/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. * */ #ifdef RTC_ENABLE_VP9 #include "modules/video_coding/codecs/vp9/vp9_impl.h" #include #include #include #include "vpx/vp8cx.h" #include "vpx/vp8dx.h" #include "vpx/vpx_decoder.h" #include "vpx/vpx_encoder.h" #include "absl/memory/memory.h" #include "api/video/color_space.h" #include "api/video/i010_buffer.h" #include "common_video/include/video_frame_buffer.h" #include "common_video/libyuv/include/webrtc_libyuv.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/video_coding/codecs/vp9/svc_rate_allocator.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/keep_ref_until_done.h" #include "rtc_base/logging.h" #include "rtc_base/time_utils.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { // Maps from gof_idx to encoder internal reference frame buffer index. These // maps work for 1,2 and 3 temporal layers with GOF length of 1,2 and 4 frames. uint8_t kRefBufIdx[4] = {0, 0, 0, 1}; uint8_t kUpdBufIdx[4] = {0, 0, 1, 0}; int kMaxNumTiles4kVideo = 8; // Maximum allowed PID difference for differnet per-layer frame-rate case. const int kMaxAllowedPidDIff = 30; constexpr double kLowRateFactor = 1.0; constexpr double kHighRateFactor = 2.0; // These settings correspond to the settings in vpx_codec_enc_cfg. struct Vp9RateSettings { uint32_t rc_undershoot_pct; uint32_t rc_overshoot_pct; uint32_t rc_buf_sz; uint32_t rc_buf_optimal_sz; uint32_t rc_dropframe_thresh; }; // Only positive speeds, range for real-time coding currently is: 5 - 8. // Lower means slower/better quality, higher means fastest/lower quality. int GetCpuSpeed(int width, int height) { #if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID) return 8; #else // For smaller resolutions, use lower speed setting (get some coding gain at // the cost of increased encoding complexity). if (width * height <= 352 * 288) return 5; else return 7; #endif } // Helper class for extracting VP9 colorspace. ColorSpace ExtractVP9ColorSpace(vpx_color_space_t space_t, vpx_color_range_t range_t, unsigned int bit_depth) { ColorSpace::PrimaryID primaries = ColorSpace::PrimaryID::kUnspecified; ColorSpace::TransferID transfer = ColorSpace::TransferID::kUnspecified; ColorSpace::MatrixID matrix = ColorSpace::MatrixID::kUnspecified; switch (space_t) { case VPX_CS_BT_601: case VPX_CS_SMPTE_170: primaries = ColorSpace::PrimaryID::kSMPTE170M; transfer = ColorSpace::TransferID::kSMPTE170M; matrix = ColorSpace::MatrixID::kSMPTE170M; break; case VPX_CS_SMPTE_240: primaries = ColorSpace::PrimaryID::kSMPTE240M; transfer = ColorSpace::TransferID::kSMPTE240M; matrix = ColorSpace::MatrixID::kSMPTE240M; break; case VPX_CS_BT_709: primaries = ColorSpace::PrimaryID::kBT709; transfer = ColorSpace::TransferID::kBT709; matrix = ColorSpace::MatrixID::kBT709; break; case VPX_CS_BT_2020: primaries = ColorSpace::PrimaryID::kBT2020; switch (bit_depth) { case 8: transfer = ColorSpace::TransferID::kBT709; break; case 10: transfer = ColorSpace::TransferID::kBT2020_10; break; default: RTC_NOTREACHED(); break; } matrix = ColorSpace::MatrixID::kBT2020_NCL; break; case VPX_CS_SRGB: primaries = ColorSpace::PrimaryID::kBT709; transfer = ColorSpace::TransferID::kIEC61966_2_1; matrix = ColorSpace::MatrixID::kBT709; break; default: break; } ColorSpace::RangeID range = ColorSpace::RangeID::kInvalid; switch (range_t) { case VPX_CR_STUDIO_RANGE: range = ColorSpace::RangeID::kLimited; break; case VPX_CR_FULL_RANGE: range = ColorSpace::RangeID::kFull; break; default: break; } return ColorSpace(primaries, transfer, matrix, range); } bool MoreLayersEnabled(const VideoBitrateAllocation& first, const VideoBitrateAllocation& second) { for (size_t sl_idx = 0; sl_idx < kMaxSpatialLayers; ++sl_idx) { if (first.GetSpatialLayerSum(sl_idx) > 0 && second.GetSpatialLayerSum(sl_idx) == 0) { return true; } } return false; } uint32_t Interpolate(uint32_t low, uint32_t high, double bandwidth_headroom_factor) { RTC_DCHECK_GE(bandwidth_headroom_factor, kLowRateFactor); RTC_DCHECK_LE(bandwidth_headroom_factor, kHighRateFactor); // |factor| is between 0.0 and 1.0. const double factor = bandwidth_headroom_factor - kLowRateFactor; return static_cast(((1.0 - factor) * low) + (factor * high) + 0.5); } Vp9RateSettings GetRateSettings(double bandwidth_headroom_factor) { static const Vp9RateSettings low_settings{100u, 0u, 100u, 33u, 40u}; static const Vp9RateSettings high_settings{50u, 50u, 1000u, 700u, 5u}; if (bandwidth_headroom_factor <= kLowRateFactor) { return low_settings; } else if (bandwidth_headroom_factor >= kHighRateFactor) { return high_settings; } Vp9RateSettings settings; settings.rc_undershoot_pct = Interpolate(low_settings.rc_undershoot_pct, high_settings.rc_undershoot_pct, bandwidth_headroom_factor); settings.rc_overshoot_pct = Interpolate(low_settings.rc_overshoot_pct, high_settings.rc_overshoot_pct, bandwidth_headroom_factor); settings.rc_buf_sz = Interpolate(low_settings.rc_buf_sz, high_settings.rc_buf_sz, bandwidth_headroom_factor); settings.rc_buf_optimal_sz = Interpolate(low_settings.rc_buf_optimal_sz, high_settings.rc_buf_optimal_sz, bandwidth_headroom_factor); settings.rc_dropframe_thresh = Interpolate(low_settings.rc_dropframe_thresh, high_settings.rc_dropframe_thresh, bandwidth_headroom_factor); return settings; } void UpdateRateSettings(vpx_codec_enc_cfg_t* config, const Vp9RateSettings& new_settings) { config->rc_undershoot_pct = new_settings.rc_undershoot_pct; config->rc_overshoot_pct = new_settings.rc_overshoot_pct; config->rc_buf_sz = new_settings.rc_buf_sz; config->rc_buf_optimal_sz = new_settings.rc_buf_optimal_sz; config->rc_dropframe_thresh = new_settings.rc_dropframe_thresh; } } // namespace void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt, void* user_data) { VP9EncoderImpl* enc = static_cast(user_data); enc->GetEncodedLayerFrame(pkt); } VP9EncoderImpl::VP9EncoderImpl(const cricket::VideoCodec& codec) : encoded_image_(), encoded_complete_callback_(nullptr), profile_( ParseSdpForVP9Profile(codec.params).value_or(VP9Profile::kProfile0)), inited_(false), timestamp_(0), cpu_speed_(3), rc_max_intra_target_(0), encoder_(nullptr), config_(nullptr), raw_(nullptr), input_image_(nullptr), force_key_frame_(true), pics_since_key_(0), num_temporal_layers_(0), num_spatial_layers_(0), num_active_spatial_layers_(0), layer_deactivation_requires_key_frame_( field_trial::IsEnabled("WebRTC-Vp9IssueKeyFrameOnLayerDeactivation")), is_svc_(false), inter_layer_pred_(InterLayerPredMode::kOn), external_ref_control_(false), // Set in InitEncode because of tests. trusted_rate_controller_(RateControlSettings::ParseFromFieldTrials() .LibvpxVp9TrustedRateController()), dynamic_rate_settings_( RateControlSettings::ParseFromFieldTrials().Vp9DynamicRateSettings()), full_superframe_drop_(true), first_frame_in_picture_(true), ss_info_needed_(false), is_flexible_mode_(false), variable_framerate_experiment_(ParseVariableFramerateConfig( "WebRTC-VP9VariableFramerateScreenshare")), variable_framerate_controller_( variable_framerate_experiment_.framerate_limit), num_steady_state_frames_(0) { codec_ = {}; memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t)); } VP9EncoderImpl::~VP9EncoderImpl() { Release(); } void