/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/gain_controller2.h" #include #include #include #include #include "api/array_view.h" #include "modules/audio_processing/agc2/agc2_testing_common.h" #include "modules/audio_processing/audio_buffer.h" #include "modules/audio_processing/test/audio_buffer_tools.h" #include "modules/audio_processing/test/bitexactness_tools.h" #include "rtc_base/checks.h" #include "test/gtest.h" namespace webrtc { namespace test { namespace { // Sets all the samples in `ab` to `value`. void SetAudioBufferSamples(float value, AudioBuffer& ab) { for (size_t k = 0; k < ab.num_channels(); ++k) { std::fill(ab.channels()[k], ab.channels()[k] + ab.num_frames(), value); } } float RunAgc2WithConstantInput(GainController2& agc2, float input_level, int num_frames, int sample_rate_hz) { const int num_samples = rtc::CheckedDivExact(sample_rate_hz, 100); AudioBuffer ab(sample_rate_hz, 1, sample_rate_hz, 1, sample_rate_hz, 1); // Give time to the level estimator to converge. for (int i = 0; i < num_frames + 1; ++i) { SetAudioBufferSamples(input_level, ab); agc2.Process(&ab); } // Return the last sample from the last processed frame. return ab.channels()[0][num_samples - 1]; } AudioProcessing::Config::GainController2 CreateAgc2FixedDigitalModeConfig( float fixed_gain_db) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.enabled = false; config.fixed_digital.gain_db = fixed_gain_db; EXPECT_TRUE(GainController2::Validate(config)); return config; } std::unique_ptr CreateAgc2FixedDigitalMode( float fixed_gain_db, int sample_rate_hz) { auto agc2 = std::make_unique(); agc2->ApplyConfig(CreateAgc2FixedDigitalModeConfig(fixed_gain_db)); agc2->Initialize(sample_rate_hz, /*num_channels=*/1); return agc2; } } // namespace TEST(GainController2, CheckDefaultConfig) { AudioProcessing::Config::GainController2 config; EXPECT_TRUE(GainController2::Validate(config)); } TEST(GainController2, CheckFixedDigitalConfig) { AudioProcessing::Config::GainController2 config; // Attenuation is not allowed. config.fixed_digital.gain_db = -5.0f; EXPECT_FALSE(GainController2::Validate(config)); // No gain is allowed. config.fixed_digital.gain_db = 0.0f; EXPECT_TRUE(GainController2::Validate(config)); // Positive gain is allowed. config.fixed_digital.gain_db = 15.0f; EXPECT_TRUE(GainController2::Validate(config)); } TEST(GainController2, CheckHeadroomDb) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.headroom_db = -1.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.headroom_db = 0.0f; EXPECT_TRUE(GainController2::Validate(config)); config.adaptive_digital.headroom_db = 5.0f; EXPECT_TRUE(GainController2::Validate(config)); } TEST(GainController2, CheckMaxGainDb) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.max_gain_db = -1.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.max_gain_db = 0.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.max_gain_db = 5.0f; EXPECT_TRUE(GainController2::Validate(config)); } TEST(GainController2, CheckInitialGainDb) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.initial_gain_db = -1.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.initial_gain_db = 0.0f; EXPECT_TRUE(GainController2::Validate(config)); config.adaptive_digital.initial_gain_db = 5.0f; EXPECT_TRUE(GainController2::Validate(config)); } TEST(GainController2, CheckAdaptiveDigitalMaxGainChangeSpeedConfig) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.max_gain_change_db_per_second = -1.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.max_gain_change_db_per_second = 0.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.max_gain_change_db_per_second = 5.0f; EXPECT_TRUE(GainController2::Validate(config)); } TEST(GainController2, CheckAdaptiveDigitalMaxOutputNoiseLevelConfig) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.max_output_noise_level_dbfs = 5.0f; EXPECT_FALSE(GainController2::Validate(config)); config.adaptive_digital.max_output_noise_level_dbfs = 0.0f; EXPECT_TRUE(GainController2::Validate(config)); config.adaptive_digital.max_output_noise_level_dbfs = -5.0f; EXPECT_TRUE(GainController2::Validate(config)); } // Checks that the default config is applied. TEST(GainController2, ApplyDefaultConfig) { auto gain_controller2 = std::make_unique(); AudioProcessing::Config::GainController2 config; gain_controller2->ApplyConfig(config); } TEST(GainController2FixedDigital, GainShouldChangeOnSetGain) { constexpr float kInputLevel = 1000.0f; constexpr size_t kNumFrames = 5; constexpr size_t kSampleRateHz = 8000; constexpr float kGain0Db = 0.0f; constexpr float kGain20Db = 20.0f; auto agc2_fixed = CreateAgc2FixedDigitalMode(kGain0Db, kSampleRateHz); // Signal level is unchanged with 0 db gain. EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz), kInputLevel); // +20 db should increase signal by a factor of 10. agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGain20Db)); EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz), kInputLevel * 10); } TEST(GainController2FixedDigital, ChangeFixedGainShouldBeFastAndTimeInvariant) { // Number of frames required for the fixed gain controller to adapt on the // input signal when the gain changes. constexpr size_t kNumFrames = 5; constexpr float kInputLevel = 1000.0f; constexpr size_t kSampleRateHz = 8000; constexpr float kGainDbLow = 0.0f; constexpr float kGainDbHigh = 25.0f; static_assert(kGainDbLow < kGainDbHigh, ""); auto agc2_fixed = CreateAgc2FixedDigitalMode(kGainDbLow, kSampleRateHz); // Start with a lower gain. const float output_level_pre = RunAgc2WithConstantInput( *agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz); // Increase gain. agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbHigh)); static_cast(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz)); // Back to the lower gain. agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbLow)); const float output_level_post = RunAgc2WithConstantInput( *agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz); EXPECT_EQ(output_level_pre, output_level_post); } struct FixedDigitalTestParams { FixedDigitalTestParams(float gain_db_min, float gain_db_max, size_t sample_rate, bool saturation_expected) : gain_db_min(gain_db_min), gain_db_max(gain_db_max), sample_rate(sample_rate), saturation_expected(saturation_expected) {} float gain_db_min; float gain_db_max; size_t sample_rate; bool saturation_expected; }; class FixedDigitalTest : public ::testing::Test, public ::testing::WithParamInterface {}; TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) { const float kInputLevel = 32767.0f; const size_t kNumFrames = 5; const auto params = GetParam(); const auto gains_db = test::LinSpace(params.gain_db_min, params.gain_db_max, 10); for (const auto gain_db : gains_db) { SCOPED_TRACE(std::to_string(gain_db)); auto agc2_fixed = CreateAgc2FixedDigitalMode(gain_db, params.sample_rate); const float processed_sample = RunAgc2WithConstantInput( *agc2_fixed, kInputLevel, kNumFrames, params.sample_rate); if (params.saturation_expected) { EXPECT_FLOAT_EQ(processed_sample, 32767.0f); } else { EXPECT_LT(processed_sample, 32767.0f); } } } static_assert(test::kLimiterMaxInputLevelDbFs < 10, ""); INSTANTIATE_TEST_SUITE_P( GainController2, FixedDigitalTest, ::testing::Values( // When gain < `test::kLimiterMaxInputLevelDbFs`, the limiter will not // saturate the signal (at any sample rate). FixedDigitalTestParams(0.1f, test::kLimiterMaxInputLevelDbFs - 0.01f, 8000, false), FixedDigitalTestParams(0.1, test::kLimiterMaxInputLevelDbFs - 0.01f, 48000, false), // When gain > `test::kLimiterMaxInputLevelDbFs`, the limiter will // saturate the signal (at any sample rate). FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f, 10.0f, 8000, true), FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f, 10.0f, 48000, true))); // Processes a test audio file and checks that the gain applied at the end of // the recording is close to the expected value. TEST(GainController2, CheckFinalGainWithAdaptiveDigitalController) { // Create AGC2 enabling only the adaptive digital controller. GainController2 agc2; AudioProcessing::Config::GainController2 config; config.fixed_digital.gain_db = 0.0f; config.adaptive_digital.enabled = true; agc2.ApplyConfig(config); // The input audio is a 48k stereo recording. constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz; constexpr int kStereo = 2; test::InputAudioFile input_file( test::GetApmCaptureTestVectorFileName(kSampleRateHz), /*loop_at_end=*/true); const StreamConfig stream_config(kSampleRateHz, kStereo, /*has_keyboard=*/false); // Initialize AGC2 for the used input. agc2.Initialize(kSampleRateHz, kStereo); // Init buffers. constexpr int kFrameDurationMs = 10; std::vector frame(kStereo * stream_config.num_frames()); AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo, kSampleRateHz, kStereo); // Simulate. constexpr float kGainDb = -6.0f; const float gain = std::pow(10.0f, kGainDb / 20.0f); constexpr int kDurationMs = 10000; constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs; for (int i = 0; i < kNumFramesToProcess; ++i) { ReadFloatSamplesFromStereoFile(stream_config.num_frames(), stream_config.num_channels(), &input_file, frame); // Apply a fixed gain to the input audio. for (float& x : frame) x *= gain; test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer); // Process. agc2.Process(&audio_buffer); } // Estimate the applied gain by processing a probing frame. SetAudioBufferSamples(/*value=*/1.0f, audio_buffer); agc2.Process(&audio_buffer); const float applied_gain_db = 20.0f * std::log10(audio_buffer.channels_const()[0][0]); constexpr float kExpectedGainDb = 5.6f; constexpr float kToleranceDb = 0.3f; EXPECT_NEAR(applied_gain_db, kExpectedGainDb, kToleranceDb); } } // namespace test } // namespace webrtc