/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "api/video/i420_buffer.h" #include "media/base/videoadapter.h" #include "modules/video_coding/codecs/vp8/temporal_layers.h" #include "modules/video_coding/utility/default_video_bitrate_allocator.h" #include "rtc_base/fakeclock.h" #include "rtc_base/logging.h" #include "system_wrappers/include/metrics_default.h" #include "system_wrappers/include/sleep.h" #include "test/encoder_settings.h" #include "test/fake_encoder.h" #include "test/frame_generator.h" #include "test/gmock.h" #include "test/gtest.h" #include "video/send_statistics_proxy.h" #include "video/video_stream_encoder.h" namespace { const int kMinPixelsPerFrame = 320 * 180; const int kMinFramerateFps = 2; const int64_t kFrameTimeoutMs = 100; const unsigned char kNumSlDummy = 0; } // namespace namespace webrtc { using DegredationPreference = VideoSendStream::DegradationPreference; using ScaleReason = AdaptationObserverInterface::AdaptReason; using ::testing::_; using ::testing::Return; namespace { const size_t kMaxPayloadLength = 1440; const int kTargetBitrateBps = 1000000; const int kLowTargetBitrateBps = kTargetBitrateBps / 10; const int kMaxInitialFramedrop = 4; const int kDefaultFramerate = 30; class TestBuffer : public webrtc::I420Buffer { public: TestBuffer(rtc::Event* event, int width, int height) : I420Buffer(width, height), event_(event) {} private: friend class rtc::RefCountedObject; ~TestBuffer() override { if (event_) event_->Set(); } rtc::Event* const event_; }; class CpuOveruseDetectorProxy : public OveruseFrameDetector { public: CpuOveruseDetectorProxy(const CpuOveruseOptions& options, AdaptationObserverInterface* overuse_observer, EncodedFrameObserver* encoder_timing_, CpuOveruseMetricsObserver* metrics_observer) : OveruseFrameDetector(options, overuse_observer, encoder_timing_, metrics_observer), last_target_framerate_fps_(-1) {} virtual ~CpuOveruseDetectorProxy() {} void OnTargetFramerateUpdated(int framerate_fps) override { rtc::CritScope cs(&lock_); last_target_framerate_fps_ = framerate_fps; OveruseFrameDetector::OnTargetFramerateUpdated(framerate_fps); } int GetLastTargetFramerate() { rtc::CritScope cs(&lock_); return last_target_framerate_fps_; } private: rtc::CriticalSection lock_; int last_target_framerate_fps_ RTC_GUARDED_BY(lock_); }; class VideoStreamEncoderUnderTest : public VideoStreamEncoder { public: VideoStreamEncoderUnderTest(SendStatisticsProxy* stats_proxy, const VideoSendStream::Config::EncoderSettings& settings) : VideoStreamEncoder( 1 /* number_of_cores */, stats_proxy, settings, nullptr /* pre_encode_callback */, nullptr /* encoder_timing */, std::unique_ptr( overuse_detector_proxy_ = new CpuOveruseDetectorProxy( GetCpuOveruseOptions(settings.full_overuse_time), this, nullptr, stats_proxy))) {} void PostTaskAndWait(bool down, AdaptReason reason) { rtc::Event event(false, false); encoder_queue()->PostTask([this, &event, reason, down] { down ? AdaptDown(reason) : AdaptUp(reason); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } // This is used as a synchronisation mechanism, to make sure that the // encoder queue is not blocked before we start sending it frames. void WaitUntilTaskQueueIsIdle() { rtc::Event event(false, false); encoder_queue()->PostTask([&event] { event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } void TriggerCpuOveruse() { PostTaskAndWait(true, AdaptReason::kCpu); } void TriggerCpuNormalUsage() { PostTaskAndWait(false, AdaptReason::kCpu); } void TriggerQualityLow() { PostTaskAndWait(true, AdaptReason::kQuality); } void TriggerQualityHigh() { PostTaskAndWait(false, AdaptReason::kQuality); } CpuOveruseDetectorProxy* overuse_detector_proxy_; }; class VideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: explicit VideoStreamFactory(size_t num_temporal_layers, int framerate) : num_temporal_layers_(num_temporal_layers), framerate_(framerate) { EXPECT_GT(num_temporal_layers, 0u); EXPECT_GT(framerate, 0); } private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams(width, height, encoder_config); for (VideoStream& stream : streams) { stream.temporal_layer_thresholds_bps.resize(num_temporal_layers_ - 1); stream.max_framerate = framerate_; } return streams; } const size_t num_temporal_layers_; const int framerate_; }; class AdaptingFrameForwarder : public test::FrameForwarder { public: AdaptingFrameForwarder() : adaptation_enabled_(false) {} ~AdaptingFrameForwarder() override {} void set_adaptation_enabled(bool enabled) { rtc::CritScope cs(&crit_); adaptation_enabled_ = enabled; } bool adaption_enabled() const { rtc::CritScope cs(&crit_); return adaptation_enabled_; } rtc::VideoSinkWants last_wants() const { rtc::CritScope cs(&crit_); return last_wants_; } void IncomingCapturedFrame(const VideoFrame& video_frame) override { int cropped_width = 0; int cropped_height = 0; int out_width = 0; int out_height = 0; if (adaption_enabled()) { if (adapter_.AdaptFrameResolution( video_frame.width(), video_frame.height(), video_frame.timestamp_us() * 1000, &cropped_width, &cropped_height, &out_width, &out_height)) { VideoFrame adapted_frame(new rtc::RefCountedObject( nullptr, out_width, out_height), 99, 99, kVideoRotation_0); adapted_frame.set_ntp_time_ms(video_frame.ntp_time_ms()); test::FrameForwarder::IncomingCapturedFrame(adapted_frame); } } else { test::FrameForwarder::IncomingCapturedFrame(video_frame); } } void AddOrUpdateSink(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override { rtc::CritScope cs(&crit_); last_wants_ = sink_wants(); adapter_.OnResolutionFramerateRequest(wants.target_pixel_count, wants.max_pixel_count, wants.max_framerate_fps); test::FrameForwarder::AddOrUpdateSink(sink, wants); } cricket::VideoAdapter adapter_; bool adaptation_enabled_ RTC_GUARDED_BY(crit_); rtc::VideoSinkWants last_wants_ RTC_GUARDED_BY(crit_); }; class MockableSendStatisticsProxy : public SendStatisticsProxy { public: MockableSendStatisticsProxy(Clock* clock, const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type) : SendStatisticsProxy(clock, config, content_type) {} VideoSendStream::Stats GetStats() override { rtc::CritScope cs(&lock_); if (mock_stats_) return *mock_stats_; return SendStatisticsProxy::GetStats(); } void SetMockStats(const VideoSendStream::Stats& stats) { rtc::CritScope cs(&lock_); mock_stats_.emplace(stats); } void ResetMockStats() { rtc::CritScope cs(&lock_); mock_stats_.reset(); } private: rtc::CriticalSection lock_; rtc::Optional mock_stats_ RTC_GUARDED_BY(lock_); }; class MockBitrateObserver : public VideoBitrateAllocationObserver { public: MOCK_METHOD1(OnBitrateAllocationUpdated, void(const BitrateAllocation&)); }; } // namespace class VideoStreamEncoderTest : public ::testing::Test { public: static const int kDefaultTimeoutMs = 30 * 1000; VideoStreamEncoderTest() : video_send_config_(VideoSendStream::Config(nullptr)), codec_width_(320), codec_height_(240), max_framerate_(30), fake_encoder_(), stats_proxy_(new MockableSendStatisticsProxy( Clock::GetRealTimeClock(), video_send_config_, webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo)), sink_(&fake_encoder_) {} void SetUp() override { metrics::Reset(); video_send_config_ = VideoSendStream::Config(nullptr); video_send_config_.encoder_settings.encoder = &fake_encoder_; video_send_config_.encoder_settings.payload_name = "FAKE"; video_send_config_.encoder_settings.payload_type = 125; VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(1, &video_encoder_config); video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, max_framerate_); video_encoder_config_ = video_encoder_config.Copy(); // Framerate limit is