/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/render_signal_analyzer.h" #include #include #include #include #include "api/array_view.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "modules/audio_processing/aec3/aec3_fft.h" #include "modules/audio_processing/aec3/fft_data.h" #include "modules/audio_processing/aec3/render_delay_buffer.h" #include "modules/audio_processing/test/echo_canceller_test_tools.h" #include "rtc_base/random.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr float kPi = 3.141592f; void ProduceSinusoid(int sample_rate_hz, float sinusoidal_frequency_hz, size_t* sample_counter, rtc::ArrayView x) { // Produce a sinusoid of the specified frequency. for (size_t k = *sample_counter, j = 0; k < (*sample_counter + kBlockSize); ++k, ++j) { x[j] = 32767.f * std::sin(2.f * kPi * sinusoidal_frequency_hz * k / sample_rate_hz); } *sample_counter = *sample_counter + kBlockSize; } } // namespace #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) // Verifies that the check for non-null output parameter works. TEST(RenderSignalAnalyzer, NullMaskOutput) { RenderSignalAnalyzer analyzer(EchoCanceller3Config{}); EXPECT_DEATH(analyzer.MaskRegionsAroundNarrowBands(nullptr), ""); } #endif // Verify that no narrow bands are detected in a Gaussian noise signal. TEST(RenderSignalAnalyzer, NoFalseDetectionOfNarrowBands) { RenderSignalAnalyzer analyzer(EchoCanceller3Config{}); Random random_generator(42U); std::vector> x(3, std::vector(kBlockSize, 0.f)); std::array x_old; std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(EchoCanceller3Config(), 3)); std::array mask; x_old.fill(0.f); for (size_t k = 0; k < 100; ++k) { RandomizeSampleVector(&random_generator, x[0]); render_delay_buffer->Insert(x); if (k == 0) { render_delay_buffer->Reset(); } render_delay_buffer->PrepareCaptureProcessing(); analyzer.Update(*render_delay_buffer->GetRenderBuffer(), absl::optional(0)); } mask.fill(1.f); analyzer.MaskRegionsAroundNarrowBands(&mask); EXPECT_TRUE( std::all_of(mask.begin(), mask.end(), [](float a) { return a == 1.f; })); EXPECT_FALSE(analyzer.PoorSignalExcitation()); } // Verify that a sinusiod signal is detected as narrow bands. TEST(RenderSignalAnalyzer, NarrowBandDetection) { RenderSignalAnalyzer analyzer(EchoCanceller3Config{}); Random random_generator(42U); std::vector> x(3, std::vector(kBlockSize, 0.f)); std::array x_old; Aec3Fft fft; EchoCanceller3Config config; std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(config, 3)); std::array mask; x_old.fill(0.f); constexpr int kSinusFrequencyBin = 32; auto generate_sinusoid_test = [&](bool known_delay) { size_t sample_counter = 0; for (size_t k = 0; k < 100; ++k) { ProduceSinusoid(16000, 16000 / 2 * kSinusFrequencyBin / kFftLengthBy2, &sample_counter, x[0]); render_delay_buffer->Insert(x); if (k == 0) { render_delay_buffer->Reset(); } render_delay_buffer->PrepareCaptureProcessing(); analyzer.Update(*render_delay_buffer->GetRenderBuffer(), known_delay ? absl::optional(0) : absl::nullopt); } }; generate_sinusoid_test(true); mask.fill(1.f); analyzer.MaskRegionsAroundNarrowBands(&mask); for (int k = 0; k < static_cast(mask.size()); ++k) { EXPECT_EQ(abs(k - kSinusFrequencyBin) <= 2 ? 0.f : 1.f, mask[k]); } EXPECT_TRUE(analyzer.PoorSignalExcitation()); // Verify that no bands are detected as narrow when the delay is unknown. generate_sinusoid_test(false); mask.fill(1.f); analyzer.MaskRegionsAroundNarrowBands(&mask); std::for_each(mask.begin(), mask.end(), [](float a) { EXPECT_EQ(1.f, a); }); EXPECT_FALSE(analyzer.PoorSignalExcitation()); } } // namespace webrtc