/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/include/audio_coding_module.h" #include #include #include #include "absl/strings/match.h" #include "api/array_view.h" #include "modules/audio_coding/acm2/acm_receiver.h" #include "modules/audio_coding/acm2/acm_resampler.h" #include "modules/include/module_common_types.h" #include "modules/include/module_common_types_public.h" #include "rtc_base/buffer.h" #include "rtc_base/checks.h" #include "rtc_base/critical_section.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/thread_annotations.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { // Initial size for the buffer in InputBuffer. This matches 6 channels of 10 ms // 48 kHz data. constexpr size_t kInitialInputDataBufferSize = 6 * 480; class AudioCodingModuleImpl final : public AudioCodingModule { public: explicit AudioCodingModuleImpl(const AudioCodingModule::Config& config); ~AudioCodingModuleImpl() override; ///////////////////////////////////////// // Sender // void ModifyEncoder(rtc::FunctionView*)> modifier) override; // Register a transport callback which will be // called to deliver the encoded buffers. int RegisterTransportCallback(AudioPacketizationCallback* transport) override; // Add 10 ms of raw (PCM) audio data to the encoder. int Add10MsData(const AudioFrame& audio_frame) override; ///////////////////////////////////////// // (FEC) Forward Error Correction (codec internal) // // Set target packet loss rate int SetPacketLossRate(int loss_rate) override; ///////////////////////////////////////// // (VAD) Voice Activity Detection // and // (CNG) Comfort Noise Generation // int RegisterVADCallback(ACMVADCallback* vad_callback) override; ///////////////////////////////////////// // Receiver // // Initialize receiver, resets codec database etc. int InitializeReceiver() override; void SetReceiveCodecs(const std::map& codecs) override; // Incoming packet from network parsed and ready for decode. int IncomingPacket(const uint8_t* incoming_payload, const size_t payload_length, const RTPHeader& rtp_info) override; // Get 10 milliseconds of raw audio data to play out, and // automatic resample to the requested frequency if > 0. int PlayoutData10Ms(int desired_freq_hz, AudioFrame* audio_frame, bool* muted) override; ///////////////////////////////////////// // Statistics // int GetNetworkStatistics(NetworkStatistics* statistics) override; ANAStats GetANAStats() const override; private: struct InputData { InputData() : buffer(kInitialInputDataBufferSize) {} uint32_t input_timestamp; const int16_t* audio; size_t length_per_channel; size_t audio_channel; // If a re-mix is required (up or down), this buffer will store a re-mixed // version of the input. std::vector buffer; }; InputData input_data_ RTC_GUARDED_BY(acm_crit_sect_); // This member class writes values to the named UMA histogram, but only if // the value has changed since the last time (and always for the first call). class ChangeLogger { public: explicit ChangeLogger(const std::string& histogram_name) : histogram_name_(histogram_name) {} // Logs the new value if it is different from the last logged value, or if // this is the first call. void MaybeLog(int value); private: int last_value_ = 0; int first_time_ = true; const std::string histogram_name_; }; int Add10MsDataInternal(const AudioFrame& audio_frame, InputData* input_data) RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); int Encode(const InputData& input_data) RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); int InitializeReceiverSafe() RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); bool HaveValidEncoder(const char* caller_name) const RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); // Preprocessing of input audio, including resampling and down-mixing if // required, before pushing audio into encoder's buffer. // // in_frame: input audio-frame // ptr_out: pointer to output audio_frame. If no preprocessing is required // |ptr_out| will be pointing to |in_frame|, otherwise pointing to // |preprocess_frame_|. // // Return value: // -1: if encountering an error. // 0: otherwise. int PreprocessToAddData(const AudioFrame& in_frame, const AudioFrame** ptr_out) RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); // Change required states after starting to receive the codec corresponding // to |index|. int UpdateUponReceivingCodec(int index); rtc::CriticalSection acm_crit_sect_; rtc::Buffer encode_buffer_ RTC_GUARDED_BY(acm_crit_sect_); uint32_t expected_codec_ts_ RTC_GUARDED_BY(acm_crit_sect_); uint32_t expected_in_ts_ RTC_GUARDED_BY(acm_crit_sect_); acm2::ACMResampler resampler_ RTC_GUARDED_BY(acm_crit_sect_); acm2::AcmReceiver receiver_; // AcmReceiver has it's own internal lock. ChangeLogger bitrate_logger_ RTC_GUARDED_BY(acm_crit_sect_); // Current encoder stack, provided by a call to RegisterEncoder. std::unique_ptr encoder_stack_ RTC_GUARDED_BY(acm_crit_sect_); // This is to keep track of CN instances where we can send DTMFs. uint8_t previous_pltype_ RTC_GUARDED_BY(acm_crit_sect_); bool receiver_initialized_ RTC_GUARDED_BY(acm_crit_sect_); AudioFrame preprocess_frame_ RTC_GUARDED_BY(acm_crit_sect_); bool first_10ms_data_ RTC_GUARDED_BY(acm_crit_sect_); bool first_frame_ RTC_GUARDED_BY(acm_crit_sect_); uint32_t last_timestamp_ RTC_GUARDED_BY(acm_crit_sect_); uint32_t last_rtp_timestamp_ RTC_GUARDED_BY(acm_crit_sect_); rtc::CriticalSection callback_crit_sect_; AudioPacketizationCallback* packetization_callback_ RTC_GUARDED_BY(callback_crit_sect_); ACMVADCallback* vad_callback_ RTC_GUARDED_BY(callback_crit_sect_); int codec_histogram_bins_log_[static_cast( AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)]; int number_of_consecutive_empty_packets_; }; // Adds a codec usage sample to the histogram. void UpdateCodecTypeHistogram(size_t codec_type) { RTC_HISTOGRAM_ENUMERATION( "WebRTC.Audio.Encoder.CodecType", static_cast(codec_type), static_cast( webrtc::AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)); } // Stereo-to-mono can be used as in-place. void DownMix(const AudioFrame& frame, size_t length_out_buff, int16_t* out_buff) { RTC_DCHECK_EQ(frame.num_channels_, 2); RTC_DCHECK_GE(length_out_buff, frame.samples_per_channel_); if (!frame.muted()) { const int16_t* frame_data = frame.data(); for (size_t n = 0; n < frame.samples_per_channel_; ++n) { out_buff[n] = static_cast((static_cast(frame_data[2 * n]) + static_cast(frame_data[2 * n + 1])) >> 1); } } else { std::fill(out_buff, out_buff + frame.samples_per_channel_, 0); } } // Remixes the input frame to an output data vector. The output vector is // resized if needed. void ReMix(const AudioFrame& input, size_t num_output_channels, std::vector* output) { const size_t output_size = num_output_channels * input.samples_per_channel_; if (output->size() != output_size) { output->resize(output_size); } // For muted frames, fill the frame with zeros. if (input.muted()) { std::fill(output->begin(), output->end(), 0); return; } // Ensure that the special case of zero input channels is handled correctly // (zero samples per channel is already handled correctly in the code below). if (input.num_channels_ == 0) { return; } const int16_t* input_data = input.data(); size_t in_index = 0; size_t out_index = 0; // When upmixing is needed, duplicate the last channel of the input. if (input.num_channels_ < num_output_channels) { for (size_t k = 0; k < input.samples_per_channel_; ++k) { for (size_t j = 0; j < input.num_channels_; ++j) { (*output)[out_index++] = input_data[in_index++]; } RTC_DCHECK_GT(in_index, 0); const int16_t value_last_channel = input_data[in_index - 1]; for (size_t j = input.num_channels_; j < num_output_channels; ++j) { (*output)[out_index++] = value_last_channel; } } return; } // When downmixing is needed, and the input is stereo, average the channels. if (input.num_channels_ == 2) { for (size_t n = 0; n < input.samples_per_channel_; ++n) { (*output)[n] = static_cast((static_cast(input_data[2 * n]) + static_cast(input_data[2 * n + 1])) >> 1); } return; } // When downmixing is needed, and the input is multichannel, drop the surplus // channels. const size_t num_channels_to_drop = input.num_channels_ - num_output_channels; for (size_t k = 0; k < input.samples_per_channel_; ++k) { for (size_t j = 0; j < num_output_channels; ++j) { (*output)[out_index++] = input_data[in_index++]; } in_index += num_channels_to_drop; } } void AudioCodingModuleImpl::ChangeLogger::MaybeLog(int value) { if (value != last_value_ || first_time_) { first_time_ = false; last_value_ = value; RTC_HISTOGRAM_COUNTS_SPARSE_100(histogram_name_, value); } } AudioCodingModuleImpl::AudioCodingModuleImpl( const