/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/codecs/test/videoprocessor.h" #include #include #include #include "api/video/i420_buffer.h" #include "common_types.h" // NOLINT(build/include) #include "common_video/h264/h264_common.h" #include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h" #include "modules/video_coding/include/video_codec_initializer.h" #include "modules/video_coding/utility/default_video_bitrate_allocator.h" #include "rtc_base/checks.h" #include "rtc_base/timeutils.h" #include "test/gtest.h" namespace webrtc { namespace test { namespace { const int kRtpClockRateHz = 90000; const int64_t kNoRenderTime = 0; std::unique_ptr CreateBitrateAllocator( TestConfig* config) { std::unique_ptr tl_factory; if (config->codec_settings.codecType == VideoCodecType::kVideoCodecVP8) { tl_factory.reset(new TemporalLayersFactory()); config->codec_settings.VP8()->tl_factory = tl_factory.get(); } return std::unique_ptr( VideoCodecInitializer::CreateBitrateAllocator(config->codec_settings, std::move(tl_factory))); } rtc::Optional GetMaxNaluLength(const EncodedImage& encoded_frame, const TestConfig& config) { if (config.codec_settings.codecType != kVideoCodecH264) return rtc::nullopt; std::vector nalu_indices = webrtc::H264::FindNaluIndices(encoded_frame._buffer, encoded_frame._length); RTC_CHECK(!nalu_indices.empty()); size_t max_length = 0; for (const webrtc::H264::NaluIndex& index : nalu_indices) max_length = std::max(max_length, index.payload_size); return max_length; } int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) { int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec; RTC_DCHECK_GE(diff_us, std::numeric_limits::min()); RTC_DCHECK_LE(diff_us, std::numeric_limits::max()); return static_cast(diff_us); } void ExtractBufferWithSize(const VideoFrame& image, int width, int height, rtc::Buffer* buffer) { if (image.width() != width || image.height() != height) { EXPECT_DOUBLE_EQ(static_cast(width) / height, static_cast(image.width()) / image.height()); // Same aspect ratio, no cropping needed. rtc::scoped_refptr scaled(I420Buffer::Create(width, height)); scaled->ScaleFrom(*image.video_frame_buffer()->ToI420()); size_t length = CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height()); buffer->SetSize(length); RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1); return; } // No resize. size_t length = CalcBufferSize(VideoType::kI420, image.width(), image.height()); buffer->SetSize(length); RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1); } } // namespace VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder, webrtc::VideoDecoder* decoder, FrameReader* analysis_frame_reader, PacketManipulator* packet_manipulator, const TestConfig& config, Stats* stats, IvfFileWriter* encoded_frame_writer, FrameWriter* decoded_frame_writer) : config_(config), encoder_(encoder), decoder_(decoder), bitrate_allocator_(CreateBitrateAllocator(&config_)), encode_callback_(this), decode_callback_(this), packet_manipulator_(packet_manipulator), analysis_frame_reader_(analysis_frame_reader), encoded_frame_writer_(encoded_frame_writer), decoded_frame_writer_(decoded_frame_writer), last_inputed_frame_num_(-1), last_encoded_frame_num_(-1), last_decoded_frame_num_(-1), first_key_frame_has_been_excluded_(false), last_decoded_frame_buffer_(analysis_frame_reader->FrameLength()), stats_(stats), rate_update_index_(-1) { RTC_DCHECK(encoder); RTC_DCHECK(decoder); RTC_DCHECK(packet_manipulator); RTC_DCHECK(analysis_frame_reader); RTC_DCHECK(stats); // Setup required callbacks for the encoder and decoder. RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_), WEBRTC_VIDEO_CODEC_OK); RTC_CHECK_EQ(decoder_->RegisterDecodeCompleteCallback(&decode_callback_), WEBRTC_VIDEO_CODEC_OK); // Initialize the encoder and decoder. RTC_CHECK_EQ( encoder_->InitEncode(&config_.codec_settings, config_.NumberOfCores(), config_.networking_config.max_payload_size_in_bytes), WEBRTC_VIDEO_CODEC_OK); RTC_CHECK_EQ( decoder_->InitDecode(&config_.codec_settings, config_.NumberOfCores()), WEBRTC_VIDEO_CODEC_OK); } VideoProcessor::~VideoProcessor() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK); RTC_CHECK_EQ(decoder_->Release(), WEBRTC_VIDEO_CODEC_OK); encoder_->RegisterEncodeCompleteCallback(nullptr); decoder_->RegisterDecodeCompleteCallback(nullptr); } void VideoProcessor::ProcessFrame() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); const int frame_number = ++last_inputed_frame_num_; // Get frame from file. rtc::scoped_refptr buffer( analysis_frame_reader_->ReadFrame()); RTC_CHECK(buffer) << "Tried to read too many frames from the file."; // Use the frame number as the basis for timestamp to identify frames. Let the // first timestamp be non-zero, to not make the IvfFileWriter believe that we // want to use capture timestamps in the IVF files. const uint32_t rtp_timestamp = (frame_number + 1) * kRtpClockRateHz / config_.codec_settings.maxFramerate; rtp_timestamp_to_frame_num_[rtp_timestamp] = frame_number; input_frames_[frame_number] = rtc::MakeUnique( buffer, rtp_timestamp, kNoRenderTime, webrtc::kVideoRotation_0); std::vector frame_types = config_.FrameTypeForFrame(frame_number); // Create frame statistics object used for aggregation at end of test run. FrameStatistic* frame_stat = stats_->AddFrame(); // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. frame_stat->encode_start_ns = rtc::TimeNanos(); frame_stat->encode_return_code = encoder_->Encode(*input_frames_[frame_number], nullptr, &frame_types); } void VideoProcessor::SetRates(int bitrate_kbps, int framerate_fps) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); config_.codec_settings.maxFramerate = framerate_fps; int set_rates_result = encoder_->SetRateAllocation( bitrate_allocator_->GetAllocation(bitrate_kbps * 1000, framerate_fps), framerate_fps); RTC_DCHECK_GE(set_rates_result, 0) << "Failed to update encoder with new rate " << bitrate_kbps << "."; ++rate_update_index_; num_dropped_frames_.push_back(0); num_spatial_resizes_.push_back(0); } std::vector VideoProcessor::NumberDroppedFramesPerRateUpdate() const { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); return num_dropped_frames_; } std::vector VideoProcessor::NumberSpatialResizesPerRateUpdate() const { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); return num_spatial_resizes_; } void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec, const EncodedImage& encoded_image) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. int64_t encode_stop_ns = rtc::TimeNanos(); if (config_.encoded_frame_checker) { config_.encoded_frame_checker->CheckEncodedFrame(codec, encoded_image); } const int frame_number = rtp_timestamp_to_frame_num_[encoded_image._timeStamp]; // Ensure strict monotonicity. RTC_CHECK_GT(frame_number, last_encoded_frame_num_); // Check for dropped frames. bool last_frame_missing = false; if (frame_number > 0) { int num_dropped_from_last_encode = frame_number - last_encoded_frame_num_ - 1; RTC_DCHECK_GE(num_dropped_from_last_encode, 0); RTC_CHECK_GE(rate_update_index_, 0); num_dropped_frames_[rate_update_index_] += num_dropped_from_last_encode; const FrameStatistic* last_encoded_frame_stat = stats_->GetFrame(last_encoded_frame_num_); last_frame_missing = (last_encoded_frame_stat->manipulated_length == 0); } last_encoded_frame_num_ = frame_number; // Update frame statistics. FrameStatistic* frame_stat = stats_->GetFrame(frame_number); frame_stat->encode_time_us = GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns); frame_stat->encoding_successful = true; frame_stat->encoded_frame_size_bytes = encoded_image._length; frame_stat->frame_type = encoded_image._frameType; frame_stat->qp = encoded_image.qp_; frame_stat->bitrate_kbps = static_cast( encoded_image._length * config_.codec_settings.maxFramerate * 8 / 1000); frame_stat->total_packets = encoded_image._length / config_.networking_config.packet_size_in_bytes + 1; frame_stat->max_nalu_length = GetMaxNaluLength(encoded_image, config_); // Make a raw copy of |encoded_image| to feed to the decoder. size_t copied_buffer_size = encoded_image._length + EncodedImage::GetBufferPaddingBytes(codec); std::unique_ptr