/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "modules/audio_coding/codecs/isac/fix/source/codec.h" #include "modules/audio_coding/codecs/isac/fix/source/settings.h" // Contains a function for the core loop in the normalized lattice MA // filter routine for iSAC codec, optimized for ARM Neon platform. // It does: // for 0 <= n < HALF_SUBFRAMELEN - 1: // *ptr2 = input2 * ((*ptr2) + input0 * (*ptr0)); // *ptr1 = input1 * (*ptr0) + input0 * (*ptr2); // Output is not bit-exact with the reference C code, due to the replacement // of WEBRTC_SPL_MUL_16_32_RSFT15 and LATTICE_MUL_32_32_RSFT16 with Neon // instructions. The difference should not be bigger than 1. void WebRtcIsacfix_FilterMaLoopNeon(int16_t input0, // Filter coefficient int16_t input1, // Filter coefficient int32_t input2, // Inverse coefficient int32_t* ptr0, // Sample buffer int32_t* ptr1, // Sample buffer int32_t* ptr2) // Sample buffer { int n = 0; int loop = (HALF_SUBFRAMELEN - 1) >> 3; int loop_tail = (HALF_SUBFRAMELEN - 1) & 0x7; int32x4_t input0_v = vdupq_n_s32((int32_t)input0 << 16); int32x4_t input1_v = vdupq_n_s32((int32_t)input1 << 16); int32x4_t input2_v = vdupq_n_s32(input2); int32x4_t tmp0a, tmp1a, tmp2a, tmp3a; int32x4_t tmp0b, tmp1b, tmp2b, tmp3b; int32x4_t ptr0va, ptr1va, ptr2va; int32x4_t ptr0vb, ptr1vb, ptr2vb; int64x2_t tmp2al_low, tmp2al_high, tmp2bl_low, tmp2bl_high; // Unroll to process 8 samples at once. for (n = 0; n < loop; n++) { ptr0va = vld1q_s32(ptr0); ptr0vb = vld1q_s32(ptr0 + 4); ptr0 += 8; ptr2va = vld1q_s32(ptr2); ptr2vb = vld1q_s32(ptr2 + 4); // Calculate tmp0 = (*ptr0) * input0. tmp0a = vqrdmulhq_s32(ptr0va, input0_v); tmp0b = vqrdmulhq_s32(ptr0vb, input0_v); // Calculate tmp1 = (*ptr0) * input1. tmp1a = vqrdmulhq_s32(ptr0va, input1_v); tmp1b = vqrdmulhq_s32(ptr0vb, input1_v); // Calculate tmp2 = tmp0 + *(ptr2). tmp2a = vaddq_s32(tmp0a, ptr2va); tmp2b = vaddq_s32(tmp0b, ptr2vb); // Calculate *ptr2 = input2 * tmp2. tmp2al_low = vmull_s32(vget_low_s32(tmp2a), vget_low_s32(input2_v)); #if defined(WEBRTC_ARCH_ARM64) tmp2al_high = vmull_high_s32(tmp2a, input2_v); #else tmp2al_high = vmull_s32(vget_high_s32(tmp2a), vget_high_s32(input2_v)); #endif ptr2va = vcombine_s32(vrshrn_n_s64(tmp2al_low, 16), vrshrn_n_s64(tmp2al_high, 16)); tmp2bl_low = vmull_s32(vget_low_s32(tmp2b), vget_low_s32(input2_v)); #if defined(WEBRTC_ARCH_ARM64) tmp2bl_high = vmull_high_s32(tmp2b, input2_v); #else tmp2bl_high = vmull_s32(vget_high_s32(tmp2b), vget_high_s32(input2_v)); #endif ptr2vb = vcombine_s32(vrshrn_n_s64(tmp2bl_low, 16), vrshrn_n_s64(tmp2bl_high, 16)); vst1q_s32(ptr2, ptr2va); vst1q_s32(ptr2 + 4, ptr2vb); ptr2 += 8; // Calculate tmp3 = ptr2v * input0. tmp3a = vqrdmulhq_s32(ptr2va, input0_v); tmp3b = vqrdmulhq_s32(ptr2vb, input0_v); // Calculate *ptr1 = tmp1 + tmp3. ptr1va = vaddq_s32(tmp1a, tmp3a); ptr1vb = vaddq_s32(tmp1b, tmp3b); vst1q_s32(ptr1, ptr1va); vst1q_s32(ptr1 + 4, ptr1vb); ptr1 += 8; } // Process four more samples. if (loop_tail & 0x4) { ptr0va = vld1q_s32(ptr0); ptr2va = vld1q_s32(ptr2); ptr0 += 4; // Calculate tmp0 = (*ptr0) * input0. tmp0a = vqrdmulhq_s32(ptr0va, input0_v); // Calculate tmp1 = (*ptr0) * input1. tmp1a = vqrdmulhq_s32(ptr0va, input1_v); // Calculate tmp2 = tmp0 + *(ptr2). tmp2a = vaddq_s32(tmp0a, ptr2va); // Calculate *ptr2 = input2 * tmp2. tmp2al_low = vmull_s32(vget_low_s32(tmp2a), vget_low_s32(input2_v)); #if defined(WEBRTC_ARCH_ARM64) tmp2al_high = vmull_high_s32(tmp2a, input2_v); #else tmp2al_high = vmull_s32(vget_high_s32(tmp2a), vget_high_s32(input2_v)); #endif ptr2va = vcombine_s32(vrshrn_n_s64(tmp2al_low, 16), vrshrn_n_s64(tmp2al_high, 16)); vst1q_s32(ptr2, ptr2va); ptr2 += 4; // Calculate tmp3 = *(ptr2) * input0. tmp3a = vqrdmulhq_s32(ptr2va, input0_v); // Calculate *ptr1 = tmp1 + tmp3. ptr1va = vaddq_s32(tmp1a, tmp3a); vst1q_s32(ptr1, ptr1va); ptr1 += 4; } // Process two more samples. if (loop_tail & 0x2) { int32x2_t ptr0v_tail, ptr2v_tail, ptr1v_tail; int32x2_t tmp0_tail, tmp1_tail, tmp2_tail, tmp3_tail; int64x2_t tmp2l_tail; ptr0v_tail = vld1_s32(ptr0); ptr2v_tail = vld1_s32(ptr2); ptr0 += 2; // Calculate tmp0 = (*ptr0) * input0. tmp0_tail = vqrdmulh_s32(ptr0v_tail, vget_low_s32(input0_v)); // Calculate tmp1 = (*ptr0) * input1. tmp1_tail = vqrdmulh_s32(ptr0v_tail, vget_low_s32(input1_v)); // Calculate tmp2 = tmp0 + *(ptr2). tmp2_tail = vadd_s32(tmp0_tail, ptr2v_tail); // Calculate *ptr2 = input2 * tmp2. tmp2l_tail = vmull_s32(tmp2_tail, vget_low_s32(input2_v)); ptr2v_tail = vrshrn_n_s64(tmp2l_tail, 16); vst1_s32(ptr2, ptr2v_tail); ptr2 += 2; // Calculate tmp3 = *(ptr2) * input0. tmp3_tail = vqrdmulh_s32(ptr2v_tail, vget_low_s32(input0_v)); // Calculate *ptr1 = tmp1 + tmp3. ptr1v_tail = vadd_s32(tmp1_tail, tmp3_tail); vst1_s32(ptr1, ptr1v_tail); ptr1 += 2; } // Process one more sample. if (loop_tail & 0x1) { int16_t t16a = (int16_t)(input2 >> 16); int16_t t16b = (int16_t)input2; if (t16b < 0) t16a++; int32_t tmp32a; int32_t tmp32b; // Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0)). tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0); tmp32b = *ptr2 + tmp32a; *ptr2 = (int32_t)(WEBRTC_SPL_MUL(t16a, tmp32b) + (WEBRTC_SPL_MUL_16_32_RSFT16(t16b, tmp32b))); // Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2). tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0); tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2); *ptr1 = tmp32a + tmp32b; } }