/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/test/audio_processing_simulator.h" #include #include #include #include #include #include #include #include "absl/memory/memory.h" #include "api/audio/echo_canceller3_factory.h" #include "common_audio/include/audio_util.h" #include "modules/audio_processing/aec_dump/aec_dump_factory.h" #include "modules/audio_processing/include/audio_processing.h" #include "modules/audio_processing/test/fake_recording_device.h" #include "rtc_base/checks.h" #include "rtc_base/json.h" #include "rtc_base/logging.h" #include "rtc_base/stringutils.h" namespace webrtc { namespace test { namespace { // Class for parsing the AEC3 parameters from a JSON file and producing a config // struct. class Aec3ParametersParser { public: static EchoCanceller3Config Parse(bool verbose_output, const std::string& filename) { return Aec3ParametersParser(verbose_output).Parse(filename); } private: explicit Aec3ParametersParser(bool verbose_output) : verbose_output_(verbose_output) {} void ReadParam(const Json::Value& root, std::string param_name, bool* param) const { RTC_CHECK(param); bool v; if (rtc::GetBoolFromJsonObject(root, param_name, &v)) { *param = v; if (verbose_output_) { std::cout << param_name << ":" << (*param ? "true" : "false") << std::endl; } } } void ReadParam(const Json::Value& root, std::string param_name, size_t* param) const { RTC_CHECK(param); int v; if (rtc::GetIntFromJsonObject(root, param_name, &v)) { *param = v; if (verbose_output_) { std::cout << param_name << ":" << *param << std::endl; } } } void ReadParam(const Json::Value& root, std::string param_name, int* param) const { RTC_CHECK(param); int v; if (rtc::GetIntFromJsonObject(root, param_name, &v)) { *param = v; if (verbose_output_) { std::cout << param_name << ":" << *param << std::endl; } } } void ReadParam(const Json::Value& root, std::string param_name, float* param) const { RTC_CHECK(param); double v; if (rtc::GetDoubleFromJsonObject(root, param_name, &v)) { *param = static_cast(v); if (verbose_output_) { std::cout << param_name << ":" << *param << std::endl; } } } void ReadParam(const Json::Value& root, std::string param_name, EchoCanceller3Config::Filter::MainConfiguration* param) const { RTC_CHECK(param); Json::Value json_array; if (rtc::GetValueFromJsonObject(root, param_name, &json_array)) { std::vector v; rtc::JsonArrayToDoubleVector(json_array, &v); if (v.size() != 5) { std::cout << "Incorrect array size for " << param_name << std::endl; RTC_CHECK(false); } param->length_blocks = static_cast(v[0]); param->leakage_converged = static_cast(v[1]); param->leakage_diverged = static_cast(v[2]); param->error_floor = static_cast(v[3]); param->noise_gate = static_cast(v[4]); if (verbose_output_) { std::cout << param_name << ":" << "[" << param->length_blocks << "," << param->leakage_converged << "," << param->leakage_diverged << "," << param->error_floor << "," << param->noise_gate << "]" << std::endl; } } } void ReadParam( const Json::Value& root, std::string param_name, EchoCanceller3Config::Filter::ShadowConfiguration* param) const { RTC_CHECK(param); Json::Value json_array; if (rtc::GetValueFromJsonObject(root, param_name, &json_array)) { std::vector v; rtc::JsonArrayToDoubleVector(json_array, &v); if (v.size() != 3) { std::cout << "Incorrect array size for " << param_name << std::endl; RTC_CHECK(false); } param->length_blocks = static_cast(v[0]); param->rate = static_cast(v[1]); param->noise_gate = static_cast(v[2]); if (verbose_output_) { std::cout << param_name << ":" << "[" << param->length_blocks << "," << param->rate << "," << param->noise_gate << "]" << std::endl; } } } void ReadParam( const Json::Value& root, std::string