/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ #define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include #include // size_t #include // FILE #include #include #include "api/optional.h" #include "modules/audio_processing/beamformer/array_util.h" #include "modules/audio_processing/include/audio_processing_statistics.h" #include "modules/audio_processing/include/config.h" #include "rtc_base/arraysize.h" #include "rtc_base/deprecation.h" #include "rtc_base/platform_file.h" #include "rtc_base/refcount.h" #include "typedefs.h" // NOLINT(build/include) namespace webrtc { struct AecCore; class AecDump; class AudioBuffer; class AudioFrame; class NonlinearBeamformer; class StreamConfig; class ProcessingConfig; class EchoCancellation; class EchoControlMobile; class EchoControlFactory; class GainControl; class HighPassFilter; class LevelEstimator; class NoiseSuppression; class PostProcessing; class VoiceDetection; // Use to enable the extended filter mode in the AEC, along with robustness // measures around the reported system delays. It comes with a significant // increase in AEC complexity, but is much more robust to unreliable reported // delays. // // Detailed changes to the algorithm: // - The filter length is changed from 48 to 128 ms. This comes with tuning of // several parameters: i) filter adaptation stepsize and error threshold; // ii) non-linear processing smoothing and overdrive. // - Option to ignore the reported delays on platforms which we deem // sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c. // - Faster startup times by removing the excessive "startup phase" processing // of reported delays. // - Much more conservative adjustments to the far-end read pointer. We smooth // the delay difference more heavily, and back off from the difference more. // Adjustments force a readaptation of the filter, so they should be avoided // except when really necessary. struct ExtendedFilter { ExtendedFilter() : enabled(false) {} explicit ExtendedFilter(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kExtendedFilter; bool enabled; }; // Enables the refined linear filter adaptation in the echo canceller. // This configuration only applies to EchoCancellation and not // EchoControlMobile. It can be set in the constructor // or using AudioProcessing::SetExtraOptions(). struct RefinedAdaptiveFilter { RefinedAdaptiveFilter() : enabled(false) {} explicit RefinedAdaptiveFilter(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kAecRefinedAdaptiveFilter; bool enabled; }; // Enables delay-agnostic echo cancellation. This feature relies on internally // estimated delays between the process and reverse streams, thus not relying // on reported system delays. This configuration only applies to // EchoCancellation and not EchoControlMobile. It can be set in the constructor // or using AudioProcessing::SetExtraOptions(). struct DelayAgnostic { DelayAgnostic() : enabled(false) {} explicit DelayAgnostic(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kDelayAgnostic; bool enabled; }; // Use to enable experimental gain control (AGC). At startup the experimental // AGC moves the microphone volume up to |startup_min_volume| if the current // microphone volume is set too low. The value is clamped to its operating range // [12, 255]. Here, 255 maps to 100%. // // Must be provided through AudioProcessing::Create(Confg&). #if defined(WEBRTC_CHROMIUM_BUILD) static const int kAgcStartupMinVolume = 85; #else static const int kAgcStartupMinVolume = 0; #endif // defined(WEBRTC_CHROMIUM_BUILD) static constexpr int kClippedLevelMin = 70; struct ExperimentalAgc { ExperimentalAgc() = default; explicit ExperimentalAgc(bool enabled) : enabled(enabled) {} ExperimentalAgc(bool enabled, int startup_min_volume) : enabled(enabled), startup_min_volume(startup_min_volume) {} ExperimentalAgc(bool enabled, int startup_min_volume, int clipped_level_min) : enabled(enabled), startup_min_volume(startup_min_volume), clipped_level_min(clipped_level_min) {} static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc; bool enabled = true; int startup_min_volume = kAgcStartupMinVolume; // Lowest microphone level that will be applied in response to clipping. int clipped_level_min = kClippedLevelMin; }; // Use to enable experimental noise suppression. It can be set in the // constructor or using AudioProcessing::SetExtraOptions(). struct ExperimentalNs { ExperimentalNs() : enabled(false) {} explicit ExperimentalNs(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs; bool enabled; }; // Use to enable beamforming. Must be provided through the constructor. It will // have no impact if used with AudioProcessing::SetExtraOptions(). struct Beamforming { Beamforming(); Beamforming(bool enabled, const std::vector& array_geometry); Beamforming(bool enabled, const std::vector& array_geometry, SphericalPointf target_direction); ~Beamforming(); static const ConfigOptionID identifier = ConfigOptionID::kBeamforming; const bool enabled; const std::vector array_geometry; const SphericalPointf target_direction; }; // Use to enable intelligibility enhancer in audio processing. // // Note: If enabled and the reverse stream has more than one output channel, // the reverse stream will become an upmixed mono signal. struct Intelligibility { Intelligibility() : enabled(false) {} explicit Intelligibility(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kIntelligibility; bool