VP9EncoderImpl::SetFecControllerOverride( FecControllerOverride* fec_controller_override) { // Ignored. } int VP9EncoderImpl::Release() { int ret_val = WEBRTC_VIDEO_CODEC_OK; encoded_image_.Allocate(0); if (encoder_ != nullptr) { if (inited_) { if (vpx_codec_destroy(encoder_)) { ret_val = WEBRTC_VIDEO_CODEC_MEMORY; } } delete encoder_; encoder_ = nullptr; } if (config_ != nullptr) { delete config_; config_ = nullptr; } if (raw_ != nullptr) { vpx_img_free(raw_); raw_ = nullptr; } inited_ = false; return ret_val; } bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const { // We check target_bitrate_bps of the 0th layer to see if the spatial layers // (i.e. bitrates) were explicitly configured. return codec_.spatialLayers[0].targetBitrate > 0; } bool VP9EncoderImpl::SetSvcRates( const VideoBitrateAllocation& bitrate_allocation) { config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps(); if (ExplicitlyConfiguredSpatialLayers()) { const bool layer_activation_requires_key_frame = inter_layer_pred_ == InterLayerPredMode::kOff || inter_layer_pred_ == InterLayerPredMode::kOnKeyPic; for (size_t sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { const bool was_layer_active = (config_->ss_target_bitrate[sl_idx] > 0); config_->ss_target_bitrate[sl_idx] = bitrate_allocation.GetSpatialLayerSum(sl_idx) / 1000; for (size_t tl_idx = 0; tl_idx < num_temporal_layers_; ++tl_idx) { config_->layer_target_bitrate[sl_idx * num_temporal_layers_ + tl_idx] = bitrate_allocation.GetTemporalLayerSum(sl_idx, tl_idx) / 1000; } const bool is_active_layer = (config_->ss_target_bitrate[sl_idx] > 0); if (!was_layer_active && is_active_layer && layer_activation_requires_key_frame) { force_key_frame_ = true; } else if (was_layer_active && !is_active_layer && layer_deactivation_requires_key_frame_) { force_key_frame_ = true; } if (!was_layer_active) { // Reset frame rate controller if layer is resumed after pause. framerate_controller_[sl_idx].Reset(); } framerate_controller_[sl_idx].SetTargetRate( codec_.spatialLayers[sl_idx].maxFramerate); } } else { float rate_ratio[VPX_MAX_LAYERS] = {0}; float total = 0; for (int i = 0; i < num_spatial_layers_; ++i) { if (svc_params_.scaling_factor_num[i] <= 0 || svc_params_.scaling_factor_den[i] <= 0) { RTC_LOG(LS_ERROR) << "Scaling factors not specified!"; return false; } rate_ratio[i] = static_cast(svc_params_.scaling_factor_num[i]) / svc_params_.scaling_factor_den[i]; total += rate_ratio[i]; } for (int i = 0; i < num_spatial_layers_; ++i) { RTC_CHECK_GT(total, 0); config_->ss_target_bitrate[i] = static_cast( config_->rc_target_bitrate * rate_ratio[i] / total); if (num_temporal_layers_ == 1) { config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i]; } else if (num_temporal_layers_ == 2) { config_->layer_target_bitrate[i * num_temporal_layers_] = config_->ss_target_bitrate[i] * 2 / 3; config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = config_->ss_target_bitrate[i]; } else if (num_temporal_layers_ == 3) { config_->layer_target_bitrate[i * num_temporal_layers_] = config_->ss_target_bitrate[i] / 2; config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = config_->layer_target_bitrate[i * num_temporal_layers_] + (config_->ss_target_bitrate[i] / 4); config_->layer_target_bitrate[i * num_temporal_layers_ + 2] = config_->ss_target_bitrate[i]; } else { RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: " << num_temporal_layers_; return false; } framerate_controller_[i].SetTargetRate(codec_.maxFramerate); } } num_active_spatial_layers_ = 0; for (int i = 0; i < num_spatial_layers_; ++i) { if (config_->ss_target_bitrate[i] > 0) { ++num_active_spatial_layers_; } } RTC_DCHECK_GT(num_active_spatial_layers_, 0); return true; } void VP9EncoderImpl::SetRates(const RateControlParameters& parameters) { if (!inited_) { RTC_LOG(LS_WARNING) << "SetRates() calll while uninitialzied."; return; } if (encoder_->err) { RTC_LOG(LS_WARNING) << "Encoder in error state: " << encoder_->err; return; } if (parameters.framerate_fps < 1.0) { RTC_LOG(LS_WARNING) << "Unsupported framerate: " << parameters.framerate_fps; return; } // Update bit rate if (codec_.maxBitrate > 0 && parameters.bitrate.get_sum_kbps() > codec_.maxBitrate) { RTC_LOG(LS_WARNING) << "Target bitrate exceeds maximum: " << parameters.bitrate.get_sum_kbps() << " vs " << codec_.maxBitrate; return; } codec_.maxFramerate = static_cast(parameters.framerate_fps + 0.5); requested_rate_settings_ = parameters; return; } // TODO(eladalon): s/inst/codec_settings/g. int VP9EncoderImpl::InitEncode(const VideoCodec* inst, const Settings& settings) { if (inst == nullptr) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->maxFramerate < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Allow zero to represent an unspecified maxBitRate if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->width < 1 || inst->height < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (settings.number_of_cores < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->VP9().numberOfTemporalLayers > 3) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // libvpx probably does not support more than 3 spatial layers. if (inst->VP9().numberOfSpatialLayers > 3) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } int ret_val = Release(); if (ret_val < 0) { return ret_val; } if (encoder_ == nullptr) { encoder_ = new vpx_codec_ctx_t; } if (config_ == nullptr) { config_ = new vpx_codec_enc_cfg_t; } timestamp_ = 0; if (&codec_ != inst) { codec_ = *inst; } force_key_frame_ = true; pics_since_key_ = 0; num_spatial_layers_ = inst->VP9().numberOfSpatialLayers; RTC_DCHECK_GT(num_spatial_layers_, 0); num_temporal_layers_ = inst->VP9().numberOfTemporalLayers; if (num_temporal_layers_ == 0) { num_temporal_layers_ = 1; } framerate_controller_ = std::vector( num_spatial_layers_, FramerateController(codec_.maxFramerate)); is_svc_ = (num_spatial_layers_ > 1 || num_temporal_layers_ > 1); encoded_image_._completeFrame = true; // Populate encoder configuration with default values. if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) { return WEBRTC_VIDEO_CODEC_ERROR; } vpx_img_fmt img_fmt = VPX_IMG_FMT_NONE; unsigned int bits_for_storage = 8; switch (profile_) { case VP9Profile::kProfile0: img_fmt = VPX_IMG_FMT_I420; bits_for_storage = 8; config_->g_bit_depth = VPX_BITS_8; config_->g_profile = 0; config_->g_input_bit_depth = 8; break; case VP9Profile::kProfile2: img_fmt = VPX_IMG_FMT_I42016; bits_for_storage = 16; config_->g_bit_depth = VPX_BITS_10; config_->g_profile = 2; config_->g_input_bit_depth = 10; break; } // Creating a wrapper to the image - setting image data to nullptr. Actual // pointer will be set in encode. Setting align to 1, as it is meaningless // (actual memory is not allocated). raw_ = vpx_img_wrap(nullptr, img_fmt, codec_.width, codec_.height, 1, nullptr); raw_->bit_depth = bits_for_storage; config_->g_w = codec_.width; config_->g_h = codec_.height; config_->rc_target_bitrate = inst->startBitrate; // in kbit/s config_->g_error_resilient = is_svc_ ? VPX_ERROR_RESILIENT_DEFAULT : 0; // Setting the time base of the codec. config_->g_timebase.num = 1; config_->g_timebase.den = 90000; config_->g_lag_in_frames = 0; // 0- no frame lagging config_->g_threads = 1; // Rate control settings. config_->rc_dropframe_thresh = inst->VP9().frameDroppingOn ? 