/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "api/array_view.h" #include "api/video/video_bitrate_allocation.h" #include "api/video/video_bitrate_allocator.h" #include "common_types.h" // NOLINT(build/include) #include "modules/rtp_rtcp/mocks/mock_rtcp_bandwidth_observer.h" #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/rtcp_packet.h" #include "modules/rtp_rtcp/source/rtcp_packet/app.h" #include "modules/rtp_rtcp/source/rtcp_packet/bye.h" #include "modules/rtp_rtcp/source/rtcp_packet/compound_packet.h" #include "modules/rtp_rtcp/source/rtcp_packet/extended_jitter_report.h" #include "modules/rtp_rtcp/source/rtcp_packet/extended_reports.h" #include "modules/rtp_rtcp/source/rtcp_packet/fir.h" #include "modules/rtp_rtcp/source/rtcp_packet/nack.h" #include "modules/rtp_rtcp/source/rtcp_packet/pli.h" #include "modules/rtp_rtcp/source/rtcp_packet/rapid_resync_request.h" #include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h" #include "modules/rtp_rtcp/source/rtcp_packet/remb.h" #include "modules/rtp_rtcp/source/rtcp_packet/sdes.h" #include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h" #include "modules/rtp_rtcp/source/rtcp_packet/tmmbr.h" #include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" #include "modules/rtp_rtcp/source/rtcp_receiver.h" #include "modules/rtp_rtcp/source/time_util.h" #include "rtc_base/arraysize.h" #include "rtc_base/random.h" #include "system_wrappers/include/ntp_time.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { namespace { using ::testing::_; using ::testing::AllOf; using ::testing::ElementsAreArray; using ::testing::Field; using ::testing::IsEmpty; using ::testing::NiceMock; using ::testing::Property; using ::testing::SizeIs; using ::testing::StrEq; using ::testing::StrictMock; using ::testing::UnorderedElementsAre; using rtcp::ReceiveTimeInfo; class MockRtcpPacketTypeCounterObserver : public RtcpPacketTypeCounterObserver { public: MOCK_METHOD2(RtcpPacketTypesCounterUpdated, void(uint32_t, const RtcpPacketTypeCounter&)); }; class MockRtcpIntraFrameObserver : public RtcpIntraFrameObserver { public: MOCK_METHOD1(OnReceivedIntraFrameRequest, void(uint32_t)); }; class MockRtcpCallbackImpl : public RtcpStatisticsCallback { public: MOCK_METHOD2(StatisticsUpdated, void(const RtcpStatistics&, uint32_t)); MOCK_METHOD2(CNameChanged, void(const char*, uint32_t)); }; class MockTransportFeedbackObserver : public TransportFeedbackObserver { public: MOCK_METHOD3(AddPacket, void(uint32_t, uint16_t, size_t)); MOCK_METHOD4(AddPacket, void(uint32_t, uint16_t, size_t, const PacedPacketInfo&)); MOCK_METHOD1(OnTransportFeedback, void(const rtcp::TransportFeedback&)); MOCK_CONST_METHOD0(GetTransportFeedbackVector, std::vector()); }; class MockModuleRtpRtcp : public RTCPReceiver::ModuleRtpRtcp { public: MOCK_METHOD1(SetTmmbn, void(std::vector)); MOCK_METHOD0(OnRequestSendReport, void()); MOCK_METHOD1(OnReceivedNack, void(const std::vector&)); MOCK_METHOD1(OnReceivedRtcpReportBlocks, void(const ReportBlockList&)); }; class MockVideoBitrateAllocationObserver : public VideoBitrateAllocationObserver { public: MOCK_METHOD1(OnBitrateAllocationUpdated, void(const VideoBitrateAllocation& allocation)); }; // SSRC of remote peer, that sends rtcp packet to the rtcp receiver under test. constexpr uint32_t kSenderSsrc = 0x10203; // SSRCs of local peer, that rtcp packet addressed to. constexpr uint32_t kReceiverMainSsrc = 0x123456; // RtcpReceiver can accept several ssrc, e.g. regular and rtx streams. constexpr uint32_t kReceiverExtraSsrc = 0x1234567; // SSRCs to ignore (i.e. not configured in RtcpReceiver). constexpr uint32_t kNotToUsSsrc = 0x654321; constexpr uint32_t kUnknownSenderSsrc = 0x54321; } // namespace class RtcpReceiverTest : public ::testing::Test { protected: RtcpReceiverTest() : system_clock_(1335900000), rtcp_receiver_(&system_clock_, false, &packet_type_counter_observer_, &bandwidth_observer_, &intra_frame_observer_, &transport_feedback_observer_, &bitrate_allocation_observer_, &rtp_rtcp_impl_) {} void SetUp() { std::set ssrcs = {kReceiverMainSsrc, kReceiverExtraSsrc}; rtcp_receiver_.SetSsrcs(kReceiverMainSsrc, ssrcs); rtcp_receiver_.SetRemoteSSRC(kSenderSsrc); } void InjectRtcpPacket(rtc::ArrayView raw) { rtcp_receiver_.IncomingPacket(raw.data(), raw.size()); } void InjectRtcpPacket(const rtcp::RtcpPacket& packet) { rtc::Buffer raw = packet.Build(); rtcp_receiver_.IncomingPacket(raw.data(), raw.size()); } SimulatedClock system_clock_; // Callbacks to packet_type_counter_observer are frequent but most of the time // are not interesting. NiceMock packet_type_counter_observer_; StrictMock bandwidth_observer_; StrictMock intra_frame_observer_; StrictMock transport_feedback_observer_; StrictMock bitrate_allocation_observer_; StrictMock rtp_rtcp_impl_; RTCPReceiver rtcp_receiver_; }; TEST_F(RtcpReceiverTest, BrokenPacketIsIgnored) { const uint8_t bad_packet[] = {0, 0, 0, 