enabled; }; // The Audio Processing Module (APM) provides a collection of voice processing // components designed for real-time communications software. // // APM operates on two audio streams on a frame-by-frame basis. Frames of the // primary stream, on which all processing is applied, are passed to // |ProcessStream()|. Frames of the reverse direction stream are passed to // |ProcessReverseStream()|. On the client-side, this will typically be the // near-end (capture) and far-end (render) streams, respectively. APM should be // placed in the signal chain as close to the audio hardware abstraction layer // (HAL) as possible. // // On the server-side, the reverse stream will normally not be used, with // processing occurring on each incoming stream. // // Component interfaces follow a similar pattern and are accessed through // corresponding getters in APM. All components are disabled at create-time, // with default settings that are recommended for most situations. New settings // can be applied without enabling a component. Enabling a component triggers // memory allocation and initialization to allow it to start processing the // streams. // // Thread safety is provided with the following assumptions to reduce locking // overhead: // 1. The stream getters and setters are called from the same thread as // ProcessStream(). More precisely, stream functions are never called // concurrently with ProcessStream(). // 2. Parameter getters are never called concurrently with the corresponding // setter. // // APM accepts only linear PCM audio data in chunks of 10 ms. The int16 // interfaces use interleaved data, while the float interfaces use deinterleaved // data. // // Usage example, omitting error checking: // AudioProcessing* apm = AudioProcessing::Create(0); // // AudioProcessing::Config config; // config.level_controller.enabled = true; // config.high_pass_filter.enabled = true; // apm->ApplyConfig(config) // // apm->echo_cancellation()->enable_drift_compensation(false); // apm->echo_cancellation()->Enable(true); // // apm->noise_reduction()->set_level(kHighSuppression); // apm->noise_reduction()->Enable(true); // // apm->gain_control()->set_analog_level_limits(0, 255); // apm->gain_control()->set_mode(kAdaptiveAnalog); // apm->gain_control()->Enable(true); // // apm->voice_detection()->Enable(true); // // // Start a voice call... // // // ... Render frame arrives bound for the audio HAL ... // apm->ProcessReverseStream(render_frame); // // // ... Capture frame arrives from the audio HAL ... // // Call required set_stream_ functions. // apm->set_stream_delay_ms(delay_ms); // apm->gain_control()->set_stream_analog_level(analog_level); // // apm->ProcessStream(capture_frame); // // // Call required stream_ functions. // analog_level = apm->gain_control()->stream_analog_level(); // has_voice = apm->stream_has_voice(); // // // Repeate render and capture processing for the duration of the call... // // Start a new call... // apm->Initialize(); // // // Close the application... // delete apm; // class AudioProcessing : public rtc::RefCountInterface { public: // The struct below constitutes the new parameter scheme for the audio // processing. It is being introduced gradually and until it is fully // introduced, it is prone to change. // TODO(peah): Remove this comment once the new config scheme is fully rolled // out. // // The parameters and behavior of the audio processing module are controlled // by changing the default values in the AudioProcessing::Config struct. // The config is applied by passing the struct to the ApplyConfig method. struct Config { struct LevelController { bool enabled = false; // Sets the initial peak level to use inside the level controller in order // to compute the signal gain. The unit for the peak level is dBFS and // the allowed range is [-100, 0]. float initial_peak_level_dbfs = -6.0206f; } level_controller; struct ResidualEchoDetector { bool enabled = true; } residual_echo_detector; struct HighPassFilter { bool enabled = false; } high_pass_filter; // Deprecated way of activating AEC3. // TODO(gustaf): Remove when possible. struct EchoCanceller3 { bool enabled = false; } echo_canceller3; // Enables the next generation AGC functionality. This feature replaces the // standard methods of gain control in the previous AGC. // The functionality is not yet activated in the code and turning this on // does not yet have the desired behavior. struct GainController2 { bool enabled = false; float fixed_gain_db = 0.f; } gain_controller2; // Explicit copy assignment implementation to avoid issues with memory // sanitizer complaints in case of self-assignment. // TODO(peah): Add buildflag to ensure that this is only included for memory // sanitizer builds. Config& operator=(const Config& config) { if (this != &config) { memcpy(this, &config, sizeof(*this)); } return *this; } }; // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone. enum ChannelLayout { kMono, // Left, right. kStereo, // Mono, keyboard, and mic. kMonoAndKeyboard, // Left, right, keyboard, and mic. kStereoAndKeyboard }; // Creates an APM instance. Use one instance for every primary audio stream // requiring processing. On the client-side, this would typically be one // instance for the near-end stream, and additional instances for each far-end // stream which requires processing. On the server-side, this would typically // be one instance for every incoming stream. static