30 : 0; config_->rc_end_usage = VPX_CBR; config_->g_pass = VPX_RC_ONE_PASS; config_->rc_min_quantizer = codec_.mode == VideoCodecMode::kScreensharing ? 8 : 2; config_->rc_max_quantizer = 52; config_->rc_undershoot_pct = 50; config_->rc_overshoot_pct = 50; config_->rc_buf_initial_sz = 500; config_->rc_buf_optimal_sz = 600; config_->rc_buf_sz = 1000; // Set the maximum target size of any key-frame. rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz); // Key-frame interval is enforced manually by this wrapper. config_->kf_mode = VPX_KF_DISABLED; // TODO(webm:1592): work-around for libvpx issue, as it can still // put some key-frames at will even in VPX_KF_DISABLED kf_mode. config_->kf_max_dist = inst->VP9().keyFrameInterval; config_->kf_min_dist = config_->kf_max_dist; config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0; // Determine number of threads based on the image size and #cores. config_->g_threads = NumberOfThreads(config_->g_w, config_->g_h, settings.number_of_cores); cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h); is_flexible_mode_ = inst->VP9().flexibleMode; inter_layer_pred_ = inst->VP9().interLayerPred; if (num_spatial_layers_ > 1 && codec_.mode == VideoCodecMode::kScreensharing && !is_flexible_mode_) { RTC_LOG(LS_ERROR) << "Flexible mode is required for screenshare with " "several spatial layers"; return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // External reference control is required for different frame rate on spatial // layers because libvpx generates rtp incompatible references in this case. external_ref_control_ = field_trial::IsEnabled("WebRTC-Vp9ExternalRefCtrl") || (num_spatial_layers_ > 1 && codec_.mode == VideoCodecMode::kScreensharing) || inter_layer_pred_ == InterLayerPredMode::kOn; if (num_temporal_layers_ == 1) { gof_.SetGofInfoVP9(kTemporalStructureMode1); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING; config_->ts_number_layers = 1; config_->ts_rate_decimator[0] = 1; config_->ts_periodicity = 1; config_->ts_layer_id[0] = 0; } else if (num_temporal_layers_ == 2) { gof_.SetGofInfoVP9(kTemporalStructureMode2); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101; config_->ts_number_layers = 2; config_->ts_rate_decimator[0] = 2; config_->ts_rate_decimator[1] = 1; config_->ts_periodicity = 2; config_->ts_layer_id[0] = 0; config_->ts_layer_id[1] = 1; } else if (num_temporal_layers_ == 3) { gof_.SetGofInfoVP9(kTemporalStructureMode3); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212; config_->ts_number_layers = 3; config_->ts_rate_decimator[0] = 4; config_->ts_rate_decimator[1] = 2; config_->ts_rate_decimator[2] = 1; config_->ts_periodicity = 4; config_->ts_layer_id[0] = 0; config_->ts_layer_id[1] = 2; config_->ts_layer_id[2] = 1; config_->ts_layer_id[3] = 2; } else { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (external_ref_control_) { config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; if (num_temporal_layers_ > 1 && num_spatial_layers_ > 1 && codec_.mode == VideoCodecMode::kScreensharing) { // External reference control for several temporal layers with different // frame rates on spatial layers is not implemented yet. return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } } ref_buf_.clear(); return InitAndSetControlSettings(inst); } int VP9EncoderImpl::NumberOfThreads(int width, int height, int number_of_cores) { // Keep the number of encoder threads equal to the possible number of column // tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS. if (width * height >= 1280 * 720 && number_of_cores > 4) { return 4; } else if (width * height >= 640 * 360 && number_of_cores > 2) { return 2; } else { // Use 2 threads for low res on ARM. #if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \ defined(WEBRTC_ANDROID) if (width * height >= 320 * 180 && number_of_cores > 2) { return 2; } #endif // 1 thread less than VGA. return 1; } } int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) { // Set QP-min/max per spatial and temporal layer. int tot_num_layers = num_spatial_layers_ * num_temporal_layers_; for (int i = 0; i < tot_num_layers; ++i) { svc_params_.max_quantizers[i] = config_->rc_max_quantizer; svc_params_.min_quantizers[i] = config_->rc_min_quantizer; } config_->ss_number_layers = num_spatial_layers_; if (ExplicitlyConfiguredSpatialLayers()) { for (int i = 0; i < num_spatial_layers_; ++i) { const auto& layer = codec_.spatialLayers[i]; RTC_CHECK_GT(layer.width, 0); const int scale_factor = codec_.width / layer.width; RTC_DCHECK_GT(scale_factor, 0); // Ensure scaler factor is integer. if (scale_factor * layer.width != codec_.width) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Ensure scale factor is the same in both dimensions. if (scale_factor * layer.height != codec_.height) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Ensure scale factor is power of two. const bool is_pow_of_two = (scale_factor & (scale_factor - 1)) == 0; if (!is_pow_of_two) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } svc_params_.scaling_factor_num[i] = 1; svc_params_.scaling_factor_den[i] = scale_factor; RTC_DCHECK_GT(codec_.spatialLayers[i].maxFramerate, 0); RTC_DCHECK_LE(codec_.spatialLayers[i].maxFramerate, codec_.maxFramerate); if (i > 0) { // Frame rate of high spatial layer is supposed to be equal or higher // than frame rate of low spatial layer. RTC_DCHECK_GE(codec_.spatialLayers[i].maxFramerate, codec_.spatialLayers[i - 1].maxFramerate); } } } else { int scaling_factor_num = 256; for (int i = num_spatial_layers_ - 1; i >= 0; --i) { // 1:2 scaling in each dimension. svc_params_.scaling_factor_num[i] = scaling_factor_num; svc_params_.scaling_factor_den[i] = 256; } } SvcRateAllocator init_allocator(codec_); current_bitrate_allocation_ = init_allocator.GetAllocation( inst->startBitrate * 1000, inst->maxFramerate); if (!SetSvcRates(current_bitrate_allocation_)) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } const vpx_codec_err_t rv = vpx_codec_enc_init( encoder_, vpx_codec_vp9_cx(), config_, config_->g_bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH); if (rv != VPX_CODEC_OK) { RTC_LOG(LS_ERROR) << "Init error: " << vpx_codec_err_to_string(rv); return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_); vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT, rc_max_intra_target_); vpx_codec_control(encoder_, VP9E_SET_AQ_MODE, inst->VP9().adaptiveQpMode ? 