/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if defined(WEBRTC_WIN) // clang-format off #include // Must come first. #include // clang-format on #endif #include #include #include "rtc_base/bind.h" #include "rtc_base/event.h" #include "rtc_base/gunit.h" #include "rtc_base/task_queue.h" #include "rtc_base/timeutils.h" namespace rtc { namespace { // Noop on all platforms except Windows, where it turns on high precision // multimedia timers which increases the precision of TimeMillis() while in // scope. class EnableHighResTimers { public: #if !defined(WEBRTC_WIN) EnableHighResTimers() {} #else EnableHighResTimers() : enabled_(timeBeginPeriod(1) == TIMERR_NOERROR) {} ~EnableHighResTimers() { if (enabled_) timeEndPeriod(1); } private: const bool enabled_; #endif }; } namespace { void CheckCurrent(Event* signal, TaskQueue* queue) { EXPECT_TRUE(queue->IsCurrent()); if (signal) signal->Set(); } } // namespace TEST(TaskQueueTest, Construct) { static const char kQueueName[] = "Construct"; TaskQueue queue(kQueueName); EXPECT_FALSE(queue.IsCurrent()); } TEST(TaskQueueTest, PostAndCheckCurrent) { static const char kQueueName[] = "PostAndCheckCurrent"; Event event(false, false); TaskQueue queue(kQueueName); // We're not running a task, so there shouldn't be a current queue. EXPECT_FALSE(queue.IsCurrent()); EXPECT_FALSE(TaskQueue::Current()); queue.PostTask(Bind(&CheckCurrent, &event, &queue)); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostCustomTask) { static const char kQueueName[] = "PostCustomImplementation"; Event event(false, false); TaskQueue queue(kQueueName); class CustomTask : public QueuedTask { public: explicit CustomTask(Event* event) : event_(event) {} private: bool Run() override { event_->Set(); return false; // Never allows the task to be deleted by the queue. } Event* const event_; } my_task(&event); // Please don't do this in production code! :) queue.PostTask(std::unique_ptr(&my_task)); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostLambda) { static const char kQueueName[] = "PostLambda"; Event event(false, false); TaskQueue queue(kQueueName); queue.PostTask([&event]() { event.Set(); }); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostDelayedZero) { static const char kQueueName[] = "PostDelayedZero"; Event event(false, false); TaskQueue queue(kQueueName); queue.PostDelayedTask([&event]() { event.Set(); }, 0); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostFromQueue) { static const char kQueueName[] = "PostFromQueue"; Event event(false, false); TaskQueue queue(kQueueName); queue.PostTask( [&event, &queue]() { queue.PostTask([&event]() { event.Set(); }); }); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostDelayed) { static const char kQueueName[] = "PostDelayed"; Event event(false, false); TaskQueue queue(kQueueName, TaskQueue::Priority::HIGH); uint32_t start = Time(); queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 100); EXPECT_TRUE(event.Wait(1000)); uint32_t end = Time(); // These tests are a little relaxed due to how "powerful" our test bots can // be. Most recently we've seen windows bots fire the callback after 94-99ms, // which is why we have a little bit of leeway backwards as well. EXPECT_GE(end - start, 90u); EXPECT_NEAR(end - start, 190u, 100u); // Accept 90-290. } // This task needs to be run manually due to the slowness of some of our bots. // TODO(tommi): Can we run this on the perf bots? TEST(TaskQueueTest, DISABLED_PostDelayedHighRes) { EnableHighResTimers high_res_scope; static const char kQueueName[] = "PostDelayedHighRes"; Event event(false, false); TaskQueue queue(kQueueName, TaskQueue::Priority::HIGH); uint32_t start = Time(); queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 3); EXPECT_TRUE(event.Wait(1000)); uint32_t end = TimeMillis(); // These tests are a little relaxed due to how "powerful" our test bots can // be. Most