AudioProcessing* Create(); // Allows passing in an optional configuration at create-time. static AudioProcessing* Create(const webrtc::Config& config); // Deprecated. Use the Create below, with nullptr PostProcessing. RTC_DEPRECATED static AudioProcessing* Create(const webrtc::Config& config, NonlinearBeamformer* beamformer); // Allows passing in optional user-defined processing modules. static AudioProcessing* Create( const webrtc::Config& config, std::unique_ptr capture_post_processor, std::unique_ptr echo_control_factory, NonlinearBeamformer* beamformer); ~AudioProcessing() override {} // Initializes internal states, while retaining all user settings. This // should be called before beginning to process a new audio stream. However, // it is not necessary to call before processing the first stream after // creation. // // It is also not necessary to call if the audio parameters (sample // rate and number of channels) have changed. Passing updated parameters // directly to |ProcessStream()| and |ProcessReverseStream()| is permissible. // If the parameters are known at init-time though, they may be provided. virtual int Initialize() = 0; // The int16 interfaces require: // - only |NativeRate|s be used // - that the input, output and reverse rates must match // - that |processing_config.output_stream()| matches // |processing_config.input_stream()|. // // The float interfaces accept arbitrary rates and support differing input and // output layouts, but the output must have either one channel or the same // number of channels as the input. virtual int Initialize(const ProcessingConfig& processing_config) = 0; // Initialize with unpacked parameters. See Initialize() above for details. // // TODO(mgraczyk): Remove once clients are updated to use the new interface. virtual int Initialize(int capture_input_sample_rate_hz, int capture_output_sample_rate_hz, int render_sample_rate_hz, ChannelLayout capture_input_layout, ChannelLayout capture_output_layout, ChannelLayout render_input_layout) = 0; // TODO(peah): This method is a temporary solution used to take control // over the parameters in the audio processing module and is likely to change. virtual void ApplyConfig(const Config& config) = 0; // Pass down additional options which don't have explicit setters. This // ensures the options are applied immediately. virtual void SetExtraOptions(const webrtc::Config& config) = 0; // TODO(ajm): Only intended for internal use. Make private and friend the // necessary classes? virtual int proc_sample_rate_hz() const = 0; virtual int proc_split_sample_rate_hz() const = 0; virtual size_t num_input_channels() const = 0; virtual size_t num_proc_channels() const = 0; virtual size_t num_output_channels() const = 0; virtual size_t num_reverse_channels() const = 0; // Set to true when the output of AudioProcessing will be muted or in some // other way not used. Ideally, the captured audio would still be processed, // but some components may change behavior based on this information. // Default false. virtual void set_output_will_be_muted(bool muted) = 0; // Processes a 10 ms |frame| of the primary audio stream. On the client-side, // this is the near-end (or captured) audio. // // If needed for enabled functionality, any function with the set_stream_ tag // must be called prior to processing the current frame. Any getter function // with the stream_ tag which is needed should be called after processing. // // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| // members of |frame| must be valid. If changed from the previous call to this // method, it will trigger an initialization. virtual int ProcessStream(AudioFrame* frame) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element // of |src| points to a channel buffer, arranged according to // |input_layout|. At output, the channels will be arranged according to // |output_layout| at |output_sample_rate_hz| in |dest|. // // The output layout must have one channel or as many channels as the input. // |src| and |dest| may use the same memory, if desired. // // TODO(mgraczyk): Remove once clients are updated to use the new interface. virtual int ProcessStream(const float* const* src, size_t samples_per_channel, int input_sample_rate_hz, ChannelLayout input_layout, int output_sample_rate_hz, ChannelLayout output_layout, float* const* dest) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element of // |src| points to a channel buffer, arranged according to |input_stream|. At // output, the channels will be arranged according to |output_stream| in // |dest|. // // The output must have one channel or as many channels as the input. |src| // and |dest| may use the same memory, if desired. virtual int ProcessStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) = 0; // Processes a 10 ms |frame| of the reverse direction audio stream. The frame // may be modified. On the client-side, this is the far-end (or to be // rendered) audio. // // It is necessary to provide this if echo processing is enabled, as the // reverse stream forms the echo reference signal. It is recommended, but not // necessary, to provide if gain control is enabled. On the server-side this // typically will not be used. If you're not sure what to pass in here, // chances are you don't need to use it. // // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| // members of |frame| must be valid. virtual int