3 : 0); vpx_codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0); vpx_codec_control(encoder_, VP9E_SET_SVC_GF_TEMPORAL_REF, 0); if (is_svc_) { vpx_codec_control(encoder_, VP9E_SET_SVC, 1); vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_); } if (num_spatial_layers_ > 1) { switch (inter_layer_pred_) { case InterLayerPredMode::kOn: vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 0); break; case InterLayerPredMode::kOff: vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 1); break; case InterLayerPredMode::kOnKeyPic: vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 2); break; default: RTC_NOTREACHED(); } memset(&svc_drop_frame_, 0, sizeof(svc_drop_frame_)); dropping_only_base_layer_ = inter_layer_pred_ == InterLayerPredMode::kOn && codec_.mode == VideoCodecMode::kScreensharing && num_spatial_layers_ > 1; if (dropping_only_base_layer_) { // Screenshare dropping mode: only the base spatial layer // can be dropped and it doesn't affect other spatial layers. // This mode is preferable because base layer has low bitrate targets // and more likely to drop frames. It shouldn't reduce framerate on other // layers. svc_drop_frame_.framedrop_mode = LAYER_DROP; svc_drop_frame_.max_consec_drop = 5; svc_drop_frame_.framedrop_thresh[0] = config_->rc_dropframe_thresh; for (size_t i = 1; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = 0; } } else { // Configure encoder to drop entire superframe whenever it needs to drop // a layer. This mode is preferred over per-layer dropping which causes // quality flickering and is not compatible with RTP non-flexible mode. svc_drop_frame_.framedrop_mode = full_superframe_drop_ ? FULL_SUPERFRAME_DROP : CONSTRAINED_LAYER_DROP; svc_drop_frame_.max_consec_drop = std::numeric_limits::max(); for (size_t i = 0; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; } } vpx_codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame_); } // Register callback for getting each spatial layer. vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = { VP9EncoderImpl::EncoderOutputCodedPacketCallback, reinterpret_cast(this)}; vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK, reinterpret_cast(&cbp)); // Control function to set the number of column tiles in encoding a frame, in // log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns. // The number tile columns will be capped by the encoder based on image size // (minimum width of tile column is 256 pixels, maximum is 4096). vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1)); // Turn on row-based multithreading. vpx_codec_control(encoder_, VP9E_SET_ROW_MT, 1); #if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) && \ !defined(ANDROID) // Do not enable the denoiser on ARM since optimization is pending. // Denoiser is on by default on other platforms. vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, inst->VP9().denoisingOn ? 1 : 0); #endif if (codec_.mode == VideoCodecMode::kScreensharing) { // Adjust internal parameters to screen content. vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1); } // Enable encoder skip of static/low content blocks. vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1); inited_ = true; return WEBRTC_VIDEO_CODEC_OK; } uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) { // Set max to the optimal buffer level (normalized by target BR), // and scaled by a scale_par. // Max target size = scale_par * optimal_buffer_size * targetBR[Kbps]. // This value is presented in percentage of perFrameBw: // perFrameBw = targetBR[Kbps] * 1000 / framerate. // The target in % is as follows: float scale_par = 0.5; uint32_t target_pct = optimal_buffer_size * scale_par * codec_.maxFramerate / 10; // Don't go below 3 times the per frame bandwidth. const uint32_t min_intra_size = 300; return (target_pct < min_intra_size) ? min_intra_size : target_pct; } int VP9EncoderImpl::Encode(const VideoFrame& input_image, const std::vector* frame_types) { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (encoded_complete_callback_ == nullptr) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (num_active_spatial_layers_ == 0) { // All spatial layers are disabled, return without encoding anything. return WEBRTC_VIDEO_CODEC_OK; } // We only support one stream at the moment. if (frame_types && !frame_types->empty()) { if ((*frame_types)[0] == VideoFrameType::kVideoFrameKey) { force_key_frame_ = true; } } if (pics_since_key_ + 1 == static_cast(codec_.VP9()->keyFrameInterval)) { force_key_frame_ = true; } vpx_svc_layer_id_t layer_id = {0}; if (!force_key_frame_) { const size_t gof_idx = (pics_since_key_ + 1) % gof_.num_frames_in_gof; layer_id.temporal_layer_id = gof_.temporal_idx[gof_idx]; if (VideoCodecMode::kScreensharing == codec_.mode) { const uint32_t frame_timestamp_ms = 1000 * input_image.timestamp() / kVideoPayloadTypeFrequency; // To ensure that several rate-limiters with different limits don't // interfere, they must be queried in order of increasing limit. bool use_steady_state_limiter = variable_framerate_experiment_.enabled && input_image.update_rect().IsEmpty() && num_steady_state_frames_ >= variable_framerate_experiment_.frames_before_steady_state; for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { const float layer_fps = framerate_controller_[layer_id.spatial_layer_id].GetTargetRate(); // Use steady state rate-limiter at the correct place. if (use_steady_state_limiter && layer_fps > variable_framerate_experiment_.framerate_limit - 1e-9) { if (variable_framerate_controller_.DropFrame(frame_timestamp_ms)) { layer_id.spatial_layer_id = num_active_spatial_layers_; } // Break always: if rate limiter triggered frame drop, no need to // continue; otherwise, the rate is less than the next limiters. break; } if (framerate_controller_[sl_idx].DropFrame(frame_timestamp_ms)) { ++layer_id.spatial_layer_id; } else { break; } } if (use_steady_state_limiter && layer_id.spatial_layer_id < num_active_spatial_layers_) { variable_framerate_controller_.AddFrame(frame_timestamp_ms); } } RTC_DCHECK_LE(layer_id.spatial_layer_id, num_active_spatial_layers_); if (layer_id.spatial_layer_id >= num_active_spatial_layers_) { // Drop entire picture. return WEBRTC_VIDEO_CODEC_OK; } } for (int sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { layer_id.temporal_layer_id_per_spatial[sl_idx] = layer_id.temporal_layer_id; } vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id); if (requested_rate_settings_) { if (dynamic_rate_settings_) { // Tweak rate control settings based on available network headroom. UpdateRateSettings( config_, GetRateSettings( requested_rate_settings_->bandwidth_allocation.bps() / requested_rate_settings_->bitrate.get_sum_bps())); } bool more_layers_requested = MoreLayersEnabled( requested_rate_settings_->bitrate, current_bitrate_allocation_); bool less_layers_requested = MoreLayersEnabled( current_bitrate_allocation_, requested_rate_settings_->bitrate); // In SVC can enable new layers only if all lower layers are encoded and at // the base temporal layer. // This will delay rate allocation change until the next frame on the base // spatial layer. // In KSVC or simulcast modes KF will be generated for a new layer, so can // update allocation any time. bool can_upswitch = inter_layer_pred_ != InterLayerPredMode::kOn || (layer_id.spatial_layer_id == 0 && layer_id.temporal_layer_id == 0); if (!more_layers_requested || can_upswitch) { current_bitrate_allocation_ = requested_rate_settings_->bitrate; requested_rate_settings_ = absl::nullopt; if (!SetSvcRates(current_bitrate_allocation_)) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (less_layers_requested || more_layers_requested) { ss_info_needed_ = true; } if (more_layers_requested && !force_key_frame_) { // Prohibit drop of all layers for the next frame, so newly enabled // layer would have