/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "absl/memory/memory.h" #include "api/test/create_simulcast_test_fixture.h" #include "api/test/simulcast_test_fixture.h" #include "api/test/video/function_video_decoder_factory.h" #include "api/test/video/function_video_encoder_factory.h" #include "api/video_codecs/sdp_video_format.h" #include "api/video_codecs/video_encoder_factory.h" #include "common_video/include/video_frame_buffer.h" #include "media/base/media_constants.h" #include "media/engine/internal_encoder_factory.h" #include "media/engine/simulcast_encoder_adapter.h" #include "modules/video_coding/codecs/vp8/include/vp8.h" #include "modules/video_coding/include/video_codec_interface.h" #include "modules/video_coding/utility/simulcast_test_fixture_impl.h" #include "test/gmock.h" #include "test/gtest.h" using ::testing::_; using ::testing::Return; using EncoderInfo = webrtc::VideoEncoder::EncoderInfo; using FramerateFractions = absl::InlinedVector; namespace webrtc { namespace test { namespace { constexpr int kDefaultWidth = 1280; constexpr int kDefaultHeight = 720; std::unique_ptr CreateSpecificSimulcastTestFixture( VideoEncoderFactory* internal_encoder_factory) { std::unique_ptr encoder_factory = absl::make_unique( [internal_encoder_factory]() { return absl::make_unique( internal_encoder_factory, SdpVideoFormat(cricket::kVp8CodecName)); }); std::unique_ptr decoder_factory = absl::make_unique( []() { return VP8Decoder::Create(); }); return CreateSimulcastTestFixture(std::move(encoder_factory), std::move(decoder_factory), SdpVideoFormat(cricket::kVp8CodecName)); } } // namespace TEST(SimulcastEncoderAdapterSimulcastTest, TestKeyFrameRequestsOnAllStreams) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestKeyFrameRequestsOnAllStreams(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingAllStreams) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestPaddingAllStreams(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingTwoStreams) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestPaddingTwoStreams(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingTwoStreamsOneMaxedOut) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestPaddingTwoStreamsOneMaxedOut(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingOneStream) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestPaddingOneStream(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingOneStreamTwoMaxedOut) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestPaddingOneStreamTwoMaxedOut(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestSendAllStreams) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestSendAllStreams(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestDisablingStreams) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestDisablingStreams(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestActiveStreams) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestActiveStreams(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestSwitchingToOneStream) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestSwitchingToOneStream(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestSwitchingToOneOddStream) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestSwitchingToOneOddStream(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestStrideEncodeDecode) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestStrideEncodeDecode(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestSpatioTemporalLayers333PatternEncoder) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestSpatioTemporalLayers333PatternEncoder(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestSpatioTemporalLayers321PatternEncoder) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestSpatioTemporalLayers321PatternEncoder(); } TEST(SimulcastEncoderAdapterSimulcastTest, TestDecodeWidthHeightSet) { InternalEncoderFactory internal_encoder_factory; auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory); fixture->TestDecodeWidthHeightSet(); } class MockVideoEncoder; class MockVideoEncoderFactory : public VideoEncoderFactory { public: std::vector GetSupportedFormats() const override; std::unique_ptr CreateVideoEncoder( const SdpVideoFormat& format) override; CodecInfo QueryVideoEncoder(const SdpVideoFormat& format) const override; const std::vector& encoders() const; void SetEncoderNames(const std::vector& encoder_names); void set_init_encode_return_value(int32_t value); void DestroyVideoEncoder(VideoEncoder* encoder); private: int32_t init_encode_return_value_ = 0; std::vector encoders_; std::vector encoder_names_; }; class MockVideoEncoder : public VideoEncoder { public: explicit MockVideoEncoder(MockVideoEncoderFactory* factory) : factory_(factory), scaling_settings_(VideoEncoder::ScalingSettings::kOff), callback_(nullptr) {} // TODO(nisse): Valid