ProcessReverseStream(AudioFrame* frame) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element // of |data| points to a channel buffer, arranged according to |layout|. // TODO(mgraczyk): Remove once clients are updated to use the new interface. virtual int AnalyzeReverseStream(const float* const* data, size_t samples_per_channel, int sample_rate_hz, ChannelLayout layout) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element of // |data| points to a channel buffer, arranged according to |reverse_config|. virtual int ProcessReverseStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) = 0; // This must be called if and only if echo processing is enabled. // // Sets the |delay| in ms between ProcessReverseStream() receiving a far-end // frame and ProcessStream() receiving a near-end frame containing the // corresponding echo. On the client-side this can be expressed as // delay = (t_render - t_analyze) + (t_process - t_capture) // where, // - t_analyze is the time a frame is passed to ProcessReverseStream() and // t_render is the time the first sample of the same frame is rendered by // the audio hardware. // - t_capture is the time the first sample of a frame is captured by the // audio hardware and t_process is the time the same frame is passed to // ProcessStream(). virtual int set_stream_delay_ms(int delay) = 0; virtual int stream_delay_ms() const = 0; virtual bool was_stream_delay_set() const = 0; // Call to signal that a key press occurred (true) or did not occur (false) // with this chunk of audio. virtual void set_stream_key_pressed(bool key_pressed) = 0; // Sets a delay |offset| in ms to add to the values passed in through // set_stream_delay_ms(). May be positive or negative. // // Note that this could cause an otherwise valid value passed to // set_stream_delay_ms() to return an error. virtual void set_delay_offset_ms(int offset) = 0; virtual int delay_offset_ms() const = 0; // Attaches provided webrtc::AecDump for recording debugging // information. Log file and maximum file size logic is supposed to // be handled by implementing instance of AecDump. Calling this // method when another AecDump is attached resets the active AecDump // with a new one. This causes the d-tor of the earlier AecDump to // be called. The d-tor call may block until all pending logging // tasks are completed. virtual void AttachAecDump(std::unique_ptr aec_dump) = 0; // If no AecDump is attached, this has no effect. If an AecDump is // attached, it's destructor is called. The d-tor may block until // all pending logging tasks are completed. virtual void DetachAecDump() = 0; // Use to send UMA histograms at end of a call. Note that all histogram // specific member variables are reset. virtual void UpdateHistogramsOnCallEnd() = 0; // TODO(ivoc): Remove when the calling code no longer uses the old Statistics // API. struct Statistic { int instant = 0; // Instantaneous value. int average = 0; // Long-term average. int maximum = 0; // Long-term maximum. int minimum = 0; // Long-term minimum. }; struct Stat { void Set(const Statistic& other) { Set(other.instant, other.average, other.maximum, other.minimum); } void Set(float instant, float average, float maximum, float minimum) { instant_ = instant; average_ = average; maximum_ = maximum; minimum_ = minimum; } float instant() const { return instant_; } float average() const { return average_; } float maximum() const { return maximum_; } float minimum() const { return minimum_; } private: float instant_ = 0.0f; // Instantaneous value. float average_ = 0.0f; // Long-term average. float maximum_ = 0.0f; // Long-term maximum. float minimum_ = 0.0f; // Long-term minimum. }; struct AudioProcessingStatistics { AudioProcessingStatistics(); AudioProcessingStatistics(const AudioProcessingStatistics& other); ~AudioProcessingStatistics(); // AEC Statistics. // RERL = ERL + ERLE Stat residual_echo_return_loss; // ERL = 10log_10(P_far / P_echo) Stat echo_return_loss; // ERLE = 10log_10(P_echo / P_out) Stat echo_return_loss_enhancement; // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a) Stat a_nlp; // Fraction of time that the AEC linear filter is divergent, in a 1-second // non-overlapped aggregation window. float divergent_filter_fraction = -1.0f; // The delay metrics consists of the delay median and standard deviation. It // also consists of the fraction of delay estimates that can make the echo // cancellation perform poorly. The values are aggregated until the first // call to |GetStatistics()| and afterwards aggregated and updated every // second. Note that if there are several clients pulling metrics from // |GetStatistics()| during a session the first call from any of them will // change to one second aggregation window for all. int delay_median = -1; int delay_standard_deviation = -1; float fraction_poor_delays = -1.0f; // Residual echo detector likelihood. float residual_echo_likelihood = -1.0f; // Maximum residual echo likelihood from the last time period. float residual_echo_likelihood_recent_max = -1.0f; }; // TODO(ivoc): Make this pure virtual when all subclasses have been updated. virtual AudioProcessingStatistics GetStatistics() const; // This returns the stats as optionals and it will replace the regular // GetStatistics. virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) const; // These provide access to the component interfaces and should never return // NULL. The pointers will be valid for the lifetime of the APM