a valid spatial reference. for (size_t i = 0; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = 0; } } } } if (num_spatial_layers_ > 1) { // Update frame dropping settings as they may change on per-frame basis. vpx_codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame_); } if (vpx_codec_enc_config_set(encoder_, config_)) { return WEBRTC_VIDEO_CODEC_ERROR; } RTC_DCHECK_EQ(input_image.width(), raw_->d_w); RTC_DCHECK_EQ(input_image.height(), raw_->d_h); // Set input image for use in the callback. // This was necessary since you need some information from input_image. // You can save only the necessary information (such as timestamp) instead of // doing this. input_image_ = &input_image; // Keep reference to buffer until encode completes. rtc::scoped_refptr i420_buffer; const I010BufferInterface* i010_buffer; rtc::scoped_refptr i010_copy; switch (profile_) { case VP9Profile::kProfile0: { i420_buffer = input_image.video_frame_buffer()->ToI420(); // Image in vpx_image_t format. // Input image is const. VPX's raw image is not defined as const. raw_->planes[VPX_PLANE_Y] = const_cast(i420_buffer->DataY()); raw_->planes[VPX_PLANE_U] = const_cast(i420_buffer->DataU()); raw_->planes[VPX_PLANE_V] = const_cast(i420_buffer->DataV()); raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY(); raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU(); raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV(); break; } case VP9Profile::kProfile2: { // We can inject kI010 frames directly for encode. All other formats // should be converted to it. switch (input_image.video_frame_buffer()->type()) { case VideoFrameBuffer::Type::kI010: { i010_buffer = input_image.video_frame_buffer()->GetI010(); break; } default: { i010_copy = I010Buffer::Copy(*input_image.video_frame_buffer()->ToI420()); i010_buffer = i010_copy.get(); } } raw_->planes[VPX_PLANE_Y] = const_cast( reinterpret_cast(i010_buffer->DataY())); raw_->planes[VPX_PLANE_U] = const_cast( reinterpret_cast(i010_buffer->DataU())); raw_->planes[VPX_PLANE_V] = const_cast( reinterpret_cast(i010_buffer->DataV())); raw_->stride[VPX_PLANE_Y] = i010_buffer->StrideY() * 2; raw_->stride[VPX_PLANE_U] = i010_buffer->StrideU() * 2; raw_->stride[VPX_PLANE_V] = i010_buffer->StrideV() * 2; break; } } vpx_enc_frame_flags_t flags = 0; if (force_key_frame_) { flags = VPX_EFLAG_FORCE_KF; } if (external_ref_control_) { vpx_svc_ref_frame_config_t ref_config = SetReferences(force_key_frame_, layer_id.spatial_layer_id); if (VideoCodecMode::kScreensharing == codec_.mode) { for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { ref_config.duration[sl_idx] = static_cast( 90000 / (std::min(static_cast(codec_.maxFramerate), framerate_controller_[sl_idx].GetTargetRate()))); } } vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_config); } first_frame_in_picture_ = true; // TODO(ssilkin): Frame duration should be specified per spatial layer // since their frame rate can be different. For now calculate frame duration // based on target frame rate of the highest spatial layer, which frame rate // is supposed to be equal or higher than frame rate of low spatial layers. // Also, timestamp should represent actual time passed since previous frame // (not 'expected' time). Then rate controller can drain buffer more // accurately. RTC_DCHECK_GE(framerate_controller_.size(), num_active_spatial_layers_); float target_framerate_fps = (codec_.mode == VideoCodecMode::kScreensharing) ? std::min(static_cast(codec_.maxFramerate), framerate_controller_[num_active_spatial_layers_ - 1] .GetTargetRate()) : codec_.maxFramerate; uint32_t duration = static_cast(90000 / target_framerate_fps); const vpx_codec_err_t rv = vpx_codec_encode(encoder_, raw_, timestamp_, duration, flags, VPX_DL_REALTIME); if (rv != VPX_CODEC_OK) { RTC_LOG(LS_ERROR) << "Encoding error: " << vpx_codec_err_to_string(rv) << "\n" << "Details: " << vpx_codec_error(encoder_) << "\n" << vpx_codec_error_detail(encoder_); return WEBRTC_VIDEO_CODEC_ERROR; } timestamp_ += duration; if (!full_superframe_drop_) { const bool end_of_picture = true; DeliverBufferedFrame(end_of_picture); } return WEBRTC_VIDEO_CODEC_OK; } void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific, absl::optional* spatial_idx, const vpx_codec_cx_pkt& pkt, uint32_t timestamp) { RTC_CHECK(codec_specific != nullptr); codec_specific->codecType = kVideoCodecVP9; CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9); vp9_info->first_frame_in_picture = first_frame_in_picture_; vp9_info->flexible_mode = is_flexible_mode_; if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) { pics_since_key_ = 0; } else if (first_frame_in_picture_) { ++pics_since_key_; } vpx_svc_layer_id_t layer_id = {0}; vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); // Can't have keyframe with non-zero temporal layer. RTC_DCHECK(pics_since_key_ != 0 || layer_id.temporal_layer_id == 0); RTC_CHECK_GT(num_temporal_layers_, 0); RTC_CHECK_GT(num_active_spatial_layers_, 0); if (num_temporal_layers_ == 1) { RTC_CHECK_EQ(layer_id.temporal_layer_id, 0); vp9_info->temporal_idx = kNoTemporalIdx; } else { vp9_info->temporal_idx = layer_id.temporal_layer_id; } if (num_active_spatial_layers_ == 1) { RTC_CHECK_EQ(layer_id.spatial_layer_id, 0); *spatial_idx = absl::nullopt; } else { *spatial_idx = layer_id.spatial_layer_id; } // TODO(asapersson): this info has to be obtained from the encoder. vp9_info->temporal_up_switch = false; const bool is_key_pic = (pics_since_key_ == 0); const bool is_inter_layer_pred_allowed = (inter_layer_pred_ == InterLayerPredMode::kOn || (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic)); // Always set inter_layer_predicted to true on high layer frame if inter-layer // prediction (ILP) is allowed even if encoder didn't actually use it. // Setting inter_layer_predicted to false would allow receiver to decode high // layer frame without decoding low layer frame. If that would happen (e.g. // if low layer frame is lost) then receiver won't be able to decode next high // layer frame which uses ILP. vp9_info->inter_layer_predicted = first_frame_in_picture_ ? false : is_inter_layer_pred_allowed; // Mark all low spatial layer frames as references (not just frames of // active low spatial layers) if inter-layer prediction is enabled since // these frames are indirect references of high spatial layer, which can // later be enabled without key frame. vp9_info->non_ref_for_inter_layer_pred = !is_inter_layer_pred_allowed || layer_id.spatial_layer_id + 1 == num_spatial_layers_; // Always populate this, so that the packetizer can properly set the marker // bit. vp9_info->num_spatial_layers = num_active_spatial_layers_; vp9_info->num_ref_pics = 0; FillReferenceIndices(pkt, pics_since_key_, vp9_info->inter_layer_predicted, vp9_info); if (vp9_info->flexible_mode) { vp9_info->gof_idx = kNoGofIdx; } else { vp9_info->gof_idx = static_cast(pics_since_key_ % gof_.num_frames_in_gof); vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx]; RTC_DCHECK(vp9_info->num_ref_pics == gof_.num_ref_pics[vp9_info->gof_idx] || vp9_info->num_ref_pics == 0); } vp9_info->inter_pic_predicted = (!is_key_pic && vp9_info->num_ref_pics > 0); // Write SS on