/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/fec_test_helper.h" #include "modules/rtp_rtcp/source/forward_error_correction.h" #include "modules/rtp_rtcp/source/ulpfec_generator.h" #include "rtc_base/basictypes.h" #include "test/gtest.h" namespace webrtc { namespace { using test::fec::AugmentedPacket; using test::fec::AugmentedPacketGenerator; constexpr int kFecPayloadType = 96; constexpr int kRedPayloadType = 97; constexpr uint32_t kMediaSsrc = 835424; } // namespace void VerifyHeader(uint16_t seq_num, uint32_t timestamp, int red_payload_type, int fec_payload_type, RedPacket* packet, bool marker_bit) { EXPECT_GT(packet->length(), kRtpHeaderSize); EXPECT_TRUE(packet->data() != NULL); uint8_t* data = packet->data(); // Marker bit not set. EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80); EXPECT_EQ(red_payload_type, data[1] & 0x7F); EXPECT_EQ(seq_num, (data[2] << 8) + data[3]); uint32_t parsed_timestamp = (data[4] << 24) + (data[5] << 16) + (data[6] << 8) + data[7]; EXPECT_EQ(timestamp, parsed_timestamp); EXPECT_EQ(static_cast(fec_payload_type), data[kRtpHeaderSize]); } class UlpfecGeneratorTest : public ::testing::Test { protected: UlpfecGeneratorTest() : packet_generator_(kMediaSsrc) {} UlpfecGenerator ulpfec_generator_; AugmentedPacketGenerator packet_generator_; }; // Verifies bug found via fuzzing, where a gap in the packet sequence caused us // to move past the end of the current FEC packet mask byte without moving to // the next byte. That likely caused us to repeatedly read from the same byte, // and if that byte didn't protect packets we would generate empty FEC. TEST_F(UlpfecGeneratorTest, NoEmptyFecWithSeqNumGaps) { struct Packet { size_t header_size; size_t payload_size; uint16_t seq_num; bool marker_bit; }; std::vector protected_packets; protected_packets.push_back({15, 3, 41, 0}); protected_packets.push_back({14, 1, 43, 0}); protected_packets.push_back({19, 0, 48, 0}); protected_packets.push_back({19, 0, 50, 0}); protected_packets.push_back({14, 3, 51, 0}); protected_packets.push_back({13, 8, 52, 0}); protected_packets.push_back({19, 2, 53, 0}); protected_packets.push_back({12, 3, 54, 0}); protected_packets.push_back({21, 0, 55, 0}); protected_packets.push_back({13, 3, 57, 1}); FecProtectionParams params = {117, 3, kFecMaskBursty}; ulpfec_generator_.SetFecParameters(params); uint8_t packet[28] = {0}; for (Packet p : protected_packets) { if (p.marker_bit) { packet[1] |= 0x80; } else { packet[1] &= ~0x80; } ByteWriter::WriteBigEndian(&packet[2], p.seq_num); ulpfec_generator_.AddRtpPacketAndGenerateFec(packet, p.payload_size, p.header_size); size_t num_fec_packets = ulpfec_generator_.NumAvailableFecPackets(); if (num_fec_packets > 0) { std::vector> fec_packets = ulpfec_generator_.GetUlpfecPacketsAsRed( kRedPayloadType, kFecPayloadType, 100, p.header_size); EXPECT_EQ(num_fec_packets, fec_packets.size()); } } } TEST_F(UlpfecGeneratorTest, OneFrameFec) { // The number of media packets (|kNumPackets|), number of frames (one for // this test), and the protection factor (|params->fec_rate|) are set to make // sure the conditions for generating FEC are satisfied. This means: // (1) protection factor is high enough so that actual overhead over 1 frame // of packets is within |kMaxExcessOverhead|, and (2) the total number of // media packets for 1 frame is at least |minimum_media_packets_fec_|. constexpr size_t kNumPackets = 4; FecProtectionParams params = {15, 3, kFecMaskRandom}; packet_generator_.NewFrame(kNumPackets); ulpfec_generator_.SetFecParameters(params); // Expecting