instance. // The memory for these objects is entirely managed internally. virtual EchoCancellation* echo_cancellation() const = 0; virtual EchoControlMobile* echo_control_mobile() const = 0; virtual GainControl* gain_control() const = 0; // TODO(peah): Deprecate this API call. virtual HighPassFilter* high_pass_filter() const = 0; virtual LevelEstimator* level_estimator() const = 0; virtual NoiseSuppression* noise_suppression() const = 0; virtual VoiceDetection* voice_detection() const = 0; // Returns the last applied configuration. virtual AudioProcessing::Config GetConfig() const = 0; enum Error { // Fatal errors. kNoError = 0, kUnspecifiedError = -1, kCreationFailedError = -2, kUnsupportedComponentError = -3, kUnsupportedFunctionError = -4, kNullPointerError = -5, kBadParameterError = -6, kBadSampleRateError = -7, kBadDataLengthError = -8, kBadNumberChannelsError = -9, kFileError = -10, kStreamParameterNotSetError = -11, kNotEnabledError = -12, // Warnings are non-fatal. // This results when a set_stream_ parameter is out of range. Processing // will continue, but the parameter may have been truncated. kBadStreamParameterWarning = -13 }; enum NativeRate { kSampleRate8kHz = 8000, kSampleRate16kHz = 16000, kSampleRate32kHz = 32000, kSampleRate48kHz = 48000 }; // TODO(kwiberg): We currently need to support a compiler (Visual C++) that // complains if we don't explicitly state the size of the array here. Remove // the size when that's no longer the case. static constexpr int kNativeSampleRatesHz[4] = { kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz}; static constexpr size_t kNumNativeSampleRates = arraysize(kNativeSampleRatesHz); static constexpr int kMaxNativeSampleRateHz = kNativeSampleRatesHz[kNumNativeSampleRates - 1]; static const int kChunkSizeMs = 10; }; class StreamConfig { public: // sample_rate_hz: The sampling rate of the stream. // // num_channels: The number of audio channels in the stream, excluding the // keyboard channel if it is present. When passing a // StreamConfig with an array of arrays T*[N], // // N == {num_channels + 1 if has_keyboard // {num_channels if !has_keyboard // // has_keyboard: True if the stream has a keyboard channel. When has_keyboard // is true, the last channel in any corresponding list of // channels is the keyboard channel. StreamConfig(int sample_rate_hz = 0, size_t num_channels = 0, bool has_keyboard = false) : sample_rate_hz_(sample_rate_hz), num_channels_(num_channels), has_keyboard_(has_keyboard), num_frames_(calculate_frames(sample_rate_hz)) {} void set_sample_rate_hz(int value) { sample_rate_hz_ = value; num_frames_ = calculate_frames(value); } void set_num_channels(size_t value) { num_channels_ = value; } void set_has_keyboard(bool value) { has_keyboard_ = value; } int sample_rate_hz() const { return sample_rate_hz_; } // The number of channels in the stream, not including the keyboard channel if // present. size_t num_channels() const { return num_channels_; } bool has_keyboard() const { return has_keyboard_; } size_t num_frames() const { return num_frames_; } size_t num_samples() const { return num_channels_ * num_frames_; } bool operator==(const StreamConfig& other) const { return sample_rate_hz_ == other.sample_rate_hz_ && num_channels_ == other.num_channels_ && has_keyboard_ == other.has_keyboard_; } bool operator!=(const StreamConfig& other) const { return !(*this == other); } private: static size_t calculate_frames(int sample_rate_hz) { return static_cast( AudioProcessing::kChunkSizeMs * sample_rate_hz / 1000); } int sample_rate_hz_; size_t num_channels_; bool has_keyboard_; size_t num_frames_; }; class ProcessingConfig { public: enum StreamName { kInputStream, kOutputStream, kReverseInputStream, kReverseOutputStream, kNumStreamNames, }; const StreamConfig& input_stream() const { return streams[StreamName::kInputStream]; } const StreamConfig& output_stream() const { return streams[StreamName::kOutputStream]; } const StreamConfig& reverse_input_stream() const { return streams[StreamName::kReverseInputStream]; } const StreamConfig& reverse_output_stream() const { return streams[StreamName::kReverseOutputStream]; } StreamConfig& input_stream() { return streams[StreamName::kInputStream]; } StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; } StreamConfig& reverse_input_stream() { return streams[StreamName::kReverseInputStream]; } StreamConfig& reverse_output_stream() { return streams[StreamName::kReverseOutputStream]; } bool operator==(const ProcessingConfig& other) const { for (int i = 0; i < StreamName::kNumStreamNames; ++i) { if (this->streams[i] != other.streams[i]) { return false; } } return true; } bool operator!=(const ProcessingConfig& other) const { return !