overrides commented out, because the gmock // methods don't use any override declarations, and we want to avoid // warnings from -Winconsistent-missing-override. See // http://crbug.com/428099. int32_t InitEncode(const VideoCodec* codecSettings, int32_t numberOfCores, size_t maxPayloadSize) /* override */ { codec_ = *codecSettings; return init_encode_return_value_; } MOCK_METHOD2( Encode, int32_t(const VideoFrame& inputImage, const std::vector* frame_types) /* override */); int32_t RegisterEncodeCompleteCallback( EncodedImageCallback* callback) /* override */ { callback_ = callback; return 0; } MOCK_METHOD0(Release, int32_t()); int32_t SetRateAllocation(const VideoBitrateAllocation& bitrate_allocation, uint32_t framerate) { last_set_bitrate_ = bitrate_allocation; return 0; } EncoderInfo GetEncoderInfo() const override { EncoderInfo info; info.supports_native_handle = supports_native_handle_; info.implementation_name = implementation_name_; info.scaling_settings = scaling_settings_; info.has_trusted_rate_controller = has_trusted_rate_controller_; info.is_hardware_accelerated = is_hardware_accelerated_; info.has_internal_source = has_internal_source_; info.fps_allocation[0] = fps_allocation_; return info; } virtual ~MockVideoEncoder() { factory_->DestroyVideoEncoder(this); } const VideoCodec& codec() const { return codec_; } void SendEncodedImage(int width, int height) { // Sends a fake image of the given width/height. EncodedImage image; image._encodedWidth = width; image._encodedHeight = height; CodecSpecificInfo codec_specific_info; codec_specific_info.codecType = webrtc::kVideoCodecVP8; callback_->OnEncodedImage(image, &codec_specific_info, nullptr); } void set_supports_native_handle(bool enabled) { supports_native_handle_ = enabled; } void set_implementation_name(const std::string& name) { implementation_name_ = name; } void set_init_encode_return_value(int32_t value) { init_encode_return_value_ = value; } void set_scaling_settings(const VideoEncoder::ScalingSettings& settings) { scaling_settings_ = settings; } void set_has_trusted_rate_controller(bool trusted) { has_trusted_rate_controller_ = trusted; } void set_is_hardware_accelerated(bool is_hardware_accelerated) { is_hardware_accelerated_ = is_hardware_accelerated; } void set_has_internal_source(bool has_internal_source) { has_internal_source_ = has_internal_source; } void set_fps_allocation(const FramerateFractions& fps_allocation) { fps_allocation_ = fps_allocation; } VideoBitrateAllocation last_set_bitrate() const { return last_set_bitrate_; } private: MockVideoEncoderFactory* const factory_; bool supports_native_handle_ = false; std::string implementation_name_ = "unknown"; VideoEncoder::ScalingSettings scaling_settings_; bool has_trusted_rate_controller_ = false; bool is_hardware_accelerated_ = false; bool has_internal_source_ = false; int32_t init_encode_return_value_ = 0; VideoBitrateAllocation last_set_bitrate_; FramerateFractions fps_allocation_; VideoCodec codec_; EncodedImageCallback* callback_; }; std::vector MockVideoEncoderFactory::GetSupportedFormats() const { std::vector formats = {SdpVideoFormat("VP8")}; return formats; } std::unique_ptr MockVideoEncoderFactory::CreateVideoEncoder( const SdpVideoFormat& format) { std::unique_ptr encoder( new ::testing::NiceMock(this)); encoder->set_init_encode_return_value(init_encode_return_value_); const char* encoder_name = encoder_names_.empty() ? "codec_implementation_name" : encoder_names_[encoders_.size()]; encoder->set_implementation_name(encoder_name); encoders_.push_back(encoder.get()); return encoder; } void MockVideoEncoderFactory::DestroyVideoEncoder(VideoEncoder* encoder) { for (size_t i = 0; i < encoders_.size(); ++i) { if (encoders_[i] == encoder) { encoders_.erase(encoders_.begin() + i); break; } } } VideoEncoderFactory::CodecInfo MockVideoEncoderFactory::QueryVideoEncoder( const SdpVideoFormat& format) const { return CodecInfo(); } const std::vector& MockVideoEncoderFactory::encoders() const { return encoders_; } void MockVideoEncoderFactory::SetEncoderNames( const std::vector& encoder_names) { encoder_names_ = encoder_names; } void MockVideoEncoderFactory::set_init_encode_return_value(int32_t value) { init_encode_return_value_ = value; } class TestSimulcastEncoderAdapterFakeHelper { public: TestSimulcastEncoderAdapterFakeHelper() : factory_(new MockVideoEncoderFactory()) {} // Can only be called once as the SimulcastEncoderAdapter will take the // ownership of |factory_|. VideoEncoder* CreateMockEncoderAdapter() { return new SimulcastEncoderAdapter(factory_.get(), SdpVideoFormat("VP8")); } MockVideoEncoderFactory* factory() { return factory_.get(); } private: std::unique_ptr factory_; }; static const int