one FEC packet. uint32_t last_timestamp = 0; for (size_t i = 0; i < kNumPackets; ++i) { std::unique_ptr packet = packet_generator_.NextPacket(i, 10); EXPECT_EQ(0, ulpfec_generator_.AddRtpPacketAndGenerateFec( packet->data, packet->length, kRtpHeaderSize)); last_timestamp = packet->header.header.timestamp; } EXPECT_TRUE(ulpfec_generator_.FecAvailable()); uint16_t seq_num = packet_generator_.NextPacketSeqNum(); std::vector> red_packets = ulpfec_generator_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType, seq_num, kRtpHeaderSize); EXPECT_FALSE(ulpfec_generator_.FecAvailable()); ASSERT_EQ(1u, red_packets.size()); VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, red_packets.front().get(), false); } TEST_F(UlpfecGeneratorTest, TwoFrameFec) { // The number of media packets/frame (|kNumPackets|), the number of frames // (|kNumFrames|), and the protection factor (|params->fec_rate|) are set to // make sure the conditions for generating FEC are satisfied. This means: // (1) protection factor is high enough so that actual overhead over // |kNumFrames| is within |kMaxExcessOverhead|, and (2) the total number of // media packets for |kNumFrames| frames is at least // |minimum_media_packets_fec_|. constexpr size_t kNumPackets = 2; constexpr size_t kNumFrames = 2; FecProtectionParams params = {15, 3, kFecMaskRandom}; ulpfec_generator_.SetFecParameters(params); // Expecting one FEC packet. uint32_t last_timestamp = 0; for (size_t i = 0; i < kNumFrames; ++i) { packet_generator_.NewFrame(kNumPackets); for (size_t j = 0; j < kNumPackets; ++j) { std::unique_ptr packet = packet_generator_.NextPacket(i * kNumPackets + j, 10); EXPECT_EQ(0, ulpfec_generator_.AddRtpPacketAndGenerateFec( packet->data, packet->length, kRtpHeaderSize)); last_timestamp = packet->header.header.timestamp; } } EXPECT_TRUE(ulpfec_generator_.FecAvailable()); uint16_t seq_num = packet_generator_.NextPacketSeqNum(); std::vector> red_packets = ulpfec_generator_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType, seq_num, kRtpHeaderSize); EXPECT_FALSE(ulpfec_generator_.FecAvailable()); ASSERT_EQ(1u, red_packets.size()); VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, red_packets.front().get(), false); } TEST_F(UlpfecGeneratorTest, BuildRedPacket) { packet_generator_.NewFrame(1); std::unique_ptr packet = packet_generator_.NextPacket(0, 10); std::unique_ptr red_packet = UlpfecGenerator::BuildRedPacket( packet->data, packet->length - kRtpHeaderSize, kRtpHeaderSize, kRedPayloadType); EXPECT_EQ(packet->length + 1, red_packet->length()); VerifyHeader(packet->header.header.sequenceNumber, packet->header.header.timestamp, kRedPayloadType, packet->header.header.payloadType, red_packet.get(), true); // Marker bit set. for (int i = 0; i < 10; ++i) { EXPECT_EQ(i, red_packet->data()[kRtpHeaderSize + 1 + i]); } } TEST_F(UlpfecGeneratorTest, BuildRedPacketWithEmptyPayload) { constexpr size_t kNumFrames = 1; constexpr size_t kPayloadLength = 0; constexpr size_t kRedForFecHeaderLength = 1; packet_generator_.NewFrame(kNumFrames); std::unique_ptr packet( packet_generator_.NextPacket(0, kPayloadLength)); std::unique_ptr red_packet = UlpfecGenerator::BuildRedPacket( packet->data, packet->length - kRtpHeaderSize, kRtpHeaderSize, kRedPayloadType); EXPECT_EQ(packet->length + kRedForFecHeaderLength, red_packet->length()); VerifyHeader(packet->header.header.sequenceNumber, packet->header.header.timestamp, kRedPayloadType, packet->header.header.payloadType, red_packet.get(), true); // Marker bit set. } } // namespace webrtc