param_name, EchoCanceller3Config::Suppressor::MaskingThresholds* param) const { RTC_CHECK(param); Json::Value json_array; if (rtc::GetValueFromJsonObject(root, param_name, &json_array)) { std::vector v; rtc::JsonArrayToDoubleVector(json_array, &v); if (v.size() != 3) { std::cout << "Incorrect array size for " << param_name << std::endl; RTC_CHECK(false); } param->enr_transparent = static_cast(v[0]); param->enr_suppress = static_cast(v[1]); param->emr_transparent = static_cast(v[2]); if (verbose_output_) { std::cout << param_name << ":" << "[" << param->enr_transparent << "," << param->enr_suppress << "," << param->emr_transparent << "]" << std::endl; } } } EchoCanceller3Config Parse(const std::string& filename) const { EchoCanceller3Config cfg; Json::Value root; std::string s; std::string json_string; std::ifstream f(filename.c_str()); if (f.fail()) { std::cout << "Failed to open the file " << filename << std::endl; RTC_CHECK(false); } while (std::getline(f, s)) { json_string += s; } bool success = Json::Reader().parse(json_string, root); if (!success) { std::cout << "Incorrect JSON format:" << std::endl; std::cout << json_string << std::endl; RTC_CHECK(false); } if (verbose_output_) { std::cout << "AEC3 Parameters from JSON input:" << std::endl; } Json::Value section; if (rtc::GetValueFromJsonObject(root, "delay", §ion)) { ReadParam(section, "default_delay", &cfg.delay.default_delay); ReadParam(section, "down_sampling_factor", &cfg.delay.down_sampling_factor); ReadParam(section, "num_filters", &cfg.delay.num_filters); ReadParam(section, "api_call_jitter_blocks", &cfg.delay.api_call_jitter_blocks); ReadParam(section, "min_echo_path_delay_blocks", &cfg.delay.min_echo_path_delay_blocks); ReadParam(section, "delay_headroom_blocks", &cfg.delay.delay_headroom_blocks); ReadParam(section, "hysteresis_limit_1_blocks", &cfg.delay.hysteresis_limit_1_blocks); ReadParam(section, "hysteresis_limit_2_blocks", &cfg.delay.hysteresis_limit_2_blocks); ReadParam(section, "skew_hysteresis_blocks", &cfg.delay.skew_hysteresis_blocks); } if (rtc::GetValueFromJsonObject(root, "filter", §ion)) { ReadParam(section, "main", &cfg.filter.main); ReadParam(section, "shadow", &cfg.filter.shadow); ReadParam(section, "main_initial", &cfg.filter.main_initial); ReadParam(section, "shadow_initial", &cfg.filter.shadow_initial); ReadParam(section, "config_change_duration_blocks", &cfg.filter.config_change_duration_blocks); ReadParam(section, "initial_state_seconds", &cfg.filter.initial_state_seconds); ReadParam(section, "conservative_initial_phase", &cfg.filter.conservative_initial_phase); } if (rtc::GetValueFromJsonObject(root, "erle", §ion)) { ReadParam(section, "min", &cfg.erle.min); ReadParam(section, "max_l", &cfg.erle.max_l); ReadParam(section, "max_h", &cfg.erle.max_h); } if (rtc::GetValueFromJsonObject(root, "ep_strength", §ion)) { ReadParam(section, "lf", &cfg.ep_strength.lf); ReadParam(section, "mf", &cfg.ep_strength.mf); ReadParam(section, "hf", &cfg.ep_strength.hf); ReadParam(section, "default_len", &cfg.ep_strength.default_len); ReadParam(section, "reverb_based_on_render", &cfg.ep_strength.reverb_based_on_render); ReadParam(section, "echo_can_saturate", &cfg.ep_strength.echo_can_saturate); ReadParam(section, "bounded_erl", &cfg.ep_strength.bounded_erl); } if (rtc::GetValueFromJsonObject(root, "gain_mask", §ion)) { ReadParam(section, "m1", &cfg.gain_mask.m1); ReadParam(section, "m2", &cfg.gain_mask.m2); ReadParam(section, "m3", &cfg.gain_mask.m3); ReadParam(section, "m5", &cfg.gain_mask.m5); ReadParam(section, "m6", &cfg.gain_mask.m6); ReadParam(section, "m7", &cfg.gain_mask.m7); ReadParam(section, "m8", &cfg.gain_mask.m8); ReadParam(section, "m9", &cfg.gain_mask.m9); ReadParam(section, "gain_curve_offset", &cfg.gain_mask.gain_curve_offset); ReadParam(section, "gain_curve_slope", &cfg.gain_mask.gain_curve_slope); ReadParam(section, "temporal_masking_lf", &cfg.gain_mask.temporal_masking_lf); ReadParam(section, "temporal_masking_hf", &cfg.gain_mask.temporal_masking_hf); ReadParam(section, "temporal_masking_lf_bands", &cfg.gain_mask.temporal_masking_lf_bands); } if (rtc::GetValueFromJsonObject(root, "echo_audibility", §ion)) { ReadParam(section, "low_render_limit", &cfg.echo_audibility.low_render_limit); ReadParam(section, "normal_render_limit", &cfg.echo_audibility.normal_render_limit); ReadParam(section, "floor_power", &cfg.echo_audibility.floor_power); ReadParam(section, "audibility_threshold_lf", &cfg.echo_audibility.audibility_threshold_lf); ReadParam(section, "audibility_threshold_mf", &cfg.echo_audibility.audibility_threshold_mf); ReadParam(section, "audibility_threshold_hf", &cfg.echo_audibility.audibility_threshold_hf); ReadParam(section, "use_stationary_properties", &cfg.echo_audibility.use_stationary_properties); } if (rtc::GetValueFromJsonObject(root, "echo_removal_control", §ion)) { Json::Value subsection; if (rtc::GetValueFromJsonObject(section, "gain_rampup", &subsection)) { ReadParam(subsection, "initial_gain", &cfg.echo_removal_control.gain_rampup.initial_gain); ReadParam(subsection, "first_non_zero_gain", &cfg.echo_removal_control.gain_rampup.first_non_zero_gain); ReadParam(subsection, "non_zero_gain_blocks", &cfg.echo_removal_control.gain_rampup.non_zero_gain_blocks); ReadParam(subsection, "full_gain_blocks", &cfg.echo_removal_control.gain_rampup.full_gain_blocks); } ReadParam(section, "has_clock_drift", &cfg.echo_removal_control.has_clock_drift); ReadParam(section, "linear_and_stable_echo_path", &cfg.echo_removal_control.linear_and_stable_echo_path); } if (rtc::GetValueFromJsonObject(root, "echo_model", §ion)) { Json::Value subsection; ReadParam(section, "noise_floor_hold", &cfg.echo_model.noise_floor_hold); ReadParam(section, "min_noise_floor_power", &cfg.echo_model.min_noise_floor_power); ReadParam(section, "stationary_gate_slope", &cfg.echo_model.stationary_gate_slope); ReadParam(section, "noise_gate_power", &cfg.echo_model.noise_gate_power); ReadParam(section, "noise_gate_slope", &cfg.echo_model.noise_gate_slope); ReadParam(section, "render_pre_window_size", &cfg.echo_model.render_pre_window_size); ReadParam(section, "render_post_window_size", &cfg.echo_model.render_post_window_size); ReadParam(section, "render_pre_window_size_init", &cfg.echo_model.render_pre_window_size_init); ReadParam(section, "render_post_window_size_init", &cfg.echo_model.render_post_window_size_init); ReadParam(section, "nonlinear_hold", &cfg.echo_model.nonlinear_hold); ReadParam(section, "nonlinear_release", &cfg.echo_model.nonlinear_release); } Json::Value subsection; if (rtc::GetValueFromJsonObject(root, "suppressor", §ion)) { ReadParam(section, "nearend_average_blocks", &cfg.suppressor.nearend_average_blocks); if (rtc::GetValueFromJsonObject(section, "normal_tuning", &subsection)) { ReadParam(subsection, "mask_lf", &cfg.suppressor.normal_tuning.mask_lf); ReadParam(subsection, "mask_hf", &cfg.suppressor.normal_tuning.mask_hf); ReadParam(subsection, "max_inc_factor", &cfg.suppressor.normal_tuning.max_inc_factor); ReadParam(subsection, "max_dec_factor_lf", &cfg.suppressor.normal_tuning.max_dec_factor_lf); } if (rtc::GetValueFromJsonObject(section, "nearend_tuning", &subsection)) { ReadParam(subsection, "mask_lf", &cfg.suppressor.nearend_tuning.mask_lf); ReadParam(subsection, "mask_hf", &cfg.suppressor.nearend_tuning.mask_hf); ReadParam(subsection, "max_inc_factor", &cfg.suppressor.nearend_tuning.max_inc_factor); ReadParam(subsection, "max_dec_factor_lf", &cfg.suppressor.nearend_tuning.max_dec_factor_lf); } if (rtc::GetValueFromJsonObject(section, "dominant_nearend_detection", &subsection)) { ReadParam(subsection, "enr_threshold", &cfg.suppressor.dominant_nearend_detection.enr_threshold); ReadParam(subsection, "snr_threshold", &cfg.suppressor.dominant_nearend_detection.snr_threshold); ReadParam(subsection, "hold_duration", &cfg.suppressor.dominant_nearend_detection.hold_duration); ReadParam(subsection, "trigger_threshold", &cfg.suppressor.dominant_nearend_detection.trigger_threshold); } ReadParam(section, "floor_first_increase", &cfg.suppressor.floor_first_increase); ReadParam(section, "enforce_transparent", &cfg.suppressor.enforce_transparent); ReadParam(section, "enforce_empty_higher_bands", &cfg.suppressor.enforce_empty_higher_bands); } std::cout << std::endl; return cfg; } const bool verbose_output_; }; void CopyFromAudioFrame(const AudioFrame& src, ChannelBuffer* dest) { RTC_CHECK_EQ(src.num_channels_, dest->num_channels()); RTC_CHECK_EQ(src.samples_per_channel_, dest->num_frames()); // Copy the data from the input buffer. std::vector tmp(src.samples_per_channel_ * src.num_channels_); S16ToFloat(src.data(), tmp.size(), tmp.data()); Deinterleave(tmp.data(), src.samples_per_channel_, src.num_channels_, dest->channels()); } std::string GetIndexedOutputWavFilename(const std::string& wav_name, int counter) { std::stringstream ss; ss << wav_name.substr(0, wav_name.size() - 4) << "_" << counter << wav_name.substr(wav_name.size() - 4); return ss.str(); } void WriteEchoLikelihoodGraphFileHeader(std::ofstream* output_file) { (*output_file) << "import numpy as np" << std::endl << "import matplotlib.pyplot as plt" << std::endl << "y = np.array(["; } void WriteEchoLikelihoodGraphFileFooter(std::ofstream* output_file) { (*output_file) << "])" << std::endl << "if __name__ == '__main__':" << std::endl << " x = np.arange(len(y))*.01" << std::endl << " plt.plot(x, y)" << std::endl << " plt.ylabel('Echo likelihood')" << std::endl << " plt.xlabel('Time (s)')" << std::endl << " plt.ylim([0,1])" << std::endl << " plt.show()" << std::endl; } } // namespace SimulationSettings::SimulationSettings() = default; SimulationSettings::SimulationSettings(const SimulationSettings&) = default; SimulationSettings::~SimulationSettings() = default; void CopyToAudioFrame(const ChannelBuffer& src, AudioFrame* dest) { RTC_CHECK_EQ(src.num_channels(), dest->num_channels_); RTC_CHECK_EQ(src.num_frames(), dest->samples_per_channel_); int16_t* dest_data = dest->mutable_data(); for (size_t ch = 0; ch < dest->num_channels_; ++ch) { for (size_t sample = 0; sample < dest->samples_per_channel_; ++sample) { dest_data[sample * dest->num_channels_ + ch] = src.channels()[ch][sample] * 32767; } } } AudioProcessingSimulator::AudioProcessingSimulator( const SimulationSettings& settings, std::unique_ptr ap_builder) : settings_(settings), ap_builder_(ap_builder ? std::move(ap_builder) : absl::make_unique()), analog_mic_level_(settings.initial_mic_level), fake_recording_device_( settings.initial_mic_level, settings_.simulate_mic_gain ? *settings.simulated_mic_kind : 0), worker_queue_("file_writer_task_queue") { if (settings_.ed_graph_output_filename && !settings_.ed_graph_output_filename->empty()) { residual_echo_likelihood_graph_writer_.open( *settings_.ed_graph_output_filename); RTC_CHECK(residual_echo_likelihood_graph_writer_.is_open()); WriteEchoLikelihoodGraphFileHeader(&residual_echo_likelihood_graph_writer_); } if (settings_.simulate_mic_gain) RTC_LOG(LS_VERBOSE) << "Simulating analog mic gain"; } AudioProcessingSimulator::~AudioProcessingSimulator() { if (residual_echo_likelihood_graph_writer_.is_open()) { WriteEchoLikelihoodGraphFileFooter(&residual_echo_likelihood_graph_writer_); residual_echo_likelihood_graph_writer_.close(); } } AudioProcessingSimulator::ScopedTimer::~ScopedTimer() { int64_t interval = rtc::TimeNanos() - start_time_; proc_time_->sum += interval; proc_time_->max = std::max(proc_time_->max, interval); proc_time_->min = std::min(proc_time_->min, interval); } void AudioProcessingSimulator::ProcessStream(bool fixed_interface) { // Optionally use the fake recording device to simulate analog gain. if (settings_.simulate_mic_gain) { if (settings_.aec_dump_input_filename) { // When the analog gain is simulated and an AEC dump is used as input, set // the undo level to |aec_dump_mic_level_| to virtually restore the // unmodified microphone signal level. fake_recording_device_.SetUndoMicLevel(aec_dump_mic_level_); } if (fixed_interface) { fake_recording_device_.SimulateAnalogGain(&fwd_frame_); } else { fake_recording_device_.SimulateAnalogGain(in_buf_.get()); } // Notify the current mic level to AGC. RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->set_stream_analog_level( fake_recording_device_.MicLevel())); } else { // Notify the current mic level to AGC. RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->set_stream_analog_level( settings_.aec_dump_input_filename ? aec_dump_mic_level_ : analog_mic_level_)); } // Process the current audio frame. if (fixed_interface) { { const auto st = ScopedTimer(mutable_proc_time()); RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessStream(&fwd_frame_)); } CopyFromAudioFrame(fwd_frame_, out_buf_.get()); } else { const auto st = ScopedTimer(mutable_proc_time()); RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessStream(in_buf_->channels(), in_config_, out_config_, out_buf_->channels())); } // Store the mic level suggested by AGC. // Note that when the analog gain is simulated and an AEC dump is used as // input, |analog_mic_level_| will not be used with set_stream_analog_level(). analog_mic_level_ = ap_->gain_control()->stream_analog_level(); if (settings_.simulate_mic_gain) { fake_recording_device_.SetMicLevel(analog_mic_level_); } if (buffer_writer_) { buffer_writer_->Write(*out_buf_); } if (residual_echo_likelihood_graph_writer_.is_open()) { auto stats = ap_->GetStatistics(); residual_echo_likelihood_graph_writer_ << stats.residual_echo_likelihood << ", "; } ++num_process_stream_calls_; } void AudioProcessingSimulator::ProcessReverseStream(bool fixed_interface) { if (fixed_interface) { const auto st = ScopedTimer(mutable_proc_time()); RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessReverseStream(&rev_frame_)); CopyFromAudioFrame(rev_frame_, reverse_out_buf_.get()); } else { const auto st = ScopedTimer(mutable_proc_time()); RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessReverseStream( reverse_in_buf_->channels(), reverse_in_config_, reverse_out_config_, reverse_out_buf_->channels())); } if (reverse_buffer_writer_) { reverse_buffer_writer_->Write(*reverse_out_buf_); } ++num_reverse_process_stream_calls_; } void AudioProcessingSimulator::SetupBuffersConfigsOutputs( int input_sample_rate_hz, int output_sample_rate_hz, int reverse_input_sample_rate_hz, int reverse_output_sample_rate_hz, int input_num_channels, int output_num_channels, int reverse_input_num_channels, int reverse_output_num_channels) { in_config_ = StreamConfig(input_sample_rate_hz, input_num_channels); in_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(input_sample_rate_hz, kChunksPerSecond), input_num_channels)); reverse_in_config_ = StreamConfig(reverse_input_sample_rate_hz, reverse_input_num_channels); reverse_in_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(reverse_input_sample_rate_hz, kChunksPerSecond), reverse_input_num_channels)); out_config_ = StreamConfig(output_sample_rate_hz, output_num_channels); out_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(output_sample_rate_hz, kChunksPerSecond), output_num_channels)); reverse_out_config_ = StreamConfig(reverse_output_sample_rate_hz, reverse_output_num_channels); reverse_out_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(reverse_output_sample_rate_hz, kChunksPerSecond), reverse_output_num_channels)); fwd_frame_.sample_rate_hz_ = input_sample_rate_hz; fwd_frame_.samples_per_channel_ = rtc::CheckedDivExact(fwd_frame_.sample_rate_hz_, kChunksPerSecond); fwd_frame_.num_channels_ = input_num_channels; rev_frame_.sample_rate_hz_ = reverse_input_sample_rate_hz; rev_frame_.samples_per_channel_ = rtc::CheckedDivExact(rev_frame_.sample_rate_hz_, kChunksPerSecond); rev_frame_.num_channels_ = reverse_input_num_channels; if (settings_.use_verbose_logging) { rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE); std::cout << "Sample rates:" << std::endl; std::cout << " Forward input: " << input_sample_rate_hz << std::endl; std::cout << " Forward output: " << output_sample_rate_hz << std::endl; std::cout << " Reverse input: " << reverse_input_sample_rate_hz << std::endl; std::cout << " Reverse output: " << reverse_output_sample_rate_hz << std::endl; std::cout << "Number of channels: " << std::endl; std::cout << " Forward input: " << input_num_channels << std::endl; std::cout << " Forward output: " << output_num_channels << std::endl; std::cout << " Reverse input: " << reverse_input_num_channels << std::endl; std::cout << " Reverse output: " << reverse_output_num_channels << std::endl; } SetupOutput(); } void AudioProcessingSimulator::SetupOutput() { if (settings_.output_filename) { std::string filename; if (settings_.store_intermediate_output) { filename = GetIndexedOutputWavFilename(*settings_.output_filename, output_reset_counter_); } else { filename = *settings_.output_filename; } std::unique_ptr out_file( new WavWriter(filename, out_config_.sample_rate_hz(), static_cast(out_config_.num_channels()))); buffer_writer_.reset(new ChannelBufferWavWriter(std::move(out_file))); } if (settings_.reverse_output_filename) { std::string filename; if (settings_.store_intermediate_output) { filename = GetIndexedOutputWavFilename(*settings_.reverse_output_filename, output_reset_counter_); } else { filename = *settings_.reverse_output_filename; } std::unique_ptr reverse_out_file( new WavWriter(filename, reverse_out_config_.sample_rate_hz(), static_cast(reverse_out_config_.num_channels()))); reverse_buffer_writer_.reset( new ChannelBufferWavWriter(std::move(reverse_out_file))); } ++output_reset_counter_; } void AudioProcessingSimulator::DestroyAudioProcessor() { if (settings_.aec_dump_output_filename) { ap_->DetachAecDump(); } } void AudioProcessingSimulator::CreateAudioProcessor() { Config config; AudioProcessing::Config apm_config; std::unique_ptr echo_control_factory; if (settings_.use_ts) { config.Set(new ExperimentalNs(*settings_.use_ts)); } if (settings_.use_ie) { config.Set(new Intelligibility(*settings_.use_ie)); } if (settings_.use_agc2) { apm_config.gain_controller2.enabled = *settings_.use_agc2; apm_config.gain_controller2.fixed_gain_db = settings_.agc2_fixed_gain_db; } if (settings_.use_pre_amplifier) { apm_config.pre_amplifier.enabled = *settings_.use_pre_amplifier; apm_config.pre_amplifier.fixed_gain_factor = settings_.pre_amplifier_gain_factor; } if (settings_.use_aec3 && *settings_.use_aec3) { EchoCanceller3Config cfg; if (settings_.aec3_settings_filename) { cfg = Aec3ParametersParser::Parse(!settings_.use_quiet_output, *settings_.aec3_settings_filename); } echo_control_factory.reset(new EchoCanceller3Factory(cfg)); } if (settings_.use_hpf) { apm_config.high_pass_filter.enabled = *settings_.use_hpf; } if (settings_.use_refined_adaptive_filter) { config.Set( new RefinedAdaptiveFilter(*settings_.use_refined_adaptive_filter)); } config.Set(new ExtendedFilter( !settings_.use_extended_filter || *settings_.use_extended_filter)); config.Set(new DelayAgnostic(!settings_.use_delay_agnostic || *settings_.use_delay_agnostic)); config.Set(new ExperimentalAgc( !settings_.use_experimental_agc || *settings_.use_experimental_agc, !!settings_.use_experimental_agc_agc2_level_estimator && *settings_.use_experimental_agc_agc2_level_estimator, !!settings_.experimental_agc_disable_digital_adaptive && *settings_.experimental_agc_disable_digital_adaptive)); if (settings_.use_ed) { apm_config.residual_echo_detector.enabled = *settings_.use_ed; } RTC_CHECK(ap_builder_); ap_.reset((*ap_builder_) .SetEchoControlFactory(std::move(echo_control_factory)) .Create(config)); RTC_CHECK(ap_); ap_->ApplyConfig(apm_config); if (settings_.use_aec) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->echo_cancellation()->Enable(*settings_.use_aec)); } if (settings_.use_aecm) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->echo_control_mobile()->Enable(*settings_.use_aecm)); } if (settings_.use_agc) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->Enable(*settings_.use_agc)); } if (settings_.use_ns) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->noise_suppression()->Enable(*settings_.use_ns)); } if (settings_.use_le) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->level_estimator()->Enable(*settings_.use_le)); } if (settings_.use_vad) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->voice_detection()->Enable(*settings_.use_vad)); } if (settings_.use_agc_limiter) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->enable_limiter( *settings_.use_agc_limiter)); } if (settings_.agc_target_level) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->set_target_level_dbfs( *settings_.agc_target_level)); } if (settings_.agc_compression_gain) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->set_compression_gain_db( *settings_.agc_compression_gain)); } if (settings_.agc_mode) { RTC_CHECK_EQ( AudioProcessing::kNoError, ap_->gain_control()->set_mode( static_cast(*settings_.agc_mode))); } if (settings_.use_drift_compensation) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->echo_cancellation()->enable_drift_compensation( *settings_.use_drift_compensation)); } if (settings_.aec_suppression_level) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->echo_cancellation()->set_suppression_level( static_cast( *settings_.aec_suppression_level))); } if (settings_.aecm_routing_mode) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->echo_control_mobile()->set_routing_mode( static_cast( *settings_.aecm_routing_mode))); } if (settings_.use_aecm_comfort_noise) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->echo_control_mobile()->enable_comfort_noise( *settings_.use_aecm_comfort_noise)); } if (settings_.vad_likelihood) { RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->voice_detection()->set_likelihood( static_cast( *settings_.vad_likelihood))); } if (settings_.ns_level) { RTC_CHECK_EQ( AudioProcessing::kNoError, ap_->noise_suppression()->set_level( static_cast(*settings_.ns_level))); } if (settings_.use_ts) { ap_->set_stream_key_pressed(*settings_.use_ts); } if (settings_.aec_dump_output_filename) { ap_->AttachAecDump(AecDumpFactory::Create( *settings_.aec_dump_output_filename, -1, &worker_queue_)); } } } // namespace test } // namespace webrtc