specified by the VideoStreamFactory. std::vector streams = video_encoder_config.video_stream_factory->CreateEncoderStreams( codec_width_, codec_height_, video_encoder_config); max_framerate_ = streams[0].max_framerate; fake_clock_.SetTimeMicros(1234); ConfigureEncoder(std::move(video_encoder_config), true /* nack_enabled */); } void ConfigureEncoder(VideoEncoderConfig video_encoder_config, bool nack_enabled) { if (video_stream_encoder_) video_stream_encoder_->Stop(); video_stream_encoder_.reset(new VideoStreamEncoderUnderTest( stats_proxy_.get(), video_send_config_.encoder_settings)); video_stream_encoder_->SetSink(&sink_, false /* rotation_applied */); video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainFramerate); video_stream_encoder_->SetStartBitrate(kTargetBitrateBps); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, nack_enabled); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); } void ResetEncoder(const std::string& payload_name, size_t num_streams, size_t num_temporal_layers, unsigned char num_spatial_layers, bool nack_enabled, bool screenshare) { video_send_config_.encoder_settings.payload_name = payload_name; VideoEncoderConfig video_encoder_config; video_encoder_config.number_of_streams = num_streams; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(num_temporal_layers, kDefaultFramerate); video_encoder_config.content_type = screenshare ? VideoEncoderConfig::ContentType::kScreen : VideoEncoderConfig::ContentType::kRealtimeVideo; if (payload_name == "VP9") { VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = num_spatial_layers; video_encoder_config.encoder_specific_settings = new rtc::RefCountedObject< VideoEncoderConfig::Vp9EncoderSpecificSettings>(vp9_settings); } ConfigureEncoder(std::move(video_encoder_config), nack_enabled); } VideoFrame CreateFrame(int64_t ntp_time_ms, rtc::Event* destruction_event) const { VideoFrame frame(new rtc::RefCountedObject( destruction_event, codec_width_, codec_height_), 99, 99, kVideoRotation_0); frame.set_ntp_time_ms(ntp_time_ms); return frame; } VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const { VideoFrame frame( new rtc::RefCountedObject(nullptr, width, height), 99, 99, kVideoRotation_0); frame.set_ntp_time_ms(ntp_time_ms); frame.set_timestamp_us(ntp_time_ms * 1000); return frame; } void VerifyNoLimitation(const rtc::VideoSinkWants& wants) { EXPECT_EQ(std::numeric_limits::max(), wants.max_framerate_fps); EXPECT_EQ(std::numeric_limits::max(), wants.max_pixel_count); EXPECT_FALSE(wants.target_pixel_count); } void VerifyFpsEqResolutionEq(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_EQ(wants1.max_framerate_fps, wants2.max_framerate_fps); EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count); } void VerifyFpsMaxResolutionLt(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_EQ(std::numeric_limits::max(), wants1.max_framerate_fps); EXPECT_LT(wants1.max_pixel_count, wants2.max_pixel_count); EXPECT_GT(wants1.max_pixel_count, 0); } void VerifyFpsMaxResolutionGt(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_EQ(std::numeric_limits::max(), wants1.max_framerate_fps); EXPECT_GT(wants1.max_pixel_count, wants2.max_pixel_count); } void VerifyFpsMaxResolutionEq(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_EQ(std::numeric_limits::max(), wants1.max_framerate_fps); EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count); } void VerifyFpsLtResolutionEq(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_LT(wants1.max_framerate_fps, wants2.max_framerate_fps); EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count); } void VerifyFpsGtResolutionEq(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_GT(wants1.max_framerate_fps, wants2.max_framerate_fps); EXPECT_EQ(wants1.max_pixel_count, wants2.max_pixel_count); } void VerifyFpsEqResolutionLt(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_EQ(wants1.max_framerate_fps, wants2.max_framerate_fps); EXPECT_LT(wants1.max_pixel_count, wants2.max_pixel_count); EXPECT_GT(wants1.max_pixel_count, 0); } void VerifyFpsEqResolutionGt(const rtc::VideoSinkWants& wants1, const rtc::VideoSinkWants& wants2) { EXPECT_EQ(wants1.max_framerate_fps, wants2.max_framerate_fps); EXPECT_GT(wants1.max_pixel_count, wants2.max_pixel_count); } void VerifyFpsMaxResolutionLt(const rtc::VideoSinkWants& wants, int pixel_count) { EXPECT_EQ(std::numeric_limits::max(), wants.max_framerate_fps); EXPECT_LT(wants.max_pixel_count, pixel_count); EXPECT_GT(wants.max_pixel_count, 0); } void VerifyFpsLtResolutionMax(const rtc::VideoSinkWants& wants, int fps) { EXPECT_LT(wants.max_framerate_fps, fps); EXPECT_EQ(std::numeric_limits::max(), wants.max_pixel_count); EXPECT_FALSE(wants.target_pixel_count); } void VerifyFpsEqResolutionMax(const rtc::VideoSinkWants& wants, int expected_fps) { EXPECT_EQ(expected_fps, wants.max_framerate_fps); EXPECT_EQ(std::numeric_limits::max(), wants.max_pixel_count); EXPECT_FALSE(wants.target_pixel_count); } void WaitForEncodedFrame(int64_t expected_ntp_time) { sink_.WaitForEncodedFrame(expected_ntp_time); fake_clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec / max_framerate_); } bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) { bool ok = sink_.TimedWaitForEncodedFrame(expected_ntp_time, timeout_ms); fake_clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec / max_framerate_); return ok; } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { sink_.WaitForEncodedFrame(expected_width, expected_height); fake_clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec / max_framerate_); } void ExpectDroppedFrame() { sink_.ExpectDroppedFrame(); fake_clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec / max_framerate_); } bool WaitForFrame(int64_t timeout_ms) { bool ok = sink_.WaitForFrame(timeout_ms); fake_clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec / max_framerate_); return ok; } class TestEncoder : public test::FakeEncoder { public: TestEncoder() : FakeEncoder(Clock::GetRealTimeClock()), continue_encode_event_(false, false) {} VideoCodec codec_config() const { rtc::CritScope lock(&crit_sect_); return config_; } void BlockNextEncode() { rtc::CritScope lock(&local_crit_sect_); block_next_encode_ = true; } VideoEncoder::ScalingSettings GetScalingSettings() const override { rtc::CritScope lock(&local_crit_sect_); if (quality_scaling_) return VideoEncoder::ScalingSettings(true, 1, 2, kMinPixelsPerFrame); return VideoEncoder::ScalingSettings(false); } void ContinueEncode() { continue_encode_event_.Set(); } void CheckLastTimeStampsMatch(int64_t ntp_time_ms, uint32_t timestamp) const { rtc::CritScope lock(&local_crit_sect_); EXPECT_EQ(timestamp_, timestamp); EXPECT_EQ(ntp_time_ms_, ntp_time_ms); } void SetQualityScaling(bool b) { rtc::CritScope lock(&local_crit_sect_); quality_scaling_ = b; } void ForceInitEncodeFailure(bool force_failure) { rtc::CritScope lock(&local_crit_sect_); force_init_encode_failed_ = force_failure; } private: int32_t Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) override { bool block_encode; { rtc::CritScope lock(&local_crit_sect_); EXPECT_GT(input_image.timestamp(), timestamp_); EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_); EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90); timestamp_ = input_image.timestamp(); ntp_time_ms_ = input_image.ntp_time_ms(); last_input_width_ = input_image.width(); last_input_height_ = input_image.height(); block_encode = block_next_encode_; block_next_encode_ = false; } int32_t result = FakeEncoder::Encode(input_image, codec_specific_info, frame_types); if (block_encode) EXPECT_TRUE(continue_encode_event_.Wait(kDefaultTimeoutMs)); return