AudioCodingModule::Config& config) : expected_codec_ts_(0xD87F3F9F), expected_in_ts_(0xD87F3F9F), receiver_(config), bitrate_logger_("WebRTC.Audio.TargetBitrateInKbps"), encoder_stack_(nullptr), previous_pltype_(255), receiver_initialized_(false), first_10ms_data_(false), first_frame_(true), packetization_callback_(NULL), vad_callback_(NULL), codec_histogram_bins_log_(), number_of_consecutive_empty_packets_(0) { if (InitializeReceiverSafe() < 0) { RTC_LOG(LS_ERROR) << "Cannot initialize receiver"; } RTC_LOG(LS_INFO) << "Created"; } AudioCodingModuleImpl::~AudioCodingModuleImpl() = default; int32_t AudioCodingModuleImpl::Encode(const InputData& input_data) { AudioEncoder::EncodedInfo encoded_info; uint8_t previous_pltype; // Check if there is an encoder before. if (!HaveValidEncoder("Process")) return -1; if (!first_frame_) { RTC_DCHECK(IsNewerTimestamp(input_data.input_timestamp, last_timestamp_)) << "Time should not move backwards"; } // Scale the timestamp to the codec's RTP timestamp rate. uint32_t rtp_timestamp = first_frame_ ? input_data.input_timestamp : last_rtp_timestamp_ + rtc::dchecked_cast(rtc::CheckedDivExact( int64_t{input_data.input_timestamp - last_timestamp_} * encoder_stack_->RtpTimestampRateHz(), int64_t{encoder_stack_->SampleRateHz()})); last_timestamp_ = input_data.input_timestamp; last_rtp_timestamp_ = rtp_timestamp; first_frame_ = false; // Clear the buffer before reuse - encoded data will get appended. encode_buffer_.Clear(); encoded_info = encoder_stack_->Encode( rtp_timestamp, rtc::ArrayView( input_data.audio, input_data.audio_channel * input_data.length_per_channel), &encode_buffer_); bitrate_logger_.MaybeLog(encoder_stack_->GetTargetBitrate() / 1000); if (encode_buffer_.size() == 0 && !encoded_info.send_even_if_empty) { // Not enough data. return 0; } previous_pltype = previous_pltype_; // Read it while we have the critsect. // Log codec type to histogram once every 500 packets. if (encoded_info.encoded_bytes == 0) { ++number_of_consecutive_empty_packets_; } else { size_t codec_type = static_cast(encoded_info.encoder_type); codec_histogram_bins_log_[codec_type] += number_of_consecutive_empty_packets_ + 1; number_of_consecutive_empty_packets_ = 0; if (codec_histogram_bins_log_[codec_type] >= 500) { codec_histogram_bins_log_[codec_type] -= 500; UpdateCodecTypeHistogram(codec_type); } } AudioFrameType frame_type; if (encode_buffer_.size() == 0 && encoded_info.send_even_if_empty) { frame_type = AudioFrameType::kEmptyFrame; encoded_info.payload_type = previous_pltype; } else { RTC_DCHECK_GT(encode_buffer_.size(), 0); frame_type = encoded_info.speech ? AudioFrameType::kAudioFrameSpeech : AudioFrameType::kAudioFrameCN; } { rtc::CritScope lock(&callback_crit_sect_); if (packetization_callback_) { packetization_callback_->SendData( frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp, encode_buffer_.data(), encode_buffer_.size()); } if (vad_callback_) { // Callback with VAD decision. vad_callback_->InFrameType(frame_type); } } previous_pltype_ = encoded_info.payload_type; return static_cast(encode_buffer_.size()); } ///////////////////////////////////////// // Sender // void AudioCodingModuleImpl::ModifyEncoder( rtc::FunctionView*)> modifier) { rtc::CritScope lock(&acm_crit_sect_); modifier(&encoder_stack_); } // Register a transport callback which will be called to deliver // the encoded buffers. int AudioCodingModuleImpl::RegisterTransportCallback( AudioPacketizationCallback* transport) { rtc::CritScope lock(&callback_crit_sect_); packetization_callback_ = transport; return 0; } // Add 10MS of raw (PCM) audio data to the encoder. int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) { rtc::CritScope lock(&acm_crit_sect_); int r = Add10MsDataInternal(audio_frame, &input_data_); return r < 0 ? r : Encode(input_data_); } int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame, InputData* input_data) { if (audio_frame.samples_per_channel_ == 0) { assert(false); RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, payload length is zero"; return -1; } if (audio_frame.sample_rate_hz_ > 192000) { assert(false); RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, input frequency not valid"; return -1; } // If the length and frequency matches. We currently just support raw PCM. if (static_cast(audio_frame.sample_rate_hz_ / 100) != audio_frame.samples_per_channel_) { RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, input frequency and length doesn't match"; return -1; } if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2 && audio_frame.num_channels_ != 4 && audio_frame.num_channels_ != 6 && audio_frame.num_channels_ != 8) { RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, invalid number of channels."; return -1; } // Do we have a codec registered? if (!HaveValidEncoder("Add10MsData")) { return -1; } const AudioFrame* ptr_frame; // Perform a resampling, also down-mix if it is required and can be // performed before resampling (a down mix prior to resampling will take // place if both primary and secondary encoders are mono and input is in // stereo). if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) { return -1; } // Check whether we need an up-mix or down-mix? const size_t current_num_channels = encoder_stack_->NumChannels(); const bool same_num_channels = ptr_frame->num_channels_ == current_num_channels; // TODO(yujo): Skip encode of muted frames. input_data->input_timestamp = ptr_frame->timestamp_; input_data->length_per_channel = ptr_frame->samples_per_channel_; input_data->audio_channel = current_num_channels; if (!same_num_channels) { // Remixes the input frame to the output data and in the process resize the // output data if needed. ReMix(*ptr_frame, current_num_channels, &input_data->buffer); // For pushing data to primary, point the |ptr_audio| to correct buffer. input_data->audio = input_data->buffer.data(); RTC_DCHECK_GE(input_data->buffer.size(), input_data->length_per_channel * input_data->audio_channel); } else { // When adding data to encoders this pointer is pointing to an audio buffer // with correct number of channels. input_data->audio = ptr_frame->data(); } return 0; } // Perform a resampling and down-mix if required. We down-mix only if // encoder is mono and input is stereo. In case of dual-streaming, both // encoders has to be mono for down-mix to take place. // |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing // is required, |*ptr_out| points to |in_frame|. // TODO(yujo): Make this more efficient for muted frames. int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame, const AudioFrame** ptr_out) { const bool resample = in_frame.sample_rate_hz_ != encoder_stack_->SampleRateHz(); // This variable is true if primary codec and secondary codec (if exists) // are both mono and input is stereo. // TODO(henrik.lundin): This condition should probably be // in_frame.num_channels_ > encoder_stack_->NumChannels() const bool down_mix = in_frame.num_channels_ == 2 && encoder_stack_->NumChannels() == 1; if (!first_10ms_data_) { expected_in_ts_ = in_frame.timestamp_; expected_codec_ts_ = in_frame.timestamp_; first_10ms_data_ = true; } else if (in_frame.timestamp_ != expected_in_ts_) { RTC_LOG(LS_WARNING) << "Unexpected input timestamp: " << in_frame.timestamp_ << ", expected: " << expected_in_ts_; expected_codec_ts_ += (in_frame.timestamp_ - expected_in_ts_) * static_cast( static_cast(encoder_stack_->SampleRateHz()) / static_cast(in_frame.sample_rate_hz_)); expected_in_ts_ = in_frame.timestamp_; } if (!down_mix && !resample) { // No pre-processing is required. if (expected_in_ts_ == expected_codec_ts_) { // If we've never resampled, we can use the input frame as-is *ptr_out = &in_frame; } else { // Otherwise we'll need to alter the timestamp. Since in_frame is const, // we'll have to make a copy of it. preprocess_frame_.CopyFrom(in_frame); preprocess_frame_.timestamp_ = expected_codec_ts_; *ptr_out = &preprocess_frame_; } expected_in_ts_ += static_cast(in_frame.samples_per_channel_); expected_codec_ts_ += static_cast(in_frame.samples_per_channel_); return 0; } *ptr_out = &preprocess_frame_; preprocess_frame_.num_channels_ = in_frame.num_channels_; int16_t audio[WEBRTC_10MS_PCM_AUDIO]; const int16_t* src_ptr_audio = in_frame.data(); if (down_mix) { // If a resampling is required the output of a down-mix is written into a // local buffer, otherwise, it will be written to the output frame. int16_t* dest_ptr_audio = resample ? audio : preprocess_frame_.mutable_data(); DownMix(in_frame, WEBRTC_10MS_PCM_AUDIO, dest_ptr_audio); preprocess_frame_.num_channels_ = 1; // Set the input of the resampler is the down-mixed