kTestTemporalLayerProfile[3] = {3, 2, 1}; class TestSimulcastEncoderAdapterFake : public ::testing::Test, public EncodedImageCallback { public: TestSimulcastEncoderAdapterFake() : helper_(new TestSimulcastEncoderAdapterFakeHelper()), adapter_(helper_->CreateMockEncoderAdapter()), last_encoded_image_width_(-1), last_encoded_image_height_(-1), last_encoded_image_simulcast_index_(-1) {} virtual ~TestSimulcastEncoderAdapterFake() { if (adapter_) { adapter_->Release(); } } Result OnEncodedImage(const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) override { last_encoded_image_width_ = encoded_image._encodedWidth; last_encoded_image_height_ = encoded_image._encodedHeight; last_encoded_image_simulcast_index_ = encoded_image.SpatialIndex().value_or(-1); return Result(Result::OK, encoded_image.Timestamp()); } bool GetLastEncodedImageInfo(int* out_width, int* out_height, int* out_simulcast_index) { if (last_encoded_image_width_ == -1) { return false; } *out_width = last_encoded_image_width_; *out_height = last_encoded_image_height_; *out_simulcast_index = last_encoded_image_simulcast_index_; return true; } void SetupCodec() { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); rate_allocator_.reset(new SimulcastRateAllocator(codec_)); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->RegisterEncodeCompleteCallback(this); } void VerifyCodec(const VideoCodec& ref, int stream_index) { const VideoCodec& target = helper_->factory()->encoders()[stream_index]->codec(); EXPECT_EQ(ref.codecType, target.codecType); EXPECT_EQ(ref.plType, target.plType); EXPECT_EQ(ref.width, target.width); EXPECT_EQ(ref.height, target.height); EXPECT_EQ(ref.startBitrate, target.startBitrate); EXPECT_EQ(ref.maxBitrate, target.maxBitrate); EXPECT_EQ(ref.minBitrate, target.minBitrate); EXPECT_EQ(ref.maxFramerate, target.maxFramerate); EXPECT_EQ(ref.VP8().complexity, target.VP8().complexity); EXPECT_EQ(ref.VP8().numberOfTemporalLayers, target.VP8().numberOfTemporalLayers); EXPECT_EQ(ref.VP8().denoisingOn, target.VP8().denoisingOn); EXPECT_EQ(ref.VP8().automaticResizeOn, target.VP8().automaticResizeOn); EXPECT_EQ(ref.VP8().frameDroppingOn, target.VP8().frameDroppingOn); EXPECT_EQ(ref.VP8().keyFrameInterval, target.VP8().keyFrameInterval); EXPECT_EQ(ref.qpMax, target.qpMax); EXPECT_EQ(0, target.numberOfSimulcastStreams); EXPECT_EQ(ref.mode, target.mode); // No need to compare simulcastStream as numberOfSimulcastStreams should // always be 0. } void InitRefCodec(int stream_index, VideoCodec* ref_codec, bool reverse_layer_order = false) { *ref_codec = codec_; ref_codec->VP8()->numberOfTemporalLayers = kTestTemporalLayerProfile[reverse_layer_order ? 2 - stream_index : stream_index]; ref_codec->width = codec_.simulcastStream[stream_index].width; ref_codec->height = codec_.simulcastStream[stream_index].height; ref_codec->maxBitrate = codec_.simulcastStream[stream_index].maxBitrate; ref_codec->minBitrate = codec_.simulcastStream[stream_index].minBitrate; ref_codec->qpMax = codec_.simulcastStream[stream_index].qpMax; } void VerifyCodecSettings() { EXPECT_EQ(3u, helper_->factory()->encoders().size()); VideoCodec ref_codec; // stream 0, the lowest resolution stream. InitRefCodec(0, &ref_codec); ref_codec.qpMax = 45; ref_codec.VP8()->complexity = webrtc::VideoCodecComplexity::kComplexityHigher; ref_codec.VP8()->denoisingOn = false; ref_codec.startBitrate = 100; // Should equal to the target bitrate. VerifyCodec(ref_codec, 0); // stream 1 InitRefCodec(1, &ref_codec); ref_codec.VP8()->denoisingOn = false; // The start bitrate (300kbit) minus what we have for the lower layers // (100kbit). ref_codec.startBitrate = 200; VerifyCodec(ref_codec, 1); // stream 2, the biggest resolution stream. InitRefCodec(2, &ref_codec); // We don't have enough bits to send this, so the adapter should have // configured it to use the min bitrate for this layer (600kbit) but turn // off sending. ref_codec.startBitrate = 600; VerifyCodec(ref_codec, 2); } protected: std::unique_ptr helper_; std::unique_ptr adapter_; VideoCodec codec_; int last_encoded_image_width_; int last_encoded_image_height_; int last_encoded_image_simulcast_index_; std::unique_ptr rate_allocator_; }; TEST_F(TestSimulcastEncoderAdapterFake, InitEncode) { SetupCodec(); VerifyCodecSettings(); } TEST_F(TestSimulcastEncoderAdapterFake, ReleaseWithoutInitEncode) { EXPECT_EQ(0, adapter_->Release()); } TEST_F(TestSimulcastEncoderAdapterFake, Reinit) { SetupCodec(); EXPECT_EQ(0, adapter_->Release()); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); } TEST_F(TestSimulcastEncoderAdapterFake, EncodedCallbackForDifferentEncoders) { SetupCodec(); // Set bitrates so that we send all layers. adapter_->SetRateAllocation(rate_allocator_->GetAllocation(1200, 30), 30); // At this point, the simulcast encoder