWakeup(int socket, short flags, void* context); // NOLINT static void RunTask(int fd, short flags, void* context); // NOLINT static void RunTimer(int fd, short flags, void* context); // NOLINT class SetTimerTask; struct QueueContext; TaskQueue* const queue_; int wakeup_pipe_in_ = -1; int wakeup_pipe_out_ = -1; event_base* event_base_; std::unique_ptr wakeup_event_; PlatformThread thread_; rtc::CriticalSection pending_lock_; std::list> pending_ RTC_GUARDED_BY(pending_lock_); }; struct TaskQueue::Impl::QueueContext { explicit QueueContext(TaskQueue::Impl* q) : queue(q), is_active(true) {} TaskQueue::Impl* queue; bool is_active; // Holds a list of events pending timers for cleanup when the loop exits. std::list pending_timers_; }; class TaskQueue::Impl::SetTimerTask : public QueuedTask { public: SetTimerTask(std::unique_ptr task, uint32_t milliseconds) : task_(std::move(task)), milliseconds_(milliseconds), posted_(Time32()) {} private: bool Run() override { // Compensate for the time that has passed since construction // and until we got here. uint32_t post_time = Time32() - posted_; TaskQueue::Impl::Current()->PostDelayedTask( std::move(task_), post_time > milliseconds_ ? 0 : milliseconds_ - post_time); return true; } std::unique_ptr task_; const uint32_t milliseconds_; const uint32_t posted_; }; TaskQueue::Impl::Impl(const char* queue_name, TaskQueue* queue, Priority priority /*= NORMAL*/) : queue_(queue), event_base_(event_base_new()), wakeup_event_(new event()), thread_(&TaskQueue::Impl::ThreadMain, this, queue_name, TaskQueuePriorityToThreadPriority(priority)) { RTC_DCHECK(queue_name); int fds[2]; RTC_CHECK(pipe(fds) == 0); SetNonBlocking(fds[0]); SetNonBlocking(fds[1]); wakeup_pipe_out_ = fds[0]; wakeup_pipe_in_ = fds[1]; EventAssign(wakeup_event_.get(), event_base_, wakeup_pipe_out_, EV_READ | EV_PERSIST, OnWakeup, this); event_add(wakeup_event_.get(), 0); thread_.Start(); } TaskQueue::Impl::~Impl() { RTC_DCHECK(!IsCurrent()); struct timespec ts; char message = kQuit; while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) { // The queue is full, so we have no choice but to wait and retry. RTC_CHECK_EQ(EAGAIN, errno); ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep(&ts, nullptr); } thread_.Stop(); event_del(wakeup_event_.get()); IgnoreSigPipeSignalOnCurrentThread(); close(wakeup_pipe_in_); close(wakeup_pipe_out_); wakeup_pipe_in_ = -1; wakeup_pipe_out_ = -1; event_base_free(event_base_); } // static TaskQueue::Impl* TaskQueue::Impl::Current() { QueueContext* ctx = static_cast(pthread_getspecific(GetQueuePtrTls())); return ctx ? ctx->queue : nullptr; } // static TaskQueue* TaskQueue::Impl::CurrentQueue() { TaskQueue::Impl* current = Current(); if (current) { return current->queue_; } return nullptr; } bool TaskQueue::Impl::IsCurrent() const { return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); } void TaskQueue::Impl::PostTask(std::unique_ptr task) { RTC_DCHECK(task.get()); // libevent isn't thread safe. This means that we can't use methods such // as event_base_once to post tasks to the worker thread from a different // thread. However, we can use it when posting from the worker thread itself. if (IsCurrent()) { if (event_base_once(event_base_, -1, EV_TIMEOUT, &TaskQueue::Impl::RunTask, task.get(), nullptr) == 0) { task.release(); } } else { QueuedTask* task_id = task.get(); // Only used for comparison. { CritScope lock(&pending_lock_); pending_.push_back(std::move(task)); } char message = kRunTask; if (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) { RTC_LOG(WARNING) << "Failed to queue task."; CritScope lock(&pending_lock_); pending_.remove_if([task_id](std::unique_ptr& t) { return t.get() == task_id; }); } } } void TaskQueue::Impl::PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) { if (IsCurrent()) { TimerEvent* timer = new TimerEvent(std::move(task)); EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueue::Impl::RunTimer, timer); QueueContext* ctx = static_cast(pthread_getspecific(GetQueuePtrTls())); ctx->pending_timers_.push_back(timer); timeval tv = {rtc::dchecked_cast(milliseconds / 1000), rtc::dchecked_cast(milliseconds % 1000) * 1000}; event_add(&timer->ev, &tv); } else { PostTask(std::unique_ptr( new SetTimerTask(std::move(task), milliseconds))); } } // static void TaskQueue::Impl::ThreadMain(void* context) { TaskQueue::Impl* me = static_cast(context); QueueContext queue_context(me); pthread_setspecific(GetQueuePtrTls(), &queue_context); while (queue_context.is_active) event_base_loop(me->event_base_, 0); pthread_setspecific(GetQueuePtrTls(), nullptr); for (TimerEvent* timer : queue_context.pending_timers_) delete timer; } // static void TaskQueue::Impl::OnWakeup(int socket, short flags, void* context) { // NOLINT QueueContext* ctx = static_cast(pthread_getspecific(GetQueuePtrTls())); RTC_DCHECK(ctx->queue->wakeup_pipe_out_ == socket); char buf; RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf))); switch (buf) { case kQuit: ctx->is_active = false; event_base_loopbreak(ctx->queue->event_base_); break; case kRunTask: { std::unique_ptr task; { CritScope lock(&ctx->queue->pending_lock_); RTC_DCHECK(!ctx->queue->pending_.empty()); task = std::move(ctx->queue->pending_.front()); ctx->queue->pending_.pop_front(); RTC_DCHECK(task.get()); } if (!task->Run()) task.release(); break; } default: RTC_NOTREACHED(); break; } } // static void TaskQueue::Impl::RunTask(int fd, short flags, void* context) { // NOLINT auto* task = static_cast(context); if (task->Run()) delete task; } // static void TaskQueue::Impl::RunTimer(int fd, short flags, void* context) { // NOLINT TimerEvent* timer = static_cast(context); if (!timer->task->Run()) timer->task.release(); QueueContext* ctx = static_cast(pthread_getspecific(GetQueuePtrTls())); ctx->pending_timers_.remove(timer); delete timer; } TaskQueue::TaskQueue(const char* queue_name, Priority priority) : impl_(new RefCountedObject(queue_name, this, priority)) { } TaskQueue::~TaskQueue() {} // static TaskQueue* TaskQueue::Current() { return TaskQueue::Impl::CurrentQueue(); } // Used for DCHECKing the current queue. bool TaskQueue::IsCurrent() const { return impl_->IsCurrent(); } void TaskQueue::PostTask(std::unique_ptr task) { return TaskQueue::impl_->PostTask(std::move(task)); } void TaskQueue::PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) { return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds); } } // namespace rtc