result; } int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { int res = FakeEncoder::InitEncode(config, number_of_cores, max_payload_size); rtc::CritScope lock(&local_crit_sect_); if (config->codecType == kVideoCodecVP8 && config->VP8().tl_factory) { // Simulate setting up temporal layers, in order to validate the life // cycle of these objects. int num_streams = std::max(1, config->numberOfSimulcastStreams); int num_temporal_layers = std::max(1, config->VP8().numberOfTemporalLayers); for (int i = 0; i < num_streams; ++i) { allocated_temporal_layers_.emplace_back( config->VP8().tl_factory->Create(i, num_temporal_layers, 42)); } } if (force_init_encode_failed_) return -1; return res; } rtc::CriticalSection local_crit_sect_; bool block_next_encode_ RTC_GUARDED_BY(local_crit_sect_) = false; rtc::Event continue_encode_event_; uint32_t timestamp_ RTC_GUARDED_BY(local_crit_sect_) = 0; int64_t ntp_time_ms_ RTC_GUARDED_BY(local_crit_sect_) = 0; int last_input_width_ RTC_GUARDED_BY(local_crit_sect_) = 0; int last_input_height_ RTC_GUARDED_BY(local_crit_sect_) = 0; bool quality_scaling_ RTC_GUARDED_BY(local_crit_sect_) = true; std::vector> allocated_temporal_layers_ RTC_GUARDED_BY(local_crit_sect_); bool force_init_encode_failed_ RTC_GUARDED_BY(local_crit_sect_) = false; }; class TestSink : public VideoStreamEncoder::EncoderSink { public: explicit TestSink(TestEncoder* test_encoder) : test_encoder_(test_encoder), encoded_frame_event_(false, false) {} void WaitForEncodedFrame(int64_t expected_ntp_time) { EXPECT_TRUE( TimedWaitForEncodedFrame(expected_ntp_time, kDefaultTimeoutMs)); } bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) { uint32_t timestamp = 0; if (!encoded_frame_event_.Wait(timeout_ms)) return false; { rtc::CritScope lock(&crit_); timestamp = last_timestamp_; } test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp); return true; } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs)); CheckLastFrameSizeMathces(expected_width, expected_height); } void CheckLastFrameSizeMathces(uint32_t expected_width, uint32_t expected_height) { uint32_t width = 0; uint32_t height = 0; { rtc::CritScope lock(&crit_); width = last_width_; height = last_height_; } EXPECT_EQ(expected_height, height); EXPECT_EQ(expected_width, width); } void ExpectDroppedFrame() { EXPECT_FALSE(encoded_frame_event_.Wait(100)); } bool WaitForFrame(int64_t timeout_ms) { return encoded_frame_event_.Wait(timeout_ms); } void SetExpectNoFrames() { rtc::CritScope lock(&crit_); expect_frames_ = false; } int number_of_reconfigurations() const { rtc::CritScope lock(&crit_); return number_of_reconfigurations_; } int last_min_transmit_bitrate() const { rtc::CritScope lock(&crit_); return min_transmit_bitrate_bps_; } private: Result OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) override { rtc::CritScope lock(&crit_); EXPECT_TRUE(expect_frames_); last_timestamp_ = encoded_image._timeStamp; last_width_ = encoded_image._encodedWidth; last_height_ = encoded_image._encodedHeight; encoded_frame_event_.Set(); return Result(Result::OK, last_timestamp_); } void OnEncoderConfigurationChanged(std::vector streams, int min_transmit_bitrate_bps) override { rtc::CriticalSection crit_; ++number_of_reconfigurations_; min_transmit_bitrate_bps_ = min_transmit_bitrate_bps; } rtc::CriticalSection crit_; TestEncoder* test_encoder_; rtc::Event encoded_frame_event_; uint32_t last_timestamp_ = 0; uint32_t last_height_ = 0; uint32_t last_width_ = 0; bool expect_frames_ = true; int number_of_reconfigurations_ = 0; int min_transmit_bitrate_bps_ = 0; }; VideoSendStream::Config video_send_config_; VideoEncoderConfig video_encoder_config_; int codec_width_; int codec_height_; int max_framerate_; TestEncoder fake_encoder_; std::unique_ptr stats_proxy_; TestSink sink_; AdaptingFrameForwarder video_source_; std::unique_ptr video_stream_encoder_; rtc::ScopedFakeClock fake_clock_; }; TEST_F(VideoStreamEncoderTest, EncodeOneFrame) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); rtc::Event frame_destroyed_event(false, false); video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); WaitForEncodedFrame(1); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) { // Dropped since no target bitrate has been set. rtc::Event frame_destroyed_event(false, false); video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenRateSetToZero) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdated(0, 0, 0); // Dropped since bitrate is zero. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // This frame will be dropped since it has the same ntp timestamp. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFrameAfterStop) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->Stop(); sink_.SetExpectNoFrames(); rtc::Event frame_destroyed_event(false, false); video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); } TEST_F(VideoStreamEncoderTest, DropsPendingFramesOnSlowEncode) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); fake_encoder_.BlockNextEncode(); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // Here, the encoder thread will be blocked in the TestEncoder waiting for a // call to ContinueEncode. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); fake_encoder_.ContinueEncode(); WaitForEncodedFrame(3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfigureEncoderTriggersOnEncoderConfigurationChanged) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); EXPECT_EQ(0, sink_.number_of_reconfigurations()); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once when the first frame is // received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(1, &video_encoder_config); video_encoder_config.min_transmit_bitrate_bps = 9999; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, true /* nack_enabled */); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(2, sink_.number_of_reconfigurations()); EXPECT_EQ(9999, sink_.last_min_transmit_bitrate()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FrameResolutionChangeReconfigureEncoder) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); codec_width_ *= 2; codec_height_ *= 2; // Capture a frame with a higher resolution and wait for it to synchronize // with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); EXPECT_EQ(2, sink_.number_of_reconfigurations()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp8ResilienceIsOffFor1S1TLWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 1; ResetEncoder("VP8", kNumStreams, kNumTl, kNumSlDummy, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is off for no temporal layers with nack on. EXPECT_EQ(kResilienceOff, fake_encoder_.codec_config().VP8()->resilience); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp8ResilienceIsOffFor2S1TlWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 2; const size_t kNumTl = 1; ResetEncoder("VP8", kNumStreams, kNumTl, kNumSlDummy, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is off for no temporal layers and >1 streams with nack on. EXPECT_EQ(kResilienceOff, fake_encoder_.codec_config().VP8()->resilience); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp8ResilienceIsOnFor1S1TLWithNackDisabled) { const bool kNackEnabled = false; const size_t kNumStreams = 1; const size_t kNumTl = 1; ResetEncoder("VP8", kNumStreams, kNumTl, kNumSlDummy, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is on for no temporal layers with nack off. EXPECT_EQ(kResilientStream, fake_encoder_.codec_config().VP8()->resilience); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp8ResilienceIsOnFor1S2TlWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 