adapter should have 3 streams: HD, // quarter HD, and quarter quarter HD. We're going to mostly ignore the exact // resolutions, to test that the adapter forwards on the correct resolution // and simulcast index values, going only off the encoder that generates the // image. std::vector encoders = helper_->factory()->encoders(); ASSERT_EQ(3u, encoders.size()); encoders[0]->SendEncodedImage(1152, 704); int width; int height; int simulcast_index; EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(1152, width); EXPECT_EQ(704, height); EXPECT_EQ(0, simulcast_index); encoders[1]->SendEncodedImage(300, 620); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(300, width); EXPECT_EQ(620, height); EXPECT_EQ(1, simulcast_index); encoders[2]->SendEncodedImage(120, 240); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(120, width); EXPECT_EQ(240, height); EXPECT_EQ(2, simulcast_index); } // This test verifies that the underlying encoders are reused, when the adapter // is reinited with different number of simulcast streams. It further checks // that the allocated encoders are reused in the same order as before, starting // with the lowest stream. TEST_F(TestSimulcastEncoderAdapterFake, ReusesEncodersInOrder) { // Set up common settings for three streams. SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); rate_allocator_.reset(new SimulcastRateAllocator(codec_)); adapter_->RegisterEncodeCompleteCallback(this); const uint32_t target_bitrate = 1000 * (codec_.simulcastStream[0].targetBitrate + codec_.simulcastStream[1].targetBitrate + codec_.simulcastStream[2].minBitrate); // Input data. rtc::scoped_refptr buffer(I420Buffer::Create(1280, 720)); VideoFrame input_frame = VideoFrame::Builder() .set_video_frame_buffer(buffer) .set_timestamp_rtp(100) .set_timestamp_ms(1000) .set_rotation(kVideoRotation_180) .build(); std::vector frame_types; // Encode with three streams. EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); VerifyCodecSettings(); adapter_->SetRateAllocation( rate_allocator_->GetAllocation(target_bitrate, 30), 30); std::vector original_encoders = helper_->factory()->encoders(); ASSERT_EQ(3u, original_encoders.size()); EXPECT_CALL(*original_encoders[0], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*original_encoders[1], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*original_encoders[2], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); frame_types.resize(3, VideoFrameType::kVideoFrameKey); EXPECT_EQ(0, adapter_->Encode(input_frame, &frame_types)); EXPECT_CALL(*original_encoders[0], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*original_encoders[1], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*original_encoders[2], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_EQ(0, adapter_->Release()); // Encode with two streams. codec_.width /= 2; codec_.height /= 2; codec_.numberOfSimulcastStreams = 2; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->SetRateAllocation( rate_allocator_->GetAllocation(target_bitrate, 30), 30); std::vector new_encoders = helper_->factory()->encoders(); ASSERT_EQ(2u, new_encoders.size()); ASSERT_EQ(original_encoders[0], new_encoders[0]); EXPECT_CALL(*original_encoders[0], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); ASSERT_EQ(original_encoders[1], new_encoders[1]); EXPECT_CALL(*original_encoders[1], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); frame_types.resize(2, VideoFrameType::kVideoFrameKey); EXPECT_EQ(0, adapter_->Encode(input_frame, &frame_types)); EXPECT_CALL(*original_encoders[0], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*original_encoders[1], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_EQ(0, adapter_->Release()); // Encode with single stream. codec_.width /= 2; codec_.height /= 2; codec_.numberOfSimulcastStreams = 1; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->SetRateAllocation( rate_allocator_->GetAllocation(target_bitrate, 30), 30); new_encoders = helper_->factory()->encoders(); ASSERT_EQ(1u, new_encoders.size()); ASSERT_EQ(original_encoders[0], new_encoders[0]); EXPECT_CALL(*original_encoders[0], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); frame_types.resize(1, VideoFrameType::kVideoFrameKey); EXPECT_EQ(0, adapter_->Encode(input_frame, &frame_types)); EXPECT_CALL(*original_encoders[0], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_EQ(0, adapter_->Release()); // Encode with three streams, again. codec_.width *= 4; codec_.height *= 4; codec_.numberOfSimulcastStreams = 3; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->SetRateAllocation( rate_allocator_->GetAllocation(target_bitrate, 30), 30); new_encoders = helper_->factory()->encoders(); ASSERT_EQ(3u, new_encoders.size()); // The first encoder is