/*
 *  Copyright 2008 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/net_helpers.h"

#if defined(WEBRTC_WIN)
#include <ws2spi.h>
#include <ws2tcpip.h>

#include "rtc_base/win32.h"
#endif
#if defined(WEBRTC_POSIX) && !defined(__native_client__)
#if defined(WEBRTC_ANDROID)
#include "rtc_base/ifaddrs_android.h"
#else
#include <ifaddrs.h>
#endif
#endif  // defined(WEBRTC_POSIX) && !defined(__native_client__)

#include "api/task_queue/task_queue_base.h"
#include "rtc_base/logging.h"
#include "rtc_base/signal_thread.h"
#include "rtc_base/task_queue.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/third_party/sigslot/sigslot.h"  // for signal_with_thread...

namespace rtc {

int ResolveHostname(const std::string& hostname,
                    int family,
                    std::vector<IPAddress>* addresses) {
#ifdef __native_client__
  RTC_NOTREACHED();
  RTC_LOG(LS_WARNING) << "ResolveHostname() is not implemented for NaCl";
  return -1;
#else   // __native_client__
  if (!addresses) {
    return -1;
  }
  addresses->clear();
  struct addrinfo* result = nullptr;
  struct addrinfo hints = {0};
  hints.ai_family = family;
  // |family| here will almost always be AF_UNSPEC, because |family| comes from
  // AsyncResolver::addr_.family(), which comes from a SocketAddress constructed
  // with a hostname. When a SocketAddress is constructed with a hostname, its
  // family is AF_UNSPEC. However, if someday in the future we construct
  // a SocketAddress with both a hostname and a family other than AF_UNSPEC,
  // then it would be possible to get a specific family value here.

  // The behavior of AF_UNSPEC is roughly "get both ipv4 and ipv6", as
  // documented by the various operating systems:
  // Linux: http://man7.org/linux/man-pages/man3/getaddrinfo.3.html
  // Windows: https://msdn.microsoft.com/en-us/library/windows/desktop/
  // ms738520(v=vs.85).aspx
  // Mac: https://developer.apple.com/legacy/library/documentation/Darwin/
  // Reference/ManPages/man3/getaddrinfo.3.html
  // Android (source code, not documentation):
  // https://android.googlesource.com/platform/bionic/+/
  // 7e0bfb511e85834d7c6cb9631206b62f82701d60/libc/netbsd/net/getaddrinfo.c#1657
  hints.ai_flags = AI_ADDRCONFIG;
  int ret = getaddrinfo(hostname.c_str(), nullptr, &hints, &result);
  if (ret != 0) {
    return ret;
  }
  struct addrinfo* cursor = result;
  for (; cursor; cursor = cursor->ai_next) {
    if (family == AF_UNSPEC || cursor->ai_family == family) {
      IPAddress ip;
      if (IPFromAddrInfo(cursor, &ip)) {
        addresses->push_back(ip);
      }
    }
  }
  freeaddrinfo(result);
  return 0;
#endif  // !__native_client__
}

AsyncResolver::AsyncResolver() : error_(-1) {}

AsyncResolver::~AsyncResolver() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
}

void AsyncResolver::Start(const SocketAddress& addr) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DCHECK(!destroy_called_);
  addr_ = addr;
  webrtc::TaskQueueBase* current_task_queue = webrtc::TaskQueueBase::Current();
  popup_thread_ = Thread::Create();
  popup_thread_->Start();
  popup_thread_->PostTask(webrtc::ToQueuedTask(
      [this, flag = safety_.flag(), addr, current_task_queue] {
        std::vector<IPAddress> addresses;
        int error =
            ResolveHostname(addr.hostname().c_str(), addr.family(), &addresses);
        current_task_queue->PostTask(webrtc::ToQueuedTask(
            std::move(flag), [this, error, addresses = std::move(addresses)] {
              RTC_DCHECK_RUN_ON(&sequence_checker_);
              ResolveDone(std::move(addresses), error);
            }));
      }));
}

bool AsyncResolver::GetResolvedAddress(int family, SocketAddress* addr) const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DCHECK(!destroy_called_);
  if (error_ != 0 || addresses_.empty())
    return false;