key frame of independently coded spatial layers and on base // temporal/spatial layer frame if number of layers changed without issuing // of key picture (inter-layer prediction is enabled). const bool is_key_frame = is_key_pic && !vp9_info->inter_layer_predicted; if (is_key_frame || (ss_info_needed_ && layer_id.temporal_layer_id == 0 && layer_id.spatial_layer_id == 0)) { vp9_info->ss_data_available = true; vp9_info->spatial_layer_resolution_present = true; for (size_t i = 0; i < num_active_spatial_layers_; ++i) { vp9_info->width[i] = codec_.width * svc_params_.scaling_factor_num[i] / svc_params_.scaling_factor_den[i]; vp9_info->height[i] = codec_.height * svc_params_.scaling_factor_num[i] / svc_params_.scaling_factor_den[i]; } if (vp9_info->flexible_mode) { vp9_info->gof.num_frames_in_gof = 0; } else { vp9_info->gof.CopyGofInfoVP9(gof_); } ss_info_needed_ = false; } else { vp9_info->ss_data_available = false; } first_frame_in_picture_ = false; } void VP9EncoderImpl::FillReferenceIndices(const vpx_codec_cx_pkt& pkt, const size_t pic_num, const bool inter_layer_predicted, CodecSpecificInfoVP9* vp9_info) { vpx_svc_layer_id_t layer_id = {0}; vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); const bool is_key_frame = (pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; std::vector ref_buf_list; if (is_svc_) { vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); int ref_buf_flags = 0; if (enc_layer_conf.reference_last[layer_id.spatial_layer_id]) { const size_t fb_idx = enc_layer_conf.lst_fb_idx[layer_id.spatial_layer_id]; RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end()); if (std::find(ref_buf_list.begin(), ref_buf_list.end(), ref_buf_.at(fb_idx)) == ref_buf_list.end()) { ref_buf_list.push_back(ref_buf_.at(fb_idx)); ref_buf_flags |= 1 << fb_idx; } } if (enc_layer_conf.reference_alt_ref[layer_id.spatial_layer_id]) { const size_t fb_idx = enc_layer_conf.alt_fb_idx[layer_id.spatial_layer_id]; RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end()); if (std::find(ref_buf_list.begin(), ref_buf_list.end(), ref_buf_.at(fb_idx)) == ref_buf_list.end()) { ref_buf_list.push_back(ref_buf_.at(fb_idx)); ref_buf_flags |= 1 << fb_idx; } } if (enc_layer_conf.reference_golden[layer_id.spatial_layer_id]) { const size_t fb_idx = enc_layer_conf.gld_fb_idx[layer_id.spatial_layer_id]; RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end()); if (std::find(ref_buf_list.begin(), ref_buf_list.end(), ref_buf_.at(fb_idx)) == ref_buf_list.end()) { ref_buf_list.push_back(ref_buf_.at(fb_idx)); ref_buf_flags |= 1 << fb_idx; } } RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " << layer_id.spatial_layer_id << " tl " << layer_id.temporal_layer_id << " refered buffers " << (ref_buf_flags & (1 << 0) ? 1 : 0) << (ref_buf_flags & (1 << 1) ? 1 : 0) << (ref_buf_flags & (1 << 2) ? 1 : 0) << (ref_buf_flags & (1 << 3) ? 1 : 0) << (ref_buf_flags & (1 << 4) ? 1 : 0) << (ref_buf_flags & (1 << 5) ? 1 : 0) << (ref_buf_flags & (1 << 6) ? 1 : 0) << (ref_buf_flags & (1 << 7) ? 1 : 0); } else if (!is_key_frame) { RTC_DCHECK_EQ(num_spatial_layers_, 1); RTC_DCHECK_EQ(num_temporal_layers_, 1); // In non-SVC mode encoder doesn't provide reference list. Assume each frame // refers previous one, which is stored in buffer 0. ref_buf_list.push_back(ref_buf_.at(0)); } size_t max_ref_temporal_layer_id = 0; std::vector ref_pid_list; vp9_info->num_ref_pics = 0; for (const RefFrameBuffer& ref_buf : ref_buf_list) { RTC_DCHECK_LE(ref_buf.pic_num, pic_num); if (ref_buf.pic_num < pic_num) { if (inter_layer_pred_ != InterLayerPredMode::kOn) { // RTP spec limits temporal prediction to the same spatial layer. // It is safe to ignore this requirement if inter-layer prediction is // enabled for all frames when all base frames are relayed to receiver. RTC_DCHECK_EQ(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); } else { RTC_DCHECK_LE(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); } RTC_DCHECK_LE(ref_buf.temporal_layer_id, layer_id.temporal_layer_id); // Encoder may reference several spatial layers on the same previous // frame in case if some spatial layers are skipped on the current frame. // We shouldn't put duplicate references as it may break some old // clients and isn't RTP compatible. if (std::find(ref_pid_list.begin(), ref_pid_list.end(), ref_buf.pic_num) != ref_pid_list.end()) { continue; } ref_pid_list.push_back(ref_buf.pic_num); const size_t p_diff = pic_num - ref_buf.pic_num; RTC_DCHECK_LE(p_diff, 127UL); vp9_info->p_diff[vp9_info->num_ref_pics] = static_cast(p_diff); ++vp9_info->num_ref_pics; max_ref_temporal_layer_id = std::max(max_ref_temporal_layer_id, ref_buf.temporal_layer_id); } else { RTC_DCHECK(inter_layer_predicted); // RTP spec only allows to use previous spatial layer for inter-layer // prediction. RTC_DCHECK_EQ(ref_buf.spatial_layer_id + 1, layer_id.spatial_layer_id); } } vp9_info->temporal_up_switch = (max_ref_temporal_layer_id < static_cast(layer_id.temporal_layer_id)); } void VP9EncoderImpl::UpdateReferenceBuffers(const vpx_codec_cx_pkt& pkt, const size_t pic_num) { vpx_svc_layer_id_t layer_id = {0}; vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); RefFrameBuffer frame_buf(pic_num, layer_id.spatial_layer_id, layer_id.temporal_layer_id); if (is_svc_) { vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); const int update_buffer_slot = enc_layer_conf.update_buffer_slot[layer_id.spatial_layer_id]; for (size_t i = 0; i < kNumVp9Buffers; ++i) { if (update_buffer_slot & (1 << i)) { ref_buf_[i] = frame_buf; } } RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " << layer_id.spatial_layer_id << " tl " << layer_id.temporal_layer_id << " updated buffers " << (update_buffer_slot & (1 << 0) ? 1 : 0) << (update_buffer_slot & (1 << 1) ? 1 : 0) << (update_buffer_slot & (1 << 2) ? 1 : 0) << (update_buffer_slot & (1 << 3) ? 1 : 0) << (update_buffer_slot & (1 << 4) ? 1 : 0) << (update_buffer_slot & (1 << 5) ? 1 : 0) << (update_buffer_slot & (1 << 6) ? 1 : 0) << (update_buffer_slot & (1 << 7) ? 1 : 0); } else { RTC_DCHECK_EQ(num_spatial_layers_, 1); RTC_DCHECK_EQ(num_temporal_layers_, 1); // In non-svc mode encoder doesn't provide reference list. Assume each frame // is reference and stored in buffer 0. ref_buf_[0] = frame_buf; } } vpx_svc_ref_frame_config_t VP9EncoderImpl::SetReferences( bool is_key_pic, size_t first_active_spatial_layer_id) { // kRefBufIdx, kUpdBufIdx need to be updated to support longer GOFs. RTC_DCHECK_LE(gof_.num_frames_in_gof, 4); vpx_svc_ref_frame_config_t ref_config; memset(&ref_config, 0, sizeof(ref_config)); const size_t num_temporal_refs = std::max(1, num_temporal_layers_ - 1); const bool is_inter_layer_pred_allowed = inter_layer_pred_ == InterLayerPredMode::kOn || (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic); absl::optional last_updated_buf_idx; // Put temporal reference to LAST and spatial reference to GOLDEN. Update // frame buffer (i.e. store encoded frame) if current frame is a temporal // reference (i.e. it belongs to a low temporal layer) or it is a spatial // reference. In later case, always store spatial reference in the last // reference frame buffer. // For the case of 3 temporal and 3 spatial layers we need 6 frame buffers // for temporal references plus 1 buffer for spatial reference. 