/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "test/fuzzers/audio_processing_fuzzer.h" #include #include #include #include "modules/audio_processing/include/audio_processing.h" #include "modules/include/module_common_types.h" #include "rtc_base/checks.h" namespace webrtc { namespace { size_t ByteToNativeRate(uint8_t data) { using Rate = AudioProcessing::NativeRate; switch (data % 4) { case 0: return static_cast(Rate::kSampleRate8kHz); case 1: return static_cast(Rate::kSampleRate16kHz); case 2: return static_cast(Rate::kSampleRate32kHz); default: return static_cast(Rate::kSampleRate48kHz); } } template bool ParseSequence(size_t size, const uint8_t** data, size_t* remaining_size, T* result_data) { const size_t data_size_bytes = sizeof(T) * size; if (data_size_bytes > *remaining_size) { return false; } std::copy(*data, *data + data_size_bytes, reinterpret_cast(result_data)); *data += data_size_bytes; *remaining_size -= data_size_bytes; return true; } void FuzzAudioProcessing(const uint8_t* data, size_t size, bool is_float, AudioProcessing* apm) { AudioFrame fixed_frame; std::array float_frame{}; float* const first_channel = &float_frame[0]; while (size > 0) { // Decide input/output rate for this iteration. const auto input_rate_byte = ParseByte(&data, &size); const auto output_rate_byte = ParseByte(&data, &size); if (!input_rate_byte || !output_rate_byte) { return; } const auto input_rate_hz = ByteToNativeRate(*input_rate_byte); const auto output_rate_hz = ByteToNativeRate(*output_rate_byte); const size_t samples_per_input_channel = rtc::CheckedDivExact(input_rate_hz, 100ul); fixed_frame.samples_per_channel_ = samples_per_input_channel; fixed_frame.sample_rate_hz_ = input_rate_hz; // Two channels breaks AEC3. fixed_frame.num_channels_ = 1; // Fill the arrays with audio samples from the data. if (is_float) { if (!ParseSequence(samples_per_input_channel, &data, &size, &float_frame[0])) { return; } } else if (!ParseSequence(samples_per_input_channel, &data, &size, fixed_frame.mutable_data())) { return; } // Filter obviously wrong values like inf/nan and values that will // lead to inf/nan in calculations. 1e6 leads to DCHECKS failing. for (auto& x : float_frame) { if (!std::isnormal(x) || std::abs(x) > 1e5) { x = 0; } } // Make the APM call depending on capture/render mode and float / // fix interface. const auto is_capture = ParseBool(&data, &size); if (!is_capture) { return; } if (*is_capture) { auto apm_return_code = is_float ? (apm->ProcessStream( &first_channel, StreamConfig(input_rate_hz, 1), StreamConfig(output_rate_hz, 1), &first_channel)) : (apm->ProcessStream(&fixed_frame)); RTC_DCHECK_NE(apm_return_code, AudioProcessing::kBadDataLengthError); } else { auto apm_return_code = is_float ? (apm->ProcessReverseStream( &first_channel, StreamConfig(input_rate_hz, 1), StreamConfig(output_rate_hz, 1), &first_channel)) : (apm->ProcessReverseStream(&fixed_frame)); RTC_DCHECK_NE(apm_return_code, AudioProcessing::kBadDataLengthError); } } } } // namespace rtc::Optional ParseBool(const uint8_t** data, size_t* remaining_size) { if (1 > *remaining_size) { return rtc::Optional(); } auto res = rtc::Optional((**data) % 2); *data += 1; *remaining_size -= 1; return res; } rtc::Optional ParseByte(const uint8_t** data, size_t* remaining_size) { if (1 > *remaining_size) { return rtc::Optional(); } auto res = rtc::Optional((**data)); *data += 1; *remaining_size -= 1; return res; } void FuzzAudioProcessing(const uint8_t* data, size_t size, std::unique_ptr apm) { const auto is_float = ParseBool(&data, &size); if (!is_float) { return; } FuzzAudioProcessing(data, size, *is_float, apm.get()); } } // namespace webrtc