recently we've seen windows bots fire the callback after 94-99ms, // which is why we have a little bit of leeway backwards as well. EXPECT_GE(end - start, 3u); EXPECT_NEAR(end - start, 3, 3u); } TEST(TaskQueueTest, PostMultipleDelayed) { static const char kQueueName[] = "PostMultipleDelayed"; TaskQueue queue(kQueueName); std::vector> events; for (int i = 0; i < 100; ++i) { events.push_back(std::unique_ptr(new Event(false, false))); queue.PostDelayedTask( Bind(&CheckCurrent, events.back().get(), &queue), i); } for (const auto& e : events) EXPECT_TRUE(e->Wait(1000)); } TEST(TaskQueueTest, PostDelayedAfterDestruct) { static const char kQueueName[] = "PostDelayedAfterDestruct"; Event event(false, false); { TaskQueue queue(kQueueName); queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 100); } EXPECT_FALSE(event.Wait(200)); // Task should not run. } TEST(TaskQueueTest, PostAndReply) { static const char kPostQueue[] = "PostQueue"; static const char kReplyQueue[] = "ReplyQueue"; Event event(false, false); TaskQueue post_queue(kPostQueue); TaskQueue reply_queue(kReplyQueue); post_queue.PostTaskAndReply( Bind(&CheckCurrent, nullptr, &post_queue), Bind(&CheckCurrent, &event, &reply_queue), &reply_queue); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostAndReuse) { static const char kPostQueue[] = "PostQueue"; static const char kReplyQueue[] = "ReplyQueue"; Event event(false, false); TaskQueue post_queue(kPostQueue); TaskQueue reply_queue(kReplyQueue); int call_count = 0; class ReusedTask : public QueuedTask { public: ReusedTask(int* counter, TaskQueue* reply_queue, Event* event) : counter_(counter), reply_queue_(reply_queue), event_(event) { EXPECT_EQ(0, *counter_); } private: bool Run() override { if (++(*counter_) == 1) { std::unique_ptr myself(this); reply_queue_->PostTask(std::move(myself)); // At this point, the object is owned by reply_queue_ and it's // theoratically possible that the object has been deleted (e.g. if // posting wasn't possible). So, don't touch any member variables here. // Indicate to the current queue that ownership has been transferred. return false; } else { EXPECT_EQ(2, *counter_); EXPECT_TRUE(reply_queue_->IsCurrent()); event_->Set(); return true; // Indicate that the object should be deleted. } } int* const counter_; TaskQueue* const reply_queue_; Event* const event_; }; std::unique_ptr task( new ReusedTask(&call_count, &reply_queue, &event)); post_queue.PostTask(std::move(task)); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostAndReplyLambda) { static const char kPostQueue[] = "PostQueue"; static const char kReplyQueue[] = "ReplyQueue"; Event event(false, false); TaskQueue post_queue(kPostQueue); TaskQueue reply_queue(kReplyQueue); bool my_flag = false; post_queue.PostTaskAndReply([&my_flag]() { my_flag = true; }, [&event]() { event.Set(); }, &reply_queue); EXPECT_TRUE(event.Wait(1000)); EXPECT_TRUE(my_flag); } TEST(TaskQueueTest, PostCopyableClosure) { struct CopyableClosure { CopyableClosure(int* num_copies, int* num_moves, Event* event) : num_copies(num_copies), num_moves(num_moves), event(event) {} CopyableClosure(const CopyableClosure& other) : num_copies(other.num_copies), num_moves(other.num_moves), event(other.event) { ++*num_copies; } CopyableClosure(CopyableClosure&& other) : num_copies(other.num_copies), num_moves(other.num_moves), event(other.event) { ++*num_moves; } void operator()() { event->Set(); } int* num_copies; int* num_moves; Event* event; }; int num_copies = 0; int num_moves = 0; Event event(false, false); static const char kPostQueue[] = "PostCopyableClosure"; TaskQueue post_queue(kPostQueue); { CopyableClosure closure(&num_copies, &num_moves, &event); post_queue.PostTask(closure); // Destroy closure to check with msan and tsan posted task has own copy. } EXPECT_TRUE(event.Wait(1000)); EXPECT_EQ(num_copies, 1); EXPECT_EQ(num_moves, 