7 buffers // in total. for (size_t sl_idx = first_active_spatial_layer_id; sl_idx < num_active_spatial_layers_; ++sl_idx) { const size_t curr_pic_num = is_key_pic ? 0 : pics_since_key_ + 1; const size_t gof_idx = curr_pic_num % gof_.num_frames_in_gof; if (!is_key_pic) { // Set up temporal reference. const int buf_idx = sl_idx * num_temporal_refs + kRefBufIdx[gof_idx]; // Last reference frame buffer is reserved for spatial reference. It is // not supposed to be used for temporal prediction. RTC_DCHECK_LT(buf_idx, kNumVp9Buffers - 1); // Sanity check that reference picture number is smaller than current // picture number. RTC_DCHECK_LT(ref_buf_[buf_idx].pic_num, curr_pic_num); const size_t pid_diff = curr_pic_num - ref_buf_[buf_idx].pic_num; // Incorrect spatial layer may be in the buffer due to a key-frame. const bool same_spatial_layer = ref_buf_[buf_idx].spatial_layer_id == sl_idx; bool correct_pid = false; if (is_flexible_mode_) { correct_pid = pid_diff < kMaxAllowedPidDIff; } else { // Below code assumes single temporal referecence. RTC_DCHECK_EQ(gof_.num_ref_pics[gof_idx], 1); correct_pid = pid_diff == gof_.pid_diff[gof_idx][0]; } if (same_spatial_layer && correct_pid) { ref_config.lst_fb_idx[sl_idx] = buf_idx; ref_config.reference_last[sl_idx] = 1; } else { // This reference doesn't match with one specified by GOF. This can // only happen if spatial layer is enabled dynamically without key // frame. Spatial prediction is supposed to be enabled in this case. RTC_DCHECK(is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id); } } if (is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id) { // Set up spatial reference. RTC_DCHECK(last_updated_buf_idx); ref_config.gld_fb_idx[sl_idx] = *last_updated_buf_idx; ref_config.reference_golden[sl_idx] = 1; } else { RTC_DCHECK(ref_config.reference_last[sl_idx] != 0 || sl_idx == first_active_spatial_layer_id || inter_layer_pred_ == InterLayerPredMode::kOff); } last_updated_buf_idx.reset(); if (gof_.temporal_idx[gof_idx] < num_temporal_layers_ - 1 || num_temporal_layers_ == 1) { last_updated_buf_idx = sl_idx * num_temporal_refs + kUpdBufIdx[gof_idx]; // Ensure last frame buffer is not used for temporal prediction (it is // reserved for spatial reference). RTC_DCHECK_LT(*last_updated_buf_idx, kNumVp9Buffers - 1); } else if (is_inter_layer_pred_allowed) { last_updated_buf_idx = kNumVp9Buffers - 1; } if (last_updated_buf_idx) { ref_config.update_buffer_slot[sl_idx] = 1 << *last_updated_buf_idx; } } return ref_config; } int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) { RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT); if (pkt->data.frame.sz == 0) { // Ignore dropped frame. return WEBRTC_VIDEO_CODEC_OK; } vpx_svc_layer_id_t layer_id = {0}; vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); if (!full_superframe_drop_) { // Deliver buffered low spatial layer frame. const bool end_of_picture = false; DeliverBufferedFrame(end_of_picture); } // TODO(nisse): Introduce some buffer cache or buffer pool, to reduce // allocations and/or copy operations. encoded_image_.SetEncodedData(EncodedImageBuffer::Create( static_cast(pkt->data.frame.buf), pkt->data.frame.sz)); const bool is_key_frame = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; // Ensure encoder issued key frame on request. RTC_DCHECK(is_key_frame || !force_key_frame_); // Check if encoded frame is a key frame. encoded_image_._frameType = VideoFrameType::kVideoFrameDelta; if (is_key_frame) { encoded_image_._frameType = VideoFrameType::kVideoFrameKey; force_key_frame_ = false; } RTC_DCHECK_LE(encoded_image_.size(), encoded_image_.capacity()); codec_specific_ = {}; absl::optional spatial_index; PopulateCodecSpecific(&codec_specific_, &spatial_index, *pkt, input_image_->timestamp()); encoded_image_.SetSpatialIndex(spatial_index); UpdateReferenceBuffers(*pkt, pics_since_key_); TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_.size()); encoded_image_.SetTimestamp(input_image_->timestamp()); encoded_image_._encodedHeight = pkt->data.frame.height[layer_id.spatial_layer_id]; encoded_image_._encodedWidth = pkt->data.frame.width[layer_id.spatial_layer_id]; int qp = -1; vpx_codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp); encoded_image_.qp_ = qp; if (full_superframe_drop_) { const bool end_of_picture = encoded_image_.SpatialIndex().value_or(0) + 1 == num_active_spatial_layers_; DeliverBufferedFrame(end_of_picture); } return WEBRTC_VIDEO_CODEC_OK; } void VP9EncoderImpl::DeliverBufferedFrame(bool end_of_picture) { if (encoded_image_.size() > 0) { if (num_spatial_layers_ > 1) { // Restore frame dropping settings, as dropping may be temporary forbidden // due to dynamically enabled layers. svc_drop_frame_.framedrop_thresh[0] = config_->rc_dropframe_thresh; for (size_t i = 1; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = dropping_only_base_layer_ ? 0 : config_->rc_dropframe_thresh; } } codec_specific_.codecSpecific.VP9.end_of_picture = end_of_picture; // No data partitioning in VP9, so 1 partition only. int part_idx = 0; RTPFragmentationHeader frag_info; frag_info.VerifyAndAllocateFragmentationHeader(1); frag_info.fragmentationOffset[part_idx] = 0; frag_info.fragmentationLength[part_idx] = encoded_image_.size(); encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific_, &frag_info); if (codec_.mode == VideoCodecMode::kScreensharing) { const uint8_t spatial_idx = encoded_image_.SpatialIndex().value_or(0); const uint32_t frame_timestamp_ms = 1000 * encoded_image_.Timestamp() / kVideoPayloadTypeFrequency; framerate_controller_[spatial_idx].AddFrame(frame_timestamp_ms); const size_t steady_state_size = SteadyStateSize( spatial_idx, codec_specific_.codecSpecific.VP9.temporal_idx); // Only frames on spatial layers, which may be limited in a steady state // are considered for steady state detection. if (framerate_controller_[spatial_idx].GetTargetRate() > variable_framerate_experiment_.framerate_limit + 1e-9) { if (encoded_image_.qp_ <= variable_framerate_experiment_.steady_state_qp && encoded_image_.size() <= steady_state_size) { ++num_steady_state_frames_; } else { num_steady_state_frames_ = 0; } } } encoded_image_.set_size(0); } } int VP9EncoderImpl::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { encoded_complete_callback_ = callback; return WEBRTC_VIDEO_CODEC_OK; } VideoEncoder::EncoderInfo VP9EncoderImpl::GetEncoderInfo() const { EncoderInfo info; info.supports_native_handle = false; info.implementation_name = "libvpx"; info.scaling_settings = VideoEncoder::ScalingSettings::kOff; info.has_trusted_rate_controller = trusted_rate_controller_; info.is_hardware_accelerated = false; info.has_internal_source = false; for (size_t si = 0; si < num_spatial_layers_; ++si) { info.fps_allocation[si].clear(); if (!codec_.spatialLayers[si].active) { continue; } // This spatial layer may already use a fraction of the total frame rate. const float sl_fps_fraction = codec_.spatialLayers[si].maxFramerate / codec_.maxFramerate; for (size_t ti = 0; ti < num_temporal_layers_; ++ti) { const uint32_t decimator = num_temporal_layers_ <= 1 ? 