copied_buffer(new uint8_t[copied_buffer_size]); memcpy(copied_buffer.get(), encoded_image._buffer, encoded_image._length); EncodedImage copied_image = encoded_image; copied_image._size = copied_buffer_size; copied_image._buffer = copied_buffer.get(); // Simulate packet loss. if (!ExcludeFrame(copied_image)) { frame_stat->packets_dropped = packet_manipulator_->ManipulatePackets(&copied_image); } frame_stat->manipulated_length = copied_image._length; // For the highest measurement accuracy of the decode time, the start/stop // time recordings should wrap the Decode call as tightly as possible. frame_stat->decode_start_ns = rtc::TimeNanos(); frame_stat->decode_return_code = decoder_->Decode(copied_image, last_frame_missing, nullptr); if (encoded_frame_writer_) { RTC_CHECK(encoded_frame_writer_->WriteFrame(encoded_image, codec)); } } void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // For the highest measurement accuracy of the decode time, the start/stop // time recordings should wrap the Decode call as tightly as possible. int64_t decode_stop_ns = rtc::TimeNanos(); // Update frame statistics. const int frame_number = rtp_timestamp_to_frame_num_[decoded_frame.timestamp()]; FrameStatistic* frame_stat = stats_->GetFrame(frame_number); frame_stat->decoded_width = decoded_frame.width(); frame_stat->decoded_height = decoded_frame.height(); frame_stat->decode_time_us = GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns); frame_stat->decoding_successful = true; // Ensure strict monotonicity. RTC_CHECK_GT(frame_number, last_decoded_frame_num_); // Check if the codecs have resized the frame since previously decoded frame. if (frame_number > 0) { if (decoded_frame_writer_ && last_decoded_frame_num_ >= 0) { // For dropped/lost frames, write out the last decoded frame to make it // look like a freeze at playback. const int num_dropped_frames = frame_number - last_decoded_frame_num_; for (int i = 0; i < num_dropped_frames; i++) { WriteDecodedFrameToFile(&last_decoded_frame_buffer_); } } // TODO(ssilkin): move to FrameEncoded when webm:1474 is implemented. const FrameStatistic* last_decoded_frame_stat = stats_->GetFrame(last_decoded_frame_num_); if (decoded_frame.width() != last_decoded_frame_stat->decoded_width || decoded_frame.height() != last_decoded_frame_stat->decoded_height) { RTC_CHECK_GE(rate_update_index_, 0); ++num_spatial_resizes_[rate_update_index_]; } } last_decoded_frame_num_ = frame_number; // Skip quality metrics calculation to not affect CPU usage. if (!config_.measure_cpu) { frame_stat->psnr = I420PSNR(input_frames_[frame_number].get(), &decoded_frame); frame_stat->ssim = I420SSIM(input_frames_[frame_number].get(), &decoded_frame); } // Delay erasing of input frames by one frame. The current frame might // still be needed for other simulcast stream or spatial layer. const int frame_number_to_erase = frame_number - 1; if (frame_number_to_erase >= 0) { auto input_frame_erase_to = input_frames_.lower_bound(frame_number_to_erase); input_frames_.erase(input_frames_.begin(), input_frame_erase_to); } if (decoded_frame_writer_) { ExtractBufferWithSize(decoded_frame, config_.codec_settings.width, config_.codec_settings.height, &last_decoded_frame_buffer_); WriteDecodedFrameToFile(&last_decoded_frame_buffer_); } } void VideoProcessor::WriteDecodedFrameToFile(rtc::Buffer* buffer) { RTC_DCHECK_EQ(buffer->size(), decoded_frame_writer_->FrameLength()); RTC_CHECK(decoded_frame_writer_->WriteFrame(buffer->data())); } bool VideoProcessor::ExcludeFrame(const EncodedImage& encoded_image) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); if (encoded_image._frameType != kVideoFrameKey) { return false; } bool exclude_frame = false; switch (config_.exclude_frame_types) { case kExcludeOnlyFirstKeyFrame: if (!first_key_frame_has_been_excluded_) { first_key_frame_has_been_excluded_ = true; exclude_frame = true; } break; case kExcludeAllKeyFrames: exclude_frame = true; break; default: RTC_NOTREACHED(); } return exclude_frame; } } // namespace test } // namespace webrtc