reused. ASSERT_EQ(original_encoders[0], new_encoders[0]); EXPECT_CALL(*original_encoders[0], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); // The second and third encoders are new. EXPECT_CALL(*new_encoders[1], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*new_encoders[2], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); frame_types.resize(3, VideoFrameType::kVideoFrameKey); EXPECT_EQ(0, adapter_->Encode(input_frame, &frame_types)); EXPECT_CALL(*original_encoders[0], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*new_encoders[1], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*new_encoders[2], Release()) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_EQ(0, adapter_->Release()); } TEST_F(TestSimulcastEncoderAdapterFake, DoesNotLeakEncoders) { SetupCodec(); VerifyCodecSettings(); EXPECT_EQ(3u, helper_->factory()->encoders().size()); // The adapter should destroy all encoders it has allocated. Since // |helper_->factory()| is owned by |adapter_|, however, we need to rely on // lsan to find leaks here. EXPECT_EQ(0, adapter_->Release()); adapter_.reset(); } // This test verifies that an adapter reinit with the same codec settings as // before does not change the underlying encoder codec settings. TEST_F(TestSimulcastEncoderAdapterFake, ReinitDoesNotReorderEncoderSettings) { SetupCodec(); VerifyCodecSettings(); // Capture current codec settings. std::vector encoders = helper_->factory()->encoders(); ASSERT_EQ(3u, encoders.size()); std::array codecs_before; for (int i = 0; i < 3; ++i) { codecs_before[i] = encoders[i]->codec(); } // Reinitialize and verify that the new codec settings are the same. EXPECT_EQ(0, adapter_->Release()); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); for (int i = 0; i < 3; ++i) { const VideoCodec& codec_before = codecs_before[i]; const VideoCodec& codec_after = encoders[i]->codec(); // webrtc::VideoCodec does not implement operator==. EXPECT_EQ(codec_before.codecType, codec_after.codecType); EXPECT_EQ(codec_before.plType, codec_after.plType); EXPECT_EQ(codec_before.width, codec_after.width); EXPECT_EQ(codec_before.height, codec_after.height); EXPECT_EQ(codec_before.startBitrate, codec_after.startBitrate); EXPECT_EQ(codec_before.maxBitrate, codec_after.maxBitrate); EXPECT_EQ(codec_before.minBitrate, codec_after.minBitrate); EXPECT_EQ(codec_before.maxFramerate, codec_after.maxFramerate); EXPECT_EQ(codec_before.qpMax, codec_after.qpMax); EXPECT_EQ(codec_before.numberOfSimulcastStreams, codec_after.numberOfSimulcastStreams); EXPECT_EQ(codec_before.mode, codec_after.mode); EXPECT_EQ(codec_before.expect_encode_from_texture, codec_after.expect_encode_from_texture); } } // This test is similar to the one above, except that it tests the simulcastIdx // from the CodecSpecificInfo that is connected to an encoded frame. The // PayloadRouter demuxes the incoming encoded frames on different RTP modules // using the simulcastIdx, so it's important that there is no corresponding // encoder reordering in between adapter reinits as this would lead to PictureID // discontinuities. TEST_F(TestSimulcastEncoderAdapterFake, ReinitDoesNotReorderFrameSimulcastIdx) { SetupCodec(); adapter_->SetRateAllocation(rate_allocator_->GetAllocation(1200, 30), 30); VerifyCodecSettings(); // Send frames on all streams. std::vector encoders = helper_->factory()->encoders(); ASSERT_EQ(3u, encoders.size()); encoders[0]->SendEncodedImage(1152, 704); int width; int height; int simulcast_index; EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(0, simulcast_index); encoders[1]->SendEncodedImage(300, 620); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(1, simulcast_index); encoders[2]->SendEncodedImage(120, 240); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(2, simulcast_index); // Reinitialize. EXPECT_EQ(0, adapter_->Release()); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->SetRateAllocation(rate_allocator_->GetAllocation(1200, 30), 30); // Verify that the same encoder sends out frames on the same simulcast index. encoders[0]->SendEncodedImage(1152, 704); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(0, simulcast_index); encoders[1]->SendEncodedImage(300, 620); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(1, simulcast_index); encoders[2]->SendEncodedImage(120, 240); EXPECT_TRUE(GetLastEncodedImageInfo(&width, &height, &simulcast_index)); EXPECT_EQ(2, simulcast_index); } TEST_F(TestSimulcastEncoderAdapterFake, SupportsNativeHandleForSingleStreams) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 1; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->RegisterEncodeCompleteCallback(this); ASSERT_EQ(1u, helper_->factory()->encoders().size()); helper_->factory()->encoders()[0]->set_supports_native_handle(true); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(adapter_->GetEncoderInfo().supports_native_handle); helper_->factory()->encoders()[0]->set_supports_native_handle(false); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_FALSE(adapter_->GetEncoderInfo().supports_native_handle); } TEST_F(TestSimulcastEncoderAdapterFake, SetRatesUnderMinBitrate) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.minBitrate = 50; codec_.numberOfSimulcastStreams = 1; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); rate_allocator_.reset(new SimulcastRateAllocator(codec_)); // Above min should be respected. VideoBitrateAllocation target_bitrate = rate_allocator_->GetAllocation(codec_.minBitrate * 1000, 30); adapter_->SetRateAllocation(target_bitrate, 30); EXPECT_EQ(target_bitrate, helper_->factory()->encoders()[0]->last_set_bitrate()); // Below min but non-zero should be replaced with the min bitrate. VideoBitrateAllocation too_low_bitrate = rate_allocator_->GetAllocation((codec_.minBitrate - 1) * 1000, 30); adapter_->SetRateAllocation(too_low_bitrate, 30); EXPECT_EQ(target_bitrate, helper_->factory()->encoders()[0]->last_set_bitrate()); // Zero should be passed on as is, since it means "pause". adapter_->SetRateAllocation(VideoBitrateAllocation(), 30); EXPECT_EQ(VideoBitrateAllocation(), helper_->factory()->encoders()[0]->last_set_bitrate()); } TEST_F(TestSimulcastEncoderAdapterFake, SupportsImplementationName) { EXPECT_EQ("SimulcastEncoderAdapter", adapter_->GetEncoderInfo().implementation_name); SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); std::vector encoder_names; encoder_names.push_back("codec1"); encoder_names.push_back("codec2"); encoder_names.push_back("codec3"); helper_->factory()->SetEncoderNames(encoder_names); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ("SimulcastEncoderAdapter (codec1, codec2, codec3)", adapter_->GetEncoderInfo().implementation_name); // Single streams should not expose "SimulcastEncoderAdapter" in name. EXPECT_EQ(0, adapter_->Release()); codec_.numberOfSimulcastStreams = 1; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->RegisterEncodeCompleteCallback(this); ASSERT_EQ(1u, helper_->factory()->encoders().size()); EXPECT_EQ("codec1", adapter_->GetEncoderInfo().implementation_name); } TEST_F(TestSimulcastEncoderAdapterFake, SupportsNativeHandleForMultipleStreams) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->RegisterEncodeCompleteCallback(this); ASSERT_EQ(3u, helper_->factory()->encoders().size()); for (MockVideoEncoder* encoder : helper_->factory()->encoders()) encoder->set_supports_native_handle(true); // If one encoder doesn't support it, then overall support is disabled. helper_->factory()->encoders()[0]->set_supports_native_handle(false); EXPECT_FALSE(adapter_->GetEncoderInfo().supports_native_handle); // Once all do, then the adapter claims support. helper_->factory()->encoders()[0]->set_supports_native_handle(true); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(adapter_->GetEncoderInfo().supports_native_handle); } // TODO(nisse): Reuse definition in webrtc/test/fake_texture_handle.h. class FakeNativeBufferNoI420 : public VideoFrameBuffer { public: FakeNativeBufferNoI420(int width, int height) : width_(width), height_(height) {} Type type() const override { return Type::kNative; } int width() const override { return width_; } int height() const override { return height_; } rtc::scoped_refptr ToI420() override { RTC_NOTREACHED(); return nullptr; } private: const int width_; const int height_; }; TEST_F(TestSimulcastEncoderAdapterFake, NativeHandleForwardingForMultipleStreams) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; // High start bitrate, so all streams are enabled. codec_.startBitrate = 3000; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->RegisterEncodeCompleteCallback(this); ASSERT_EQ(3u, helper_->factory()->encoders().size()); for (MockVideoEncoder* encoder : helper_->factory()->encoders()) encoder->set_supports_native_handle(true); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(adapter_->GetEncoderInfo().supports_native_handle); rtc::scoped_refptr buffer( new rtc::RefCountedObject(1280, 720)); VideoFrame input_frame = VideoFrame::Builder() .set_video_frame_buffer(buffer) .set_timestamp_rtp(100) .set_timestamp_ms(1000) .set_rotation(kVideoRotation_180) .build(); // Expect calls with the given video frame verbatim, since it's a texture // frame and can't otherwise be modified/resized. for (MockVideoEncoder* encoder : helper_->factory()->encoders()) EXPECT_CALL(*encoder, Encode(::testing::Ref(input_frame), _)).Times(1); std::vector frame_types(3, VideoFrameType::kVideoFrameKey); EXPECT_EQ(0, adapter_->Encode(input_frame, &frame_types)); } TEST_F(TestSimulcastEncoderAdapterFake, TestFailureReturnCodesFromEncodeCalls) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); adapter_->RegisterEncodeCompleteCallback(this); ASSERT_EQ(3u, helper_->factory()->encoders().size()); // Tell