0}; EXPECT_CALL(packet_type_counter_observer_, RtcpPacketTypesCounterUpdated(_, _)) .Times(0); InjectRtcpPacket(bad_packet); } TEST_F(RtcpReceiverTest, InvalidFeedbackPacketIsIgnored) { // Too short feedback packet. const uint8_t bad_packet[] = {0x81, rtcp::Rtpfb::kPacketType, 0, 0}; // TODO(danilchap): Add expectation RtcpPacketTypesCounterUpdated // is not called once parser would be adjusted to avoid that callback on // semi-valid packets. InjectRtcpPacket(bad_packet); } TEST_F(RtcpReceiverTest, InjectSrPacket) { EXPECT_FALSE(rtcp_receiver_.NTP(nullptr, nullptr, nullptr, nullptr, nullptr)); int64_t now = system_clock_.TimeInMilliseconds(); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(IsEmpty())); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(IsEmpty(), _, now)); InjectRtcpPacket(sr); EXPECT_TRUE(rtcp_receiver_.NTP(nullptr, nullptr, nullptr, nullptr, nullptr)); } TEST_F(RtcpReceiverTest, InjectSrPacketFromUnknownSender) { int64_t now = system_clock_.TimeInMilliseconds(); rtcp::SenderReport sr; sr.SetSenderSsrc(kUnknownSenderSsrc); // The parser will handle report blocks in Sender Report from other than his // expected peer. EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, now)); InjectRtcpPacket(sr); // But will not flag that he's gotten sender information. EXPECT_FALSE(rtcp_receiver_.NTP(nullptr, nullptr, nullptr, nullptr, nullptr)); } TEST_F(RtcpReceiverTest, InjectSrPacketCalculatesRTT) { Random r(0x0123456789abcdef); const int64_t kRttMs = r.Rand(1, 9 * 3600 * 1000); const uint32_t kDelayNtp = r.Rand(0, 0x7fffffff); const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp); int64_t rtt_ms = 0; EXPECT_EQ( -1, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr)); uint32_t sent_ntp = CompactNtp(system_clock_.CurrentNtpTime()); system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); rtcp::ReportBlock block; block.SetMediaSsrc(kReceiverMainSsrc); block.SetLastSr(sent_ntp); block.SetDelayLastSr(kDelayNtp); sr.AddReportBlock(block); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(sr); EXPECT_EQ( 0, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr)); EXPECT_NEAR(kRttMs, rtt_ms, 1); } TEST_F(RtcpReceiverTest, InjectSrPacketCalculatesNegativeRTTAsOne) { Random r(0x0123456789abcdef); const int64_t kRttMs = r.Rand(-3600 * 1000, -1); const uint32_t kDelayNtp = r.Rand(0, 0x7fffffff); const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp); int64_t rtt_ms = 0; EXPECT_EQ( -1, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr)); uint32_t sent_ntp = CompactNtp(system_clock_.CurrentNtpTime()); system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); rtcp::ReportBlock block; block.SetMediaSsrc(kReceiverMainSsrc); block.SetLastSr(sent_ntp); block.SetDelayLastSr(kDelayNtp); sr.AddReportBlock(block); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(1), _, _)); InjectRtcpPacket(sr); EXPECT_EQ( 0, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr)); EXPECT_EQ(1, rtt_ms); } TEST_F( RtcpReceiverTest, TwoReportBlocksWithLastOneWithoutLastSrCalculatesRttForBandwidthObserver) { const int64_t kRttMs = 120; const uint32_t kDelayNtp = 123000; const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp); uint32_t sent_ntp = CompactNtp(system_clock_.CurrentNtpTime()); system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); rtcp::ReportBlock block; block.SetMediaSsrc(kReceiverMainSsrc); block.SetLastSr(sent_ntp); block.SetDelayLastSr(kDelayNtp); sr.AddReportBlock(block); block.SetMediaSsrc(kReceiverExtraSsrc); block.SetLastSr(0); sr.AddReportBlock(block); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(2))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(2), kRttMs, _)); InjectRtcpPacket(sr); } TEST_F(RtcpReceiverTest, InjectRrPacket) { int64_t now = system_clock_.TimeInMilliseconds(); rtcp::ReceiverReport rr; rr.SetSenderSsrc(kSenderSsrc); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(IsEmpty())); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(IsEmpty(), _, now)); InjectRtcpPacket(rr); std::vector report_blocks; rtcp_receiver_.StatisticsReceived(&report_blocks); EXPECT_TRUE(report_blocks.empty()); } TEST_F(RtcpReceiverTest, InjectRrPacketWithReportBlockNotToUsIgnored) { int64_t now = system_clock_.TimeInMilliseconds(); rtcp::ReportBlock rb; rb.SetMediaSsrc(kNotToUsSsrc); rtcp::ReceiverReport rr; rr.SetSenderSsrc(kSenderSsrc); rr.AddReportBlock(rb); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(IsEmpty())); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(IsEmpty(), _, now)); InjectRtcpPacket(rr); EXPECT_EQ(0, rtcp_receiver_.LastReceivedReportBlockMs()); std::vector received_blocks; rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_TRUE(received_blocks.empty()); } TEST_F(RtcpReceiverTest, InjectRrPacketWithOneReportBlock) { int64_t now = system_clock_.TimeInMilliseconds(); rtcp::ReportBlock rb; rb.SetMediaSsrc(kReceiverMainSsrc); rtcp::ReceiverReport rr; rr.SetSenderSsