/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/trendline_estimator.h" #include #include #include "api/optional.h" #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_minmax.h" namespace webrtc { namespace { rtc::Optional LinearFitSlope( const std::deque>& points) { RTC_DCHECK(points.size() >= 2); // Compute the "center of mass". double sum_x = 0; double sum_y = 0; for (const auto& point : points) { sum_x += point.first; sum_y += point.second; } double x_avg = sum_x / points.size(); double y_avg = sum_y / points.size(); // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 double numerator = 0; double denominator = 0; for (const auto& point : points) { numerator += (point.first - x_avg) * (point.second - y_avg); denominator += (point.first - x_avg) * (point.first - x_avg); } if (denominator == 0) return rtc::nullopt; return numerator / denominator; } constexpr double kMaxAdaptOffsetMs = 15.0; constexpr double kOverUsingTimeThreshold = 10; constexpr int kMinNumDeltas = 60; } // namespace enum { kDeltaCounterMax = 1000 }; TrendlineEstimator::TrendlineEstimator(size_t window_size, double smoothing_coef, double threshold_gain) : window_size_(window_size), smoothing_coef_(smoothing_coef), threshold_gain_(threshold_gain), num_of_deltas_(0), first_arrival_time_ms_(-1), accumulated_delay_(0), smoothed_delay_(0), delay_hist_(), trendline_(0), k_up_(0.0087), k_down_(0.039), overusing_time_threshold_(kOverUsingTimeThreshold), threshold_(12.5), last_update_ms_(-1), prev_offset_(0.0), time_over_using_(-1), overuse_counter_(0), hypothesis_(BandwidthUsage::kBwNormal) {} TrendlineEstimator::~TrendlineEstimator() {} void TrendlineEstimator::Update(double recv_delta_ms, double send_delta_ms, int64_t arrival_time_ms) { const double delta_ms = recv_delta_ms - send_delta_ms; ++num_of_deltas_; if (num_of_deltas_ > kDeltaCounterMax) num_of_deltas_ = kDeltaCounterMax; if (first_arrival_time_ms_ == -1) first_arrival_time_ms_ = arrival_time_ms; // Exponential backoff filter. accumulated_delay_ += delta_ms; BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms, accumulated_delay_); smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + (1 - smoothing_coef_) * accumulated_delay_; BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms, smoothed_delay_); // Simple linear regression. delay_hist_.push_back(std::make_pair( static_cast(arrival_time_ms - first_arrival_time_ms_), smoothed_delay_)); if (delay_hist_.size() > window_size_) delay_hist_.pop_front(); if (delay_hist_.size() == window_size_) { // Only update trendline_ if it is possible to fit a line to the data. trendline_ = LinearFitSlope(delay_hist_).value_or(trendline_); } BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trendline_); Detect(trendline_slope(), send_delta_ms, num_of_deltas(), arrival_time_ms); } BandwidthUsage TrendlineEstimator::State() const { return hypothesis_; } void TrendlineEstimator::Detect(double offset, double ts_delta, int num_of_deltas, int64_t now_ms) { if (num_of_deltas < 2) { hypothesis_ = BandwidthUsage::kBwNormal; return; } const double T = std::min(num_of_deltas, kMinNumDeltas) * offset; BWE_TEST_LOGGING_PLOT(1, "T", now_ms, T); BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_); if (T > threshold_) { if (time_over_using_ == -1) { // Initialize the timer. Assume that we've been // over-using half of the time since the previous // sample. time_over_using_ = ts_delta / 2; } else { // Increment timer time_over_using_ += ts_delta; } overuse_counter_++; if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) { if (offset >= prev_offset_) { time_over_using_ = 0; overuse_counter_ = 0; hypothesis_ = BandwidthUsage::kBwOverusing; } } } else if (T < -threshold_) { time_over_using_ = -1; overuse_counter_ = 0; hypothesis_ = BandwidthUsage::kBwUnderusing; } else { time_over_using_ = -1; overuse_counter_ = 0; hypothesis_ = BandwidthUsage::kBwNormal; } prev_offset_ = offset; UpdateThreshold(T, now_ms); } void TrendlineEstimator::UpdateThreshold(double modified_offset, int64_t now_ms) { if (last_update_ms_ == -1) last_update_ms_ = now_ms; if (fabs(modified_offset) > threshold_ + kMaxAdaptOffsetMs) { // Avoid adapting the threshold to big latency spikes, caused e.g., // by a sudden capacity drop. last_update_ms_ = now_ms; return; } const double k = fabs(modified_offset) < threshold_ ? k_down_ : k_up_; const int64_t kMaxTimeDeltaMs = 100; int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs); threshold_ += k * (fabs(modified_offset) - threshold_) * time_delta_ms; threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f); last_update_ms_ = now_ms; } } // namespace webrtc