2; ResetEncoder("VP8", kNumStreams, kNumTl, kNumSlDummy, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is on for temporal layers. EXPECT_EQ(kResilientStream, fake_encoder_.codec_config().VP8()->resilience); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp9ResilienceIsOffFor1SL1TLWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 1; const unsigned char kNumSl = 1; ResetEncoder("VP9", kNumStreams, kNumTl, kNumSl, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP9, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP9()->numberOfTemporalLayers); EXPECT_EQ(kNumSl, fake_encoder_.codec_config().VP9()->numberOfSpatialLayers); // Resilience is off for no spatial and temporal layers with nack on. EXPECT_FALSE(fake_encoder_.codec_config().VP9()->resilienceOn); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp9ResilienceIsOnFor1SL1TLWithNackDisabled) { const bool kNackEnabled = false; const size_t kNumStreams = 1; const size_t kNumTl = 1; const unsigned char kNumSl = 1; ResetEncoder("VP9", kNumStreams, kNumTl, kNumSl, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP9, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP9()->numberOfTemporalLayers); EXPECT_EQ(kNumSl, fake_encoder_.codec_config().VP9()->numberOfSpatialLayers); // Resilience is on if nack is off. EXPECT_TRUE(fake_encoder_.codec_config().VP9()->resilienceOn); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp9ResilienceIsOnFor2SL1TLWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 1; const unsigned char kNumSl = 2; ResetEncoder("VP9", kNumStreams, kNumTl, kNumSl, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP9, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP9()->numberOfTemporalLayers); EXPECT_EQ(kNumSl, fake_encoder_.codec_config().VP9()->numberOfSpatialLayers); // Resilience is on for spatial layers. EXPECT_TRUE(fake_encoder_.codec_config().VP9()->resilienceOn); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, Vp9ResilienceIsOnFor1SL2TLWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 2; const unsigned char kNumSl = 1; ResetEncoder("VP9", kNumStreams, kNumTl, kNumSl, kNackEnabled, false); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP9, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP9()->numberOfTemporalLayers); EXPECT_EQ(kNumSl, fake_encoder_.codec_config().VP9()->numberOfSpatialLayers); // Resilience is on for temporal layers. EXPECT_TRUE(fake_encoder_.codec_config().VP9()->resilienceOn); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchSourceDeregisterEncoderAsSink) { EXPECT_TRUE(video_source_.has_sinks()); test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); EXPECT_FALSE(video_source_.has_sinks()); EXPECT_TRUE(new_video_source.has_sinks()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsRotationApplied) { EXPECT_FALSE(video_source_.sink_wants().rotation_applied); video_stream_encoder_->SetSink(&sink_, true /*rotation_applied*/); EXPECT_TRUE(video_source_.sink_wants().rotation_applied); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsFromOveruseDetector) { const int kMaxDowngrades = VideoStreamEncoder::kMaxCpuResolutionDowngrades; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); VerifyNoLimitation(video_source_.sink_wants()); int frame_width = 1280; int frame_height = 720; // Trigger CPU overuse kMaxCpuDowngrades times. Every time, VideoStreamEncoder // should request lower resolution. for (int i = 1; i <= kMaxDowngrades; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(i, frame_width, frame_height)); WaitForEncodedFrame(i); video_stream_encoder_->TriggerCpuOveruse(); EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, frame_width * frame_height); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(i, stats_proxy_->GetStats().number_of_cpu_adapt_changes); frame_width /= 2; frame_height /= 2; } // Trigger CPU overuse one more time. This should not trigger a request for // lower resolution. rtc::VideoSinkWants current_wants = video_source_.sink_wants(); video_source_.IncomingCapturedFrame( CreateFrame(kMaxDowngrades + 1, frame_width, frame_height)); WaitForEncodedFrame(kMaxDowngrades + 1); video_stream_encoder_->TriggerCpuOveruse(); EXPECT_EQ(video_source_.sink_wants().target_pixel_count, current_wants.target_pixel_count); EXPECT_EQ(video_source_.sink_wants().max_pixel_count, current_wants.max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(kMaxDowngrades, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuNormalUsage(); EXPECT_EQ(frame_width * frame_height * 5 / 3, video_source_.sink_wants().target_pixel_count.value_or(0)); EXPECT_EQ(frame_width * frame_height * 4, video_source_.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(kMaxDowngrades + 1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TestMaxCpuResolutionDowngrades_BalancedMode_NoFpsLimit) { const int kMaxDowngrades = VideoStreamEncoder::kMaxCpuResolutionDowngrades; const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down kMaxCpuDowngrades times. int t = 1; for (int i = 1; i <= kMaxDowngrades; ++i) { source.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t++); video_stream_encoder_->TriggerCpuOveruse(); VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(i, stats_proxy_->GetStats().number_of_cpu_adapt_changes); } // Trigger adapt down, max cpu downgrades reach, expect no change. rtc::VideoSinkWants last_wants = source.sink_wants(); source.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t++); video_stream_encoder_->TriggerCpuOveruse(); VerifyFpsEqResolutionEq(source.sink_wants(), last_wants); EXPECT_EQ(last_wants.max_pixel_count, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(kMaxDowngrades, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up kMaxCpuDowngrades times. for (int i = 1; i <= kMaxDowngrades; ++i) { source.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t++); video_stream_encoder_->TriggerCpuNormalUsage(); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_GT(source.sink_wants().max_pixel_count, last_wants.max_pixel_count); EXPECT_EQ(kMaxDowngrades + i, stats_proxy_->GetStats().number_of_cpu_adapt_changes); } VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsStoredByDegradationPreference) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); VerifyNoLimitation(video_source_.sink_wants()); const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFrameIntervalMs = 1000 / 30; int frame_timestamp = 1; video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Default degradation preference is maintain-framerate, so will lower max // wanted resolution. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_framerate_fps); // Set new source, switch to maintain-resolution. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); // Initially no degradation registered. VerifyNoLimitation(new_video_source.sink_wants()); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. const int kInputFps = 30; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Some framerate constraint should be set. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps); // Turn off degradation completely. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kDegradationDisabled); VerifyNoLimitation(new_video_source.sink_wants()); video_stream_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Still no degradation. VerifyNoLimitation(new_video_source.sink_wants()); // Calling SetSource with resolution scaling enabled apply the old SinkWants. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); EXPECT_LT(new_video_source.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_framerate_fps); // Calling SetSource with framerate scaling enabled apply the old SinkWants. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksQualityAdaptationStats) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Trigger adapt up. video_stream_encoder_->TriggerQualityHigh(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(2, stats.number_of_quality_adapt_changes); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStats) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuNormalUsage(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsCpuAdaptation) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation disabled. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kDegradationDisabled); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation back to enabled. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuNormalUsage(); new_video_source.IncomingCapturedFrame(CreateFrame(6, kWidth, kHeight)); WaitForEncodedFrame(6); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsQualityAdaptation) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kBalanced); new_video_source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Set new source with adaptation still enabled. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kBalanced); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Disable resolution scaling. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityAdaptationStatsAreResetWhenScalerIsDisabled) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Set source with adaptation still enabled but quality scaler is off. fake_encoder_.SetQualityScaling(false); video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainFramerate); video_source_.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStatsWhenSwitchingSource) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; int sequence = 1; video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse, should now adapt down. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set cpu adaptation by frame dropping. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Not adapted at first. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt from. VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = 30; stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); // Framerate now adapted. stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Disable CPU adaptation. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kDegradationDisabled); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Try to trigger overuse. Should not succeed. stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Switch back the source with resolution adaptation enabled. video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainFramerate); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. video_stream_encoder_->TriggerCpuNormalUsage(); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Back to the source with adaptation off, set it back to maintain-resolution. video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Disabled, since we previously switched the source to disabled. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.cpu_limited_framerate); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. video_stream_encoder_->TriggerCpuNormalUsage(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(4, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksPreferredBitrate) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_EQ(video_encoder_config_.max_bitrate_bps, stats.preferred_media_bitrate_bps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ScalingUpAndDownDoesNothingWithMaintainResolution) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Expect no scaling to begin with. VerifyNoLimitation(video_source_.sink_wants()); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); // Trigger scale down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); // Expect a scale down. EXPECT_TRUE(video_source_.sink_wants().max_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); // Set resolution scaling disabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); // Trigger scale down. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); // Expect no scaling. EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); // Trigger scale up. video_stream_encoder_->TriggerQualityHigh(); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); // Expect nothing to change, still no scaling. EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SkipsSameAdaptDownRequest_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainFramerate preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); const int kLastMaxPixelCount = source.sink_wants().max_pixel_count; EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down for same input resolution, expect no change. video_stream_encoder_->TriggerCpuOveruse(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SkipsSameOrLargerAdaptDownRequest_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); VerifyNoLimitation(source.sink_wants()); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); const int kLastMaxPixelCount = source.sink_wants().max_pixel_count; // Trigger adapt down for same input resolution, expect no change. source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); video_stream_encoder_->TriggerQualityLow(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down for larger input resolution, expect no change. source.IncomingCapturedFrame(CreateFrame(3, kWidth + 1, kHeight + 1)); sink_.WaitForEncodedFrame(3); video_stream_encoder_->TriggerQualityLow(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainFramerate preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerCpuNormalUsage(); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_MaintainResolutionMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainResolution preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainResolution); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerCpuNormalUsage(); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_DisabledMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kDegradationDisabled preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kDegradationDisabled); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionForLowQuality_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainFramerate preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsFramerateForLowQuality_MaintainResolutionMode) { const int kWidth = 1280; const int kHeight = 720; const int kInputFps = 30; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); // Expect no scaling to begin with (preference: kMaintainFramerate). video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); VerifyNoLimitation(video_source_.sink_wants()); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); VerifyFpsMaxResolutionLt(video_source_.sink_wants(), kWidth * kHeight); // Enable kMaintainResolution preference. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); VerifyNoLimitation(new_video_source.sink_wants()); // Trigger adapt down, expect reduced framerate. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); sink_.WaitForEncodedFrame(3); VerifyFpsLtResolutionMax(new_video_source.sink_wants(), kInputFps); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(new_video_source.sink_wants()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotScaleBelowSetResolutionLimit) { const int kWidth = 1280; const int kHeight = 720; const size_t kNumFrames = 10; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable adapter, expected input resolutions when downscaling: // 1280x720 -> 960x540 -> 640x360 -> 480x270 -> 320x180 (kMinPixelsPerFrame) video_source_.set_adaptation_enabled(true); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); int downscales = 0; for (size_t i = 1; i <= kNumFrames; i++) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); // Trigger scale down. rtc::VideoSinkWants last_wants = video_source_.sink_wants(); video_stream_encoder_->TriggerQualityLow(); EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame); if (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count) ++downscales; EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(downscales, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_GT(downscales, 0); } video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionUpAndDownTwiceOnOveruse_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainFramerate preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerCpuNormalUsage(); source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerCpuNormalUsage(); source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionUpAndDownTwiceForLowQuality_BalancedMode_NoFpsLimit) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); sink_.WaitForEncodedFrame(4); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionOnOveruseAndLowQuality_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainFramerate preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (960x540). video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (640x360). video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants()); rtc::VideoSinkWants last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, max cpu downgrades reached, expect no change. video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); VerifyFpsEqResolutionEq(source.sink_wants(), last_wants); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect scaled down resolution (480x270). video_stream_encoder_->TriggerQualityLow(); source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect upscaled resolution (640x360). video_stream_encoder_->TriggerCpuNormalUsage(); source.IncomingCapturedFrame(CreateFrame(6, kWidth, kHeight)); WaitForEncodedFrame(6); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect upscaled resolution (960x540). video_stream_encoder_->TriggerCpuNormalUsage(); source.IncomingCapturedFrame(CreateFrame(7, kWidth, kHeight)); WaitForEncodedFrame(7); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); last_wants = source.sink_wants(); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, no cpu downgrades, expect no change (960x540). video_stream_encoder_->TriggerCpuNormalUsage(); source.IncomingCapturedFrame(CreateFrame(8, kWidth, kHeight)); WaitForEncodedFrame(8); VerifyFpsEqResolutionEq(source.sink_wants(), last_wants); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect no restriction (1280x720). video_stream_encoder_->TriggerQualityHigh(); source.IncomingCapturedFrame(CreateFrame(9, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsReported) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); } video_stream_encoder_->TriggerCpuOveruse(); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame( SendStatisticsProxy::kMinRequiredMetricsSamples + i, kWidth, kHeight)); WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i); } video_stream_encoder_->Stop(); video_stream_encoder_.reset(); stats_proxy_.reset(); EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); EXPECT_EQ( 1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50)); } TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsNotReportedForDisabledDegradation) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kDegradationDisabled); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); } video_stream_encoder_->Stop(); video_stream_encoder_.reset(); stats_proxy_.reset(); EXPECT_EQ(0, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); } TEST_F(VideoStreamEncoderTest, CallsBitrateObserver) { MockBitrateObserver bitrate_observer; video_stream_encoder_->SetBitrateObserver(&bitrate_observer); const int kDefaultFps = 30; const BitrateAllocation expected_bitrate = DefaultVideoBitrateAllocator(fake_encoder_.codec_config()) .GetAllocation(kLowTargetBitrateBps, kDefaultFps); // First called on bitrate updated, then again on first frame. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(2); video_stream_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); const int64_t kStartTimeMs = 1; video_source_.IncomingCapturedFrame( CreateFrame(kStartTimeMs, codec_width_, codec_height_)); WaitForEncodedFrame(kStartTimeMs); // Not called on second frame. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(0); video_source_.IncomingCapturedFrame( CreateFrame(kStartTimeMs + 1, codec_width_, codec_height_)); WaitForEncodedFrame(kStartTimeMs + 1); // Called after a process interval. const int64_t kProcessIntervalMs = vcm::VCMProcessTimer::kDefaultProcessIntervalMs; fake_clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerMillisec * (kProcessIntervalMs + (1000 / kDefaultFps))); EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(1); video_source_.IncomingCapturedFrame(CreateFrame( kStartTimeMs + kProcessIntervalMs, codec_width_, codec_height_)); WaitForEncodedFrame(kStartTimeMs + kProcessIntervalMs); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnReconfigureAndAdaption) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainResolution); // Insert a single frame, triggering initial configuration. source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kDefaultFramerate); // Trigger reconfigure encoder (without resetting the entire instance). VideoEncoderConfig video_encoder_config; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kFramerate); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, false); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Detector should be updated with fps limit from codec config. EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kFramerate); // Trigger underuse, max framerate should go back to codec configured fps. // Set extra low fps, to make sure it's actually reset, not just incremented. stats = stats_proxy_->GetStats(); stats.input_frame_rate = adapted_framerate / 2; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuNormalUsage(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedRespectsFramerateAfterUnderuse) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kLowFramerate = 15; const int kHighFramerate = 25; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainResolution); // Trigger initial configuration. VideoEncoderConfig video_encoder_config; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kLowFramerate); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, false); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kLowFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kLowFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kLowFramerate); // Reconfigure the encoder with a new (higher max framerate), max fps should // still respect the adaptation. video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kHighFramerate); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, false); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), adapted_framerate); // Trigger underuse, max framerate should go back to codec configured fps. stats = stats_proxy_->GetStats(); stats.input_frame_rate = adapted_framerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuNormalUsage(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kHighFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnDegradationPreferenceChange) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainResolution); // Trigger initial