(*this == other); } StreamConfig streams[StreamName::kNumStreamNames]; }; // The acoustic echo cancellation (AEC) component provides better performance // than AECM but also requires more processing power and is dependent on delay // stability and reporting accuracy. As such it is well-suited and recommended // for PC and IP phone applications. // // Not recommended to be enabled on the server-side. class EchoCancellation { public: // EchoCancellation and EchoControlMobile may not be enabled simultaneously. // Enabling one will disable the other. virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Differences in clock speed on the primary and reverse streams can impact // the AEC performance. On the client-side, this could be seen when different // render and capture devices are used, particularly with webcams. // // This enables a compensation mechanism, and requires that // set_stream_drift_samples() be called. virtual int enable_drift_compensation(bool enable) = 0; virtual bool is_drift_compensation_enabled() const = 0; // Sets the difference between the number of samples rendered and captured by // the audio devices since the last call to |ProcessStream()|. Must be called // if drift compensation is enabled, prior to |ProcessStream()|. virtual void set_stream_drift_samples(int drift) = 0; virtual int stream_drift_samples() const = 0; enum SuppressionLevel { kLowSuppression, kModerateSuppression, kHighSuppression }; // Sets the aggressiveness of the suppressor. A higher level trades off // double-talk performance for increased echo suppression. virtual int set_suppression_level(SuppressionLevel level) = 0; virtual SuppressionLevel suppression_level() const = 0; // Returns false if the current frame almost certainly contains no echo // and true if it _might_ contain echo. virtual bool stream_has_echo() const = 0; // Enables the computation of various echo metrics. These are obtained // through |GetMetrics()|. virtual int enable_metrics(bool enable) = 0; virtual bool are_metrics_enabled() const = 0; // Each statistic is reported in dB. // P_far: Far-end (render) signal power. // P_echo: Near-end (capture) echo signal power. // P_out: Signal power at the output of the AEC. // P_a: Internal signal power at the point before the AEC's non-linear // processor. struct Metrics { // RERL = ERL + ERLE AudioProcessing::Statistic residual_echo_return_loss; // ERL = 10log_10(P_far / P_echo) AudioProcessing::Statistic echo_return_loss; // ERLE = 10log_10(P_echo / P_out) AudioProcessing::Statistic echo_return_loss_enhancement; // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a) AudioProcessing::Statistic a_nlp; // Fraction of time that the AEC linear filter is divergent, in a 1-second // non-overlapped aggregation window. float divergent_filter_fraction; }; // Deprecated. Use GetStatistics on the AudioProcessing interface instead. // TODO(ajm): discuss the metrics update period. virtual int GetMetrics(Metrics* metrics) = 0; // Enables computation and logging of delay values. Statistics are obtained // through |GetDelayMetrics()|. virtual int enable_delay_logging(bool enable) = 0; virtual bool is_delay_logging_enabled() const = 0; // The delay metrics consists of the delay |median| and the delay standard // deviation |std|. It also consists of the fraction of delay estimates // |fraction_poor_delays| that can make the echo cancellation perform poorly. // The values are aggregated until the first call to |GetDelayMetrics()| and // afterwards aggregated and updated every second. // Note that if there are several clients pulling metrics from // |GetDelayMetrics()| during a session the first call from any of them will // change to one second aggregation window for all. // Deprecated. Use GetStatistics on the AudioProcessing interface instead. virtual int GetDelayMetrics(int* median, int* std) = 0; // Deprecated. Use GetStatistics on the AudioProcessing interface instead. virtual int GetDelayMetrics(int* median, int* std, float* fraction_poor_delays) = 0; // Returns a pointer to the low level AEC component. In case of multiple // channels, the pointer to the first one is returned. A NULL pointer is // returned when the AEC component is disabled or has not been initialized // successfully. virtual struct AecCore* aec_core() const = 0; protected: virtual ~EchoCancellation() {} }; // The acoustic echo control for mobile (AECM) component is a low complexity // robust option intended for use on mobile devices. // // Not recommended to be enabled on the server-side. class EchoControlMobile { public: // EchoCancellation and EchoControlMobile may not be enabled simultaneously. // Enabling one will disable the other. virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Recommended settings for particular audio routes. In general, the louder // the echo is expected to be, the higher this value should be set. The // preferred setting may vary from device to device. enum RoutingMode { kQuietEarpieceOrHeadset, kEarpiece, kLoudEarpiece, kSpeakerphone, kLoudSpeakerphone }; // Sets echo control appropriate for the audio routing |mode| on the device. // It can and should be updated during a call if the audio routing changes. virtual int set_routing_mode(RoutingMode mode) = 0; virtual RoutingMode routing_mode() const = 0; // Comfort noise replaces suppressed background noise to maintain a // consistent signal level. virtual int enable_comfort_noise(bool enable) = 0; virtual bool is_comfort_noise_enabled() const = 0; // A typical use case is to initialize the component with an echo path from a // previous call. The echo path is retrieved using |GetEchoPath()|, typically // at the end of a call. The data can then be stored for later use as an // initializer before the next call, using |SetEchoPath()|. // // Controlling the echo path this way requires the data |size_bytes| to match // the internal echo path size. This size can be acquired using // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth // noting if it is to be called during an ongoing call. // // It is possible that version incompatibilities may result in a stored echo // path of the incorrect size. In this