the 2nd encoder to request software fallback. EXPECT_CALL(*helper_->factory()->encoders()[1], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE)); // Send a fake frame and assert the return is software fallback. rtc::scoped_refptr input_buffer = I420Buffer::Create(kDefaultWidth, kDefaultHeight); input_buffer->InitializeData(); VideoFrame input_frame = VideoFrame::Builder() .set_video_frame_buffer(input_buffer) .set_timestamp_rtp(0) .set_timestamp_us(0) .set_rotation(kVideoRotation_0) .build(); std::vector frame_types(3, VideoFrameType::kVideoFrameKey); EXPECT_EQ(WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE, adapter_->Encode(input_frame, &frame_types)); } TEST_F(TestSimulcastEncoderAdapterFake, TestInitFailureCleansUpEncoders) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; helper_->factory()->set_init_encode_return_value( WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE); EXPECT_EQ(WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(helper_->factory()->encoders().empty()); } TEST_F(TestSimulcastEncoderAdapterFake, DoesNotAlterMaxQpForScreenshare) { const int kHighMaxQp = 56; const int kLowMaxQp = 46; SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; codec_.simulcastStream[0].qpMax = kHighMaxQp; codec_.mode = VideoCodecMode::kScreensharing; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(3u, helper_->factory()->encoders().size()); // Just check the lowest stream, which is the one that where the adapter // might alter the max qp setting. VideoCodec ref_codec; InitRefCodec(0, &ref_codec); ref_codec.qpMax = kHighMaxQp; ref_codec.VP8()->complexity = webrtc::VideoCodecComplexity::kComplexityHigher; ref_codec.VP8()->denoisingOn = false; ref_codec.startBitrate = 100; // Should equal to the target bitrate. VerifyCodec(ref_codec, 0); // Change the max qp and try again. codec_.simulcastStream[0].qpMax = kLowMaxQp; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(3u, helper_->factory()->encoders().size()); ref_codec.qpMax = kLowMaxQp; VerifyCodec(ref_codec, 0); } TEST_F(TestSimulcastEncoderAdapterFake, DoesNotAlterMaxQpForScreenshareReversedLayer) { const int kHighMaxQp = 56; const int kLowMaxQp = 46; SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8, true /* reverse_layer_order */); codec_.numberOfSimulcastStreams = 3; codec_.simulcastStream[2].qpMax = kHighMaxQp; codec_.mode = VideoCodecMode::kScreensharing; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(3u, helper_->factory()->encoders().size()); // Just check the lowest stream, which is the one that where the adapter // might alter the max qp setting. VideoCodec ref_codec; InitRefCodec(2, &ref_codec, true /* reverse_layer_order */); ref_codec.qpMax = kHighMaxQp; ref_codec.VP8()->complexity = webrtc::VideoCodecComplexity::kComplexityHigher; ref_codec.VP8()->denoisingOn = false; ref_codec.startBitrate = 100; // Should equal to the target bitrate. VerifyCodec(ref_codec, 2); // Change the max qp and try again. codec_.simulcastStream[2].qpMax = kLowMaxQp; EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(3u, helper_->factory()->encoders().size()); ref_codec.qpMax = kLowMaxQp; VerifyCodec(ref_codec, 2); } TEST_F(TestSimulcastEncoderAdapterFake, ActivatesCorrectStreamsInInitEncode) { // Set up common settings for three streams. SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); rate_allocator_.reset(new SimulcastRateAllocator(codec_)); adapter_->RegisterEncodeCompleteCallback(this); // Only enough start bitrate for the lowest stream. ASSERT_EQ(3u, codec_.numberOfSimulcastStreams); codec_.startBitrate = codec_.simulcastStream[0].targetBitrate + codec_.simulcastStream[1].minBitrate - 1; // Input data. rtc::scoped_refptr buffer(I420Buffer::Create(1280, 720)); VideoFrame input_frame = VideoFrame::Builder() .set_video_frame_buffer(buffer) .set_timestamp_rtp(100) .set_timestamp_ms(1000) .set_rotation(kVideoRotation_180) .build(); // Encode with three streams. EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); std::vector original_encoders = helper_->factory()->encoders(); ASSERT_EQ(3u, original_encoders.size()); // Only first encoder will be active and called. EXPECT_CALL(*original_encoders[0], Encode(_, _)) .WillOnce(Return(WEBRTC_VIDEO_CODEC_OK)); EXPECT_CALL(*original_encoders[1], Encode(_, _)).Times(0); EXPECT_CALL(*original_encoders[2], Encode(_, _)).Times(0); std::vector frame_types; frame_types.resize(3, VideoFrameType::kVideoFrameKey); EXPECT_EQ(0, adapter_->Encode(input_frame, &frame_types)); } TEST_F(TestSimulcastEncoderAdapterFake, TrustedRateControl) { // Set up common settings for three streams. SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); rate_allocator_.reset(new