configuration. VideoEncoderConfig video_encoder_config; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kFramerate); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, false); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kFramerate); // Change degradation preference to not enable framerate scaling. Target // framerate should be changed to codec defined limit. video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) { const int kTooLowBitrateForFrameSizeBps = 10000; video_stream_encoder_->OnBitrateUpdated(kTooLowBitrateForFrameSizeBps, 0, 0); const int kWidth = 640; const int kHeight = 360; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); int last_pixel_count = video_source_.sink_wants().max_pixel_count; // Next frame is scaled. video_source_.IncomingCapturedFrame( CreateFrame(2, kWidth * 3 / 4, kHeight * 3 / 4)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); EXPECT_LT(video_source_.sink_wants().max_pixel_count, last_pixel_count); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NumberOfDroppedFramesLimitedWhenBitrateIsTooLow) { const int kTooLowBitrateForFrameSizeBps = 10000; video_stream_encoder_->OnBitrateUpdated(kTooLowBitrateForFrameSizeBps, 0, 0); const int kWidth = 640; const int kHeight = 360; // We expect the n initial frames to get dropped. int i; for (i = 1; i <= kMaxInitialFramedrop; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); ExpectDroppedFrame(); } // The n+1th frame should not be dropped, even though it's size is too large. video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); // Expect the sink_wants to specify a scaled frame. EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWithMaintainResolutionPreference) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); // Set degradation preference. video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainResolution); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped, even if it's too large. WaitForEncodedFrame(1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) { const int kWidth = 640; const int kHeight = 360; fake_encoder_.SetQualityScaling(false); video_stream_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); // Force quality scaler reconfiguration by resetting the source. video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kBalanced); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped, even if it's too large. WaitForEncodedFrame(1); video_stream_encoder_->Stop(); fake_encoder_.SetQualityScaling(true); } TEST_F(VideoStreamEncoderTest, ResolutionNotAdaptedForTooSmallFrame_MaintainFramerateMode) { const int kTooSmallWidth = 10; const int kTooSmallHeight = 10; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kMaintainFramerate preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kMaintainFramerate); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); // Trigger adapt down, too small frame, expect no change. source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerCpuOveruse(); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ResolutionNotAdaptedForTooSmallFrame_BalancedMode) { const int kTooSmallWidth = 10; const int kTooSmallHeight = 10; const int kFpsLimit = 7; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); // Trigger adapt down, expect limited framerate. source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); VerifyFpsEqResolutionMax(source.sink_wants(), kFpsLimit); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, too small frame, expect no change. source.IncomingCapturedFrame(CreateFrame(2, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(2); video_stream_encoder_->TriggerQualityLow(); VerifyFpsEqResolutionMax(source.sink_wants(), kFpsLimit); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FailingInitEncodeDoesntCauseCrash) { fake_encoder_.ForceInitEncodeFailure(true); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); ResetEncoder("VP8", 2, 1, 1, true, false); const int kFrameWidth = 1280; const int kFrameHeight = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); ExpectDroppedFrame(); video_stream_encoder_->Stop(); } // TODO(sprang): Extend this with fps throttling and any "balanced" extensions. TEST_F(VideoStreamEncoderTest, AdaptsResolutionOnOveruse_MaintainFramerateMode) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kFrameWidth = 1280; const int kFrameHeight = 720; // Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as // requested by // VideoStreamEncoder::VideoSourceProxy::RequestResolutionLowerThan(). video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, kFrameWidth, kFrameHeight)); WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4); // Trigger CPU normal use, return to original resolution. video_stream_encoder_->TriggerCpuNormalUsage(); video_source_.IncomingCapturedFrame( CreateFrame(3, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsFramerateOnOveruse_MaintainResolutionMode) { const int kFrameWidth = 1280; const int kFrameHeight = 720; int kFrameIntervalMs = rtc::kNumMillisecsPerSec / max_framerate_; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainResolution); video_source_.set_adaptation_enabled(true); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Try to trigger overuse. No fps estimate available => no effect. video_stream_encoder_->TriggerCpuOveruse(); // Insert frames for one second to get a stable estimate. for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); } // Trigger CPU overuse, reduce framerate by 2/3. video_stream_encoder_->TriggerCpuOveruse(); int num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } // Add some slack to account for frames dropped by the frame dropper. const int kErrorMargin = 1; EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3), kErrorMargin); // Trigger CPU overuse, reduce framerate by 2/3 again. video_stream_encoder_->TriggerCpuOveruse(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 4 / 9), kErrorMargin); // Go back up one step. video_stream_encoder_->TriggerCpuNormalUsage(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3), kErrorMargin); // Go back up to original mode. video_stream_encoder_->TriggerCpuNormalUsage(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesntAdaptDownPastMinFramerate) { const int kFramerateFps = 5; const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps; const int kMinFpsFrameInterval = rtc::kNumMillisecsPerSec / kMinFramerateFps; const int kFrameWidth = 1280; const int kFrameHeight = 720; // Reconfigure encoder with two temporal layers and screensharing, which will // disable frame dropping and make testing easier. ResetEncoder("VP8", 1, 2, 1, true, true); video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_stream_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainResolution); video_source_.set_adaptation_enabled(true); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; // Trigger overuse as much as we can. for (int i = 0; i < VideoStreamEncoder::kMaxCpuResolutionDowngrades; ++i) { // Insert frames to get a new fps estimate... for (int j = 0; j < kFramerateFps; ++j) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); timestamp_ms += kFrameIntervalMs; } // ...and then try to adapt again. video_stream_encoder_->TriggerCpuOveruse(); } // Drain any frame in the pipeline. WaitForFrame(kDefaultTimeoutMs); // Insert frames at min fps, all should go through. for (int i = 0; i < 10; ++i) { timestamp_ms += kMinFpsFrameInterval; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); } video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionAndFramerateForLowQuality_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (960x540@30fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (640x360@30fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Restrict bitrate, trigger adapt down, expect reduced fps (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (320x180@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (320x180@7fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants()); rtc::VideoSinkWants last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, min resolution reached, expect no change. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionEq(source.sink_wants(), last_wants); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect expect increased fps (320x180@10fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsGtResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(8, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (480x270@10fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(9, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Increase bitrate, trigger adapt up, expect increased fps (480x270@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsGtResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(10, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (640x360@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(11, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(12, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (960x540@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(13, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction (1280x720fps@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(source.sink_wants()); EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Framerate) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (960x540@30fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionLt(source.sink_wants(), kWidth * kHeight); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (640x360@30fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsLtResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerCpuNormalUsage(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionEq(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect upscaled resolution (960x540@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no restriction (1280x720fps@30fps). video_stream_encoder_->TriggerCpuNormalUsage(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyFpsMaxResolutionGt(source.sink_wants(), source.last_wants()); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(source.sink_wants()); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Resolution) { const int kWidth = 640; const int kHeight = 360; const int kFpsLimit = 15; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Enable kBalanced preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, VideoSendStream::DegradationPreference::kBalanced); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down framerate (640x360@15fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionMax(source.sink_wants(), kFpsLimit); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect scaled down resolution (480x270@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionLt(source.sink_wants(), source.last_wants()); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect upscaled resolution (640x360@15fps). video_stream_encoder_->TriggerCpuNormalUsage(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyFpsEqResolutionGt(source.sink_wants(), source.last_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); VerifyNoLimitation(source.sink_wants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); VerifyNoLimitation(source.sink_wants()); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AcceptsFullHdAdaptedDownSimulcastFrames) { // Simulates simulcast behavior and makes highest stream resolutions divisible // by 4. class CroppingVideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: explicit CroppingVideoStreamFactory(size_t num_temporal_layers, int framerate) : num_temporal_layers_(num_temporal_layers), framerate_(framerate) { EXPECT_GT(num_temporal_layers, 0u); EXPECT_GT(framerate, 0); } private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams(width - width % 4, height - height % 4, encoder_config); for (VideoStream& stream : streams) { stream.temporal_layer_thresholds_bps.resize(num_temporal_layers_ - 1); stream.max_framerate = framerate_; } return streams; } const size_t num_temporal_layers_; const int framerate_; }; const int kFrameWidth = 1920; const int kFrameHeight = 1080; // 3/4 of 1920. const int kAdaptedFrameWidth = 1440; // 3/4 of 1080 rounded down to multiple of 4. const int kAdaptedFrameHeight = 808; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Trigger reconfigure encoder (without resetting the entire instance). VideoEncoderConfig video_encoder_config; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kFramerate); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, false); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kAdaptedFrameWidth, kAdaptedFrameHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, PeriodicallyUpdatesChannelParameters) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kLowFps = 2; const int kHighFps = 30; video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; max_framerate_ = kLowFps; // Insert 2 seconds of 2fps video. for (int i = 0; i < kLowFps * 2; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kLowFps; } // Make sure encoder is updated with new target. video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kLowFps; EXPECT_EQ(kLowFps, fake_encoder_.GetConfiguredInputFramerate()); // Insert 30fps frames for just a little more than the forced update period. const int kVcmTimerIntervalFrames = (vcm::VCMProcessTimer::kDefaultProcessIntervalMs * kHighFps) / 1000; const int kFrameIntervalMs = 1000 / kHighFps; max_framerate_ = kHighFps; for (int i = 0; i < kVcmTimerIntervalFrames + 2; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait for encoded frame, but skip ahead if it doesn't arrive as it might // be dropped if the encoder hans't been updated with the new higher target // framerate yet, causing it to overshoot the target bitrate and then // suffering the wrath of the media optimizer. TimedWaitForEncodedFrame(timestamp_ms, 2 * kFrameIntervalMs); timestamp_ms += kFrameIntervalMs; } // Don expect correct measurement just yet, but it should be higher than // before. EXPECT_GT(fake_encoder_.GetConfiguredInputFramerate(), kLowFps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotUpdateBitrateAllocationWhenSuspended) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kTargetBitrateBps = 1000000; MockBitrateObserver bitrate_observer; video_stream_encoder_->SetBitrateObserver(&bitrate_observer); EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(1); // Initial bitrate update. video_stream_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Insert a first video frame, causes another bitrate update. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(1); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Next, simulate video suspension due to pacer queue overrun. video_stream_encoder_->OnBitrateUpdated(0, 0, 1); // Skip ahead until a new periodic parameter update should have occured. timestamp_ms += vcm::VCMProcessTimer::kDefaultProcessIntervalMs; fake_clock_.AdvanceTimeMicros( vcm::VCMProcessTimer::kDefaultProcessIntervalMs * rtc::kNumMicrosecsPerMillisec); // Bitrate observer should not be called. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(0); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); ExpectDroppedFrame(); video_stream_encoder_->Stop(); } } // namespace webrtc