  *addr = addr_;
  for (size_t i = 0; i < addresses_.size(); ++i) {
    if (family == addresses_[i].family()) {
      addr->SetResolvedIP(addresses_[i]);
      return true;
    }
  }
  return false;
}

int AsyncResolver::GetError() const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DCHECK(!destroy_called_);
  return error_;
}

void AsyncResolver::Destroy(bool wait) {
  // Some callers have trouble guaranteeing that Destroy is called on the
  // sequence guarded by |sequence_checker_|.
  // RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DCHECK(!destroy_called_);
  destroy_called_ = true;
  MaybeSelfDestruct();
}

const std::vector<IPAddress>& AsyncResolver::addresses() const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DCHECK(!destroy_called_);
  return addresses_;
}

void AsyncResolver::ResolveDone(std::vector<IPAddress> addresses, int error) {
  addresses_ = addresses;
  error_ = error;
  recursion_check_ = true;
  SignalDone(this);
  MaybeSelfDestruct();
}

void AsyncResolver::MaybeSelfDestruct() {
  if (!recursion_check_) {
    delete this;
  } else {
    recursion_check_ = false;
  }
}

const char* inet_ntop(int af, const void* src, char* dst, socklen_t size) {
#if defined(WEBRTC_WIN)
  return win32_inet_ntop(af, src, dst, size);
#else
  return ::inet_ntop(af, src, dst, size);
#endif
}

int inet_pton(int af, const char* src, void* dst) {
#if defined(WEBRTC_WIN)
  return win32_inet_pton(af, src, dst);
#else
  return ::inet_pton(af, src, dst);
#endif
}

bool HasIPv4Enabled() {
#if defined(WEBRTC_POSIX) && !defined(__native_client__)
  bool has_ipv4 = false;
  struct ifaddrs* ifa;
  if (getifaddrs(&ifa) < 0) {
    return false;
  }
  for (struct ifaddrs* cur = ifa; cur != nullptr; cur = cur->ifa_next) {
    if (cur->ifa_addr->sa_family == AF_INET) {
      has_ipv4 = true;
      break;
    }
  }
  freeifaddrs(ifa);
  return has_ipv4;
#else
  return true;
#endif
}

bool HasIPv6Enabled() {
#if defined(WINUWP)
  // WinUWP always has IPv6 capability.
  return true;
#elif defined(WEBRTC_WIN)
  if (IsWindowsVistaOrLater()) {
    return true;
  }
  if (!IsWindowsXpOrLater()) {
    return false;
  }
  DWORD protbuff_size = 4096;
  std::unique_ptr<char[]> protocols;
  LPWSAPROTOCOL_INFOW protocol_infos = nullptr;
  int requested_protocols[2] = {AF_INET6, 0};

  int err = 0;
  int ret = 0;
  // Check for protocols in a do-while loop until we provide a buffer large
  // enough. (WSCEnumProtocols sets protbuff_size to its desired value).
  // It is extremely unlikely that this will loop more than once.
  do {
    protocols.reset(new char[protbuff_size]);
    protocol_infos = reinterpret_cast<LPWSAPROTOCOL_INFOW>(protocols.get());
    ret = WSCEnumProtocols(requested_protocols, protocol_infos, &protbuff_size,
                           &err);
  } while (ret == SOCKET_ERROR && err == WSAENOBUFS);

  if (ret == SOCKET_ERROR) {
    return false;
  }

  // Even if ret is positive, check specifically for IPv6.
  // Non-IPv6 enabled WinXP will still return a RAW protocol.
  for (int i = 0; i < ret; ++i) {
    if (protocol_infos[i].iAddressFamily == AF_INET6) {
      return true;
    }
  }
  return false;
#elif defined(WEBRTC_POSIX) && !defined(__native_client__)
  bool has_ipv6 = false;
  struct ifaddrs* ifa;
  if (getifaddrs(&ifa) < 0) {
    return false;
  }
  for (struct ifaddrs* cur = ifa; cur != nullptr; cur = cur->ifa_next) {
    if (cur->ifa_addr->sa_family == AF_INET6) {
      has_ipv6 = true;
      break;
    }
  }
  freeifaddrs(ifa);
  return has_ipv6;
#else
  return true;
#endif
}
}  // namespace rtc