SimulcastRateAllocator(codec_)); adapter_->RegisterEncodeCompleteCallback(this); // Only enough start bitrate for the lowest stream. ASSERT_EQ(3u, codec_.numberOfSimulcastStreams); codec_.startBitrate = codec_.simulcastStream[0].targetBitrate + codec_.simulcastStream[1].minBitrate - 1; // Input data. rtc::scoped_refptr buffer(I420Buffer::Create(1280, 720)); VideoFrame input_frame = VideoFrame::Builder() .set_video_frame_buffer(buffer) .set_timestamp_rtp(100) .set_timestamp_ms(1000) .set_rotation(kVideoRotation_180) .build(); // No encoder trusted, so simulcast adapter should not be either. EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_FALSE(adapter_->GetEncoderInfo().has_trusted_rate_controller); // Encode with three streams. std::vector original_encoders = helper_->factory()->encoders(); // All encoders are trusted, so simulcast adapter should be too. original_encoders[0]->set_has_trusted_rate_controller(true); original_encoders[1]->set_has_trusted_rate_controller(true); original_encoders[2]->set_has_trusted_rate_controller(true); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(adapter_->GetEncoderInfo().has_trusted_rate_controller); // One encoder not trusted, so simulcast adapter should not be either. original_encoders[2]->set_has_trusted_rate_controller(false); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_FALSE(adapter_->GetEncoderInfo().has_trusted_rate_controller); // No encoder trusted, so simulcast adapter should not be either. original_encoders[0]->set_has_trusted_rate_controller(false); original_encoders[1]->set_has_trusted_rate_controller(false); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_FALSE(adapter_->GetEncoderInfo().has_trusted_rate_controller); } TEST_F(TestSimulcastEncoderAdapterFake, ReportsHardwareAccelerated) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; adapter_->RegisterEncodeCompleteCallback(this); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); ASSERT_EQ(3u, helper_->factory()->encoders().size()); // None of the encoders uses HW support, so simulcast adapter reports false. for (MockVideoEncoder* encoder : helper_->factory()->encoders()) { encoder->set_is_hardware_accelerated(false); } EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_FALSE(adapter_->GetEncoderInfo().is_hardware_accelerated); // One encoder uses HW support, so simulcast adapter reports true. helper_->factory()->encoders()[2]->set_is_hardware_accelerated(true); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(adapter_->GetEncoderInfo().is_hardware_accelerated); } TEST_F(TestSimulcastEncoderAdapterFake, ReportsInternalSource) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; adapter_->RegisterEncodeCompleteCallback(this); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); ASSERT_EQ(3u, helper_->factory()->encoders().size()); // All encoders have internal source, simulcast adapter reports true. for (MockVideoEncoder* encoder : helper_->factory()->encoders()) { encoder->set_has_internal_source(true); } EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_TRUE(adapter_->GetEncoderInfo().has_internal_source); // One encoder does not have internal source, simulcast adapter reports false. helper_->factory()->encoders()[2]->set_has_internal_source(false); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_FALSE(adapter_->GetEncoderInfo().has_internal_source); } TEST_F(TestSimulcastEncoderAdapterFake, ReportsFpsAllocation) { SimulcastTestFixtureImpl::DefaultSettings( &codec_, static_cast(kTestTemporalLayerProfile), kVideoCodecVP8); codec_.numberOfSimulcastStreams = 3; adapter_->RegisterEncodeCompleteCallback(this); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); ASSERT_EQ(3u, helper_->factory()->encoders().size()); // Combination of three different supported mode: // Simulcast stream 0 has undefined fps behavior. // Simulcast stream 1 has three temporal layers. // Simulcast stream 2 has 1 temporal layer. FramerateFractions expected_fps_allocation[kMaxSpatialLayers]; expected_fps_allocation[1].push_back(EncoderInfo::kMaxFramerateFraction / 4); expected_fps_allocation[1].push_back(EncoderInfo::kMaxFramerateFraction / 2); expected_fps_allocation[1].push_back(EncoderInfo::kMaxFramerateFraction); expected_fps_allocation[2].push_back(EncoderInfo::kMaxFramerateFraction); // All encoders have internal source, simulcast adapter reports true. for (size_t i = 0; i < codec_.numberOfSimulcastStreams; ++i) { MockVideoEncoder* encoder = helper_->factory()->encoders()[i]; encoder->set_fps_allocation(expected_fps_allocation[i]); } EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_THAT(adapter_->GetEncoderInfo().fps_allocation, ::testing::ElementsAreArray(expected_fps_allocation)); } } // namespace test } // namespace webrtc