case, the stored path should be // discarded. virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0; virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0; // The returned path size is guaranteed not to change for the lifetime of // the application. static size_t echo_path_size_bytes(); protected: virtual ~EchoControlMobile() {} }; // Interface for an acoustic echo cancellation (AEC) submodule. class EchoControl { public: // Analysis (not changing) of the render signal. virtual void AnalyzeRender(AudioBuffer* render) = 0; // Analysis (not changing) of the capture signal. virtual void AnalyzeCapture(AudioBuffer* capture) = 0; // Processes the capture signal in order to remove the echo. virtual void ProcessCapture(AudioBuffer* capture, bool echo_path_change) = 0; struct Metrics { double echo_return_loss; double echo_return_loss_enhancement; int delay_ms; }; // Collect current metrics from the echo controller. virtual Metrics GetMetrics() const = 0; virtual ~EchoControl() {} }; // Interface for a factory that creates EchoControllers. class EchoControlFactory { public: virtual std::unique_ptr Create(int sample_rate_hz) = 0; virtual ~EchoControlFactory() = default; }; // The automatic gain control (AGC) component brings the signal to an // appropriate range. This is done by applying a digital gain directly and, in // the analog mode, prescribing an analog gain to be applied at the audio HAL. // // Recommended to be enabled on the client-side. class GainControl { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // When an analog mode is set, this must be called prior to |ProcessStream()| // to pass the current analog level from the audio HAL. Must be within the // range provided to |set_analog_level_limits()|. virtual int set_stream_analog_level(int level) = 0; // When an analog mode is set, this should be called after |ProcessStream()| // to obtain the recommended new analog level for the audio HAL. It is the // users responsibility to apply this level. virtual int stream_analog_level() = 0; enum Mode { // Adaptive mode intended for use if an analog volume control is available // on the capture device. It will require the user to provide coupling // between the OS mixer controls and AGC through the |stream_analog_level()| // functions. // // It consists of an analog gain prescription for the audio device and a // digital compression stage. kAdaptiveAnalog, // Adaptive mode intended for situations in which an analog volume control // is unavailable. It operates in a similar fashion to the adaptive analog // mode, but with scaling instead applied in the digital domain. As with // the analog mode, it additionally uses a digital compression stage. kAdaptiveDigital, // Fixed mode which enables only the digital compression stage also used by // the two adaptive modes. // // It is distinguished from the adaptive modes by considering only a // short time-window of the input signal. It applies a fixed gain through // most of the input level range, and compresses (gradually reduces gain // with increasing level) the input signal at higher levels. This mode is // preferred on embedded devices where the capture signal level is // predictable, so that a known gain can be applied. kFixedDigital }; virtual int set_mode(Mode mode) = 0; virtual Mode mode() const = 0; // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels // from digital full-scale). The convention is to use positive values. For // instance, passing in a value of 3 corresponds to -3 dBFs, or a target // level 3 dB below full-scale. Limited to [0, 31]. // // TODO(ajm): use a negative value here instead, if/when VoE will similarly // update its interface. virtual int set_target_level_dbfs(int level) = 0; virtual int target_level_dbfs() const = 0; // Sets the maximum |gain| the digital compression stage may apply, in dB. A // higher number corresponds to greater compression, while a value of 0 will // leave the signal uncompressed. Limited to [0, 90]. virtual int set_compression_gain_db(int gain) = 0; virtual int compression_gain_db() const = 0; // When enabled, the compression stage will hard limit the signal to the // target level. Otherwise, the signal will be compressed but not limited // above the target level. virtual int enable_limiter(bool enable) = 0; virtual bool is_limiter_enabled() const = 0; // Sets the |minimum| and |maximum| analog levels of the audio capture device. // Must be set if and only if an analog mode is used. Limited to [0, 65535]. virtual int set_analog_level_limits(int minimum, int maximum) = 0; virtual int analog_level_minimum() const = 0; virtual int analog_level_maximum() const = 0; // Returns true if the AGC has detected a saturation event (period where the // signal reaches digital full-scale) in the current frame and the analog // level cannot be reduced. // // This could be used as an indicator to reduce or disable analog mic gain at // the audio HAL. virtual bool stream_is_saturated() const = 0; protected: virtual ~GainControl() {} }; // TODO(peah): Remove this interface. // A filtering component which removes DC offset and low-frequency noise. // Recommended to be enabled on the client-side. class HighPassFilter { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; virtual ~HighPassFilter() {} }; // An estimation component used to retrieve level metrics. class LevelEstimator { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Returns the root mean