1 : config_->ts_rate_decimator[ti]; RTC_DCHECK_GT(decimator, 0); info.fps_allocation[si].push_back(rtc::saturated_cast( EncoderInfo::kMaxFramerateFraction * (sl_fps_fraction / decimator))); } } return info; } size_t VP9EncoderImpl::SteadyStateSize(int sid, int tid) { const size_t bitrate_bps = current_bitrate_allocation_.GetBitrate( sid, tid == kNoTemporalIdx ? 0 : tid); const float fps = (codec_.mode == VideoCodecMode::kScreensharing) ? std::min(static_cast(codec_.maxFramerate), framerate_controller_[sid].GetTargetRate()) : codec_.maxFramerate; return static_cast( bitrate_bps / (8 * fps) * (100 - variable_framerate_experiment_.steady_state_undershoot_percentage) / 100 + 0.5); } // static VP9EncoderImpl::VariableFramerateExperiment VP9EncoderImpl::ParseVariableFramerateConfig(std::string group_name) { FieldTrialFlag enabled = FieldTrialFlag("Enabled"); FieldTrialParameter framerate_limit("min_fps", 5.0); FieldTrialParameter qp("min_qp", 32); FieldTrialParameter undershoot_percentage("undershoot", 30); FieldTrialParameter frames_before_steady_state( "frames_before_steady_state", 5); ParseFieldTrial({&enabled, &framerate_limit, &qp, &undershoot_percentage, &frames_before_steady_state}, field_trial::FindFullName(group_name)); VariableFramerateExperiment config; config.enabled = enabled.Get(); config.framerate_limit = framerate_limit.Get(); config.steady_state_qp = qp.Get(); config.steady_state_undershoot_percentage = undershoot_percentage.Get(); config.frames_before_steady_state = frames_before_steady_state.Get(); return config; } VP9DecoderImpl::VP9DecoderImpl() : decode_complete_callback_(nullptr), inited_(false), decoder_(nullptr), key_frame_required_(true) {} VP9DecoderImpl::~VP9DecoderImpl() { inited_ = true; // in order to do the actual release Release(); int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse(); if (num_buffers_in_use > 0) { // The frame buffers are reference counted and frames are exposed after // decoding. There may be valid usage cases where previous frames are still // referenced after ~VP9DecoderImpl that is not a leak. RTC_LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still " << "referenced during ~VP9DecoderImpl."; } } int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) { int ret_val = Release(); if (ret_val < 0) { return ret_val; } if (decoder_ == nullptr) { decoder_ = new vpx_codec_ctx_t; } vpx_codec_dec_cfg_t cfg; memset(&cfg, 0, sizeof(cfg)); // We want to use multithreading when decoding high resolution videos. But, // since we don't know resolution of input stream at this stage, we always // enable it. cfg.threads = std::min(number_of_cores, kMaxNumTiles4kVideo); vpx_codec_flags_t flags = 0; if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) { return WEBRTC_VIDEO_CODEC_MEMORY; } if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) { return WEBRTC_VIDEO_CODEC_MEMORY; } inited_ = true; // Always start with a complete key frame. key_frame_required_ = true; return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::Decode(const EncodedImage& input_image, bool missing_frames, int64_t /*render_time_ms*/) { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (decode_complete_callback_ == nullptr) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } // Always start with a complete key frame. if (key_frame_required_) { if (input_image._frameType != VideoFrameType::kVideoFrameKey) return WEBRTC_VIDEO_CODEC_ERROR; // We have a key frame - is it complete? if (input_image._completeFrame) { key_frame_required_ = false; } else { return WEBRTC_VIDEO_CODEC_ERROR; } } vpx_codec_iter_t iter = nullptr; vpx_image_t* img; const uint8_t* buffer = input_image.data(); if (input_image.size() == 0) { buffer = nullptr; // Triggers full frame concealment. } // During decode libvpx may get and release buffers from |frame_buffer_pool_|. // In practice libvpx keeps a few (~3-4) buffers alive at a time. if (vpx_codec_decode(decoder_, buffer, static_cast(input_image.size()), 0, VPX_DL_REALTIME)) { return WEBRTC_VIDEO_CODEC_ERROR; } // |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer. // It may be released by libvpx during future vpx_codec_decode or // vpx_codec_destroy calls. img = vpx_codec_get_frame(decoder_, &iter); int qp; vpx_codec_err_t vpx_ret = vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp); RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK); int ret = ReturnFrame(img, input_image.Timestamp(), qp); if (ret != 0) { return ret; } return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::ReturnFrame(const vpx_image_t* img, uint32_t timestamp, int qp) { if (img == nullptr) { // Decoder OK and nullptr image => No show frame. return WEBRTC_VIDEO_CODEC_NO_OUTPUT; } // This buffer contains all of |img|'s image data, a reference counted // Vp9FrameBuffer. (libvpx is done with the buffers after a few // vpx_codec_decode calls or vpx_codec_destroy). Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer = static_cast(img->fb_priv); // The buffer can be used directly by the VideoFrame (without copy) by // using a Wrapped*Buffer. rtc::scoped_refptr img_wrapped_buffer; switch (img->bit_depth) { case 8: img_wrapped_buffer = WrapI420Buffer( img->d_w, img->d_h, img->planes[VPX_PLANE_Y], img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U], img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V], img->stride[VPX_PLANE_V], // WrappedI420Buffer's mechanism for allowing the release of its frame // buffer is through a callback function. This is where we should // release |img_buffer|. rtc::KeepRefUntilDone(img_buffer)); break; case 10: img_wrapped_buffer = WrapI010Buffer( img->d_w, img->d_h, reinterpret_cast(img->planes[VPX_PLANE_Y]), img->stride[VPX_PLANE_Y] / 2, reinterpret_cast(img->planes[VPX_PLANE_U]), img->stride[VPX_PLANE_U] / 2, reinterpret_cast(img->planes[VPX_PLANE_V]), img->stride[VPX_PLANE_V] / 2, rtc::KeepRefUntilDone(img_buffer)); break; default: RTC_NOTREACHED(); return WEBRTC_VIDEO_CODEC_NO_OUTPUT; } auto builder = VideoFrame::Builder() .set_video_frame_buffer(img_wrapped_buffer) .set_timestamp_rtp(timestamp) .set_color_space(ExtractVP9ColorSpace(img->cs, img->range, img->bit_depth)); VideoFrame decoded_image = builder.build(); decode_complete_callback_->Decoded(decoded_image, absl::nullopt, qp); return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::RegisterDecodeCompleteCallback( DecodedImageCallback* callback) { decode_complete_callback_ = callback; return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::Release() { int ret_val = WEBRTC_VIDEO_CODEC_OK; if (decoder_ != nullptr) { if (inited_) { // When a codec is destroyed libvpx will release any buffers of // |frame_buffer_pool_| it is currently using. if (vpx_codec_destroy(decoder_)) { ret_val = WEBRTC_VIDEO_CODEC_MEMORY; } } delete decoder_; decoder_ = nullptr; } // Releases buffers from the pool. Any buffers not in use are deleted. Buffers // still referenced externally are deleted once fully released, not returning // to the pool. frame_buffer_pool_.ClearPool(); inited_ = false; return ret_val; } const char* VP9DecoderImpl::ImplementationName() const { return "libvpx"; } } // namespace webrtc #endif // RTC_ENABLE_VP9