signal. src_ptr_audio = audio; } preprocess_frame_.timestamp_ = expected_codec_ts_; preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_; preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_; // If it is required, we have to do a resampling. if (resample) { // The result of the resampler is written to output frame. int16_t* dest_ptr_audio = preprocess_frame_.mutable_data(); int samples_per_channel = resampler_.Resample10Msec( src_ptr_audio, in_frame.sample_rate_hz_, encoder_stack_->SampleRateHz(), preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples, dest_ptr_audio); if (samples_per_channel < 0) { RTC_LOG(LS_ERROR) << "Cannot add 10 ms audio, resampling failed"; return -1; } preprocess_frame_.samples_per_channel_ = static_cast(samples_per_channel); preprocess_frame_.sample_rate_hz_ = encoder_stack_->SampleRateHz(); } expected_codec_ts_ += static_cast(preprocess_frame_.samples_per_channel_); expected_in_ts_ += static_cast(in_frame.samples_per_channel_); return 0; } ///////////////////////////////////////// // (FEC) Forward Error Correction (codec internal) // int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) { rtc::CritScope lock(&acm_crit_sect_); if (HaveValidEncoder("SetPacketLossRate")) { encoder_stack_->OnReceivedUplinkPacketLossFraction(loss_rate / 100.0); } return 0; } ///////////////////////////////////////// // Receiver // int AudioCodingModuleImpl::InitializeReceiver() { rtc::CritScope lock(&acm_crit_sect_); return InitializeReceiverSafe(); } // Initialize receiver, resets codec database etc. int AudioCodingModuleImpl::InitializeReceiverSafe() { // If the receiver is already initialized then we want to destroy any // existing decoders. After a call to this function, we should have a clean // start-up. if (receiver_initialized_) receiver_.RemoveAllCodecs(); receiver_.FlushBuffers(); receiver_initialized_ = true; return 0; } void AudioCodingModuleImpl::SetReceiveCodecs( const std::map& codecs) { rtc::CritScope lock(&acm_crit_sect_); receiver_.SetCodecs(codecs); } // Incoming packet from network parsed and ready for decode. int AudioCodingModuleImpl::IncomingPacket(const uint8_t* incoming_payload, const size_t payload_length, const RTPHeader& rtp_header) { RTC_DCHECK_EQ(payload_length == 0, incoming_payload == nullptr); return receiver_.InsertPacket( rtp_header, rtc::ArrayView(incoming_payload, payload_length)); } // Get 10 milliseconds of raw audio data to play out. // Automatic resample to the requested frequency. int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz, AudioFrame* audio_frame, bool* muted) { // GetAudio always returns 10 ms, at the requested sample rate. if (receiver_.GetAudio(desired_freq_hz, audio_frame, muted) != 0) { RTC_LOG(LS_ERROR) << "PlayoutData failed, RecOut Failed"; return -1; } return 0; } ///////////////////////////////////////// // Statistics // // TODO(turajs) change the return value to void. Also change the corresponding // NetEq function. int AudioCodingModuleImpl::GetNetworkStatistics(NetworkStatistics* statistics) { receiver_.GetNetworkStatistics(statistics); return 0; } int AudioCodingModuleImpl::RegisterVADCallback(ACMVADCallback* vad_callback) { RTC_LOG(LS_VERBOSE) << "RegisterVADCallback()"; rtc::CritScope lock(&callback_crit_sect_); vad_callback_ = vad_callback; return 0; } bool AudioCodingModuleImpl::HaveValidEncoder(const char* caller_name) const { if (!encoder_stack_) { RTC_LOG(LS_ERROR) << caller_name << " failed: No send codec is registered."; return false; } return true; } ANAStats AudioCodingModuleImpl::GetANAStats() const { rtc::CritScope lock(&acm_crit_sect_); if (encoder_stack_) return encoder_stack_->GetANAStats(); // If no encoder is set, return default stats. return ANAStats(); } } // namespace AudioCodingModule::Config::Config( rtc::scoped_refptr decoder_factory) : neteq_config(), clock(Clock::GetRealTimeClock()), decoder_factory(decoder_factory) { // Post-decode VAD is disabled by default in NetEq, however, Audio // Conference Mixer relies on VAD decisions and fails without them. neteq_config.enable_post_decode_vad = true; } AudioCodingModule::Config::Config(const Config&) = default; AudioCodingModule::Config::~Config() = default; AudioCodingModule* AudioCodingModule::Create(const Config& config) { return new AudioCodingModuleImpl(config); } } // namespace webrtc