square (RMS) level in dBFs (decibels from digital // full-scale), or alternately dBov. It is computed over all primary stream // frames since the last call to RMS(). The returned value is positive but // should be interpreted as negative. It is constrained to [0, 127]. // // The computation follows: https://tools.ietf.org/html/rfc6465 // with the intent that it can provide the RTP audio level indication. // // Frames passed to ProcessStream() with an |_energy| of zero are considered // to have been muted. The RMS of the frame will be interpreted as -127. virtual int RMS() = 0; protected: virtual ~LevelEstimator() {} }; // The noise suppression (NS) component attempts to remove noise while // retaining speech. Recommended to be enabled on the client-side. // // Recommended to be enabled on the client-side. class NoiseSuppression { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Determines the aggressiveness of the suppression. Increasing the level // will reduce the noise level at the expense of a higher speech distortion. enum Level { kLow, kModerate, kHigh, kVeryHigh }; virtual int set_level(Level level) = 0; virtual Level level() const = 0; // Returns the internally computed prior speech probability of current frame // averaged over output channels. This is not supported in fixed point, for // which |kUnsupportedFunctionError| is returned. virtual float speech_probability() const = 0; // Returns the noise estimate per frequency bin averaged over all channels. virtual std::vector NoiseEstimate() = 0; protected: virtual ~NoiseSuppression() {} }; // Interface for a post processing submodule. class PostProcessing { public: // (Re-)Initializes the submodule. virtual void Initialize(int sample_rate_hz, int num_channels) = 0; // Processes the given capture or render signal. virtual void Process(AudioBuffer* audio) = 0; // Returns a string representation of the module state. virtual std::string ToString() const = 0; virtual ~PostProcessing() {} }; // The voice activity detection (VAD) component analyzes the stream to // determine if voice is present. A facility is also provided to pass in an // external VAD decision. // // In addition to |stream_has_voice()| the VAD decision is provided through the // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be // modified to reflect the current decision. class VoiceDetection { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Returns true if voice is detected in the current frame. Should be called // after |ProcessStream()|. virtual bool stream_has_voice() const = 0; // Some of the APM functionality requires a VAD decision. In the case that // a decision is externally available for the current frame, it can be passed // in here, before |ProcessStream()| is called. // // VoiceDetection does _not_ need to be enabled to use this. If it happens to // be enabled, detection will be skipped for any frame in which an external // VAD decision is provided. virtual int set_stream_has_voice(bool has_voice) = 0; // Specifies the likelihood that a frame will be declared to contain voice. // A higher value makes it more likely that speech will not be clipped, at // the expense of more noise being detected as voice. enum Likelihood { kVeryLowLikelihood, kLowLikelihood, kModerateLikelihood, kHighLikelihood }; virtual int set_likelihood(Likelihood likelihood) = 0; virtual Likelihood likelihood() const = 0; // Sets the |size| of the frames in ms on which the VAD will operate. Larger // frames will improve detection accuracy, but reduce the frequency of // updates. // // This does not impact the size of frames passed to |ProcessStream()|. virtual int set_frame_size_ms(int size) = 0; virtual int frame_size_ms() const = 0; protected: virtual ~VoiceDetection() {} }; // Configuration struct for EchoCanceller3 struct EchoCanceller3Config { struct Delay { size_t default_delay = 5; size_t down_sampling_factor = 4; size_t num_filters = 4; size_t api_call_jitter_blocks = 26; size_t min_echo_path_delay_blocks = 5; } delay; struct Erle { float min = 1.f; float max_l = 8.f; float max_h = 1.5f; } erle; struct EpStrength { float lf = 10.f; float mf = 10.f; float hf = 10.f; float default_len = 0.f; bool echo_can_saturate = true; bool bounded_erl = false; } ep_strength; struct Mask { float m1 = 0.01f; float m2 = 0.0001f; float m3 = 0.01f; float m4 = 0.1f; float m5 = 0.3f; float m6 = 0.0001f; float m7 = 0.01f; float m8 = 0.0001f; float m9 = 0.1f; } gain_mask; struct EchoAudibility { float low_render_limit = 4 * 64.f; float normal_render_limit = 64.f; } echo_audibility; struct RenderLevels { float active_render_limit = 100.f; float poor_excitation_render_limit = 150.f; } render_levels; struct GainUpdates { struct GainChanges { float max_inc; float max_dec; float rate_inc; float rate_dec; float min_inc; float min_dec; }; GainChanges low_noise = {3.f, 3.f, 1.5f, 1.5f, 1.5f, 1.5f}; GainChanges normal = {2.f, 2.f, 1.5f, 1.5f, 1.2f, 1.2f}; GainChanges saturation = {1.2f, 1.2f, 1.5f, 1.5f, 1.f, 1.f}; GainChanges nonlinear = {1.5f, 1.5f, 1.2f, 1.2f, 1.1f, 1.1f}; float floor_first_increase = 0.0001f; } gain_updates; }; class EchoCanceller3Factory : public EchoControlFactory { public: EchoCanceller3Factory(); EchoCanceller3Factory(const EchoCanceller3Config& config); std::unique_ptr Create(int sample_rate_hz) override; private: EchoCanceller3Config config_; }; } // namespace webrtc #endif // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_