0); } TEST(TaskQueueTest, PostMoveOnlyClosure) { struct SomeState { explicit SomeState(Event* event) : event(event) {} ~SomeState() { event->Set(); } Event* event; }; struct MoveOnlyClosure { MoveOnlyClosure(int* num_moves, std::unique_ptr state) : num_moves(num_moves), state(std::move(state)) {} MoveOnlyClosure(const MoveOnlyClosure&) = delete; MoveOnlyClosure(MoveOnlyClosure&& other) : num_moves(other.num_moves), state(std::move(other.state)) { ++*num_moves; } void operator()() { state.reset(); } int* num_moves; std::unique_ptr state; }; int num_moves = 0; Event event(false, false); std::unique_ptr state(new SomeState(&event)); static const char kPostQueue[] = "PostMoveOnlyClosure"; TaskQueue post_queue(kPostQueue); post_queue.PostTask(MoveOnlyClosure(&num_moves, std::move(state))); EXPECT_TRUE(event.Wait(1000)); EXPECT_EQ(num_moves, 1); } TEST(TaskQueueTest, PostMoveOnlyCleanup) { struct SomeState { explicit SomeState(Event* event) : event(event) {} ~SomeState() { event->Set(); } Event* event; }; struct MoveOnlyClosure { void operator()() { state.reset(); } std::unique_ptr state; }; Event event_run(false, false); Event event_cleanup(false, false); std::unique_ptr state_run(new SomeState(&event_run)); std::unique_ptr state_cleanup(new SomeState(&event_cleanup)); static const char kPostQueue[] = "PostMoveOnlyCleanup"; TaskQueue post_queue(kPostQueue); post_queue.PostTask(NewClosure(MoveOnlyClosure{std::move(state_run)}, MoveOnlyClosure{std::move(state_cleanup)})); EXPECT_TRUE(event_cleanup.Wait(1000)); // Expect run closure to complete before cleanup closure. EXPECT_TRUE(event_run.Wait(0)); } // This test covers a particular bug that we had in the libevent implementation // where we could hit a deadlock while trying to post a reply task to a queue // that was being deleted. The test isn't guaranteed to hit that case but it's // written in a way that makes it likely and by running with --gtest_repeat=1000 // the bug would occur. Alas, now it should be fixed. TEST(TaskQueueTest, PostAndReplyDeadlock) { Event event(false, false); TaskQueue post_queue("PostQueue"); TaskQueue reply_queue("ReplyQueue"); post_queue.PostTaskAndReply([&event]() { event.Set(); }, []() {}, &reply_queue); EXPECT_TRUE(event.Wait(1000)); } void TestPostTaskAndReply(TaskQueue* work_queue, Event* event) { ASSERT_FALSE(work_queue->IsCurrent()); work_queue->PostTaskAndReply( Bind(&CheckCurrent, nullptr, work_queue), NewClosure([event]() { event->Set(); })); } // Does a PostTaskAndReply from within a task to post and reply to the current // queue. All in all there will be 3 tasks posted and run. TEST(TaskQueueTest, PostAndReply2) { static const char kQueueName[] = "PostAndReply2"; static const char kWorkQueueName[] = "PostAndReply2_Worker"; Event event(false, false); TaskQueue queue(kQueueName); TaskQueue work_queue(kWorkQueueName); queue.PostTask( Bind(&TestPostTaskAndReply, &work_queue, &event)); EXPECT_TRUE(event.Wait(1000)); } // Tests posting more messages than a queue can queue up. // In situations like that, tasks will get dropped. TEST(TaskQueueTest, PostALot) { // To destruct the event after the queue has gone out of scope. Event event(false, false); int tasks_executed = 0; int tasks_cleaned_up = 0; static const int kTaskCount = 0xffff; { static const char kQueueName[] = "PostALot"; TaskQueue queue(kQueueName); // On linux, the limit of pending bytes in the pipe buffer is 0xffff. // So here we post a total of 0xffff+1 messages, which triggers a failure // case inside of the libevent queue implementation. queue.PostTask([&event]() { event.Wait(Event::kForever); }); for (int i = 0; i < kTaskCount; ++i) queue.PostTask(NewClosure([&tasks_executed]() { ++tasks_executed; }, [&tasks_cleaned_up]() { ++tasks_cleaned_up; })); event.Set(); // Unblock the first task. } EXPECT_GE(tasks_cleaned_up, tasks_executed); EXPECT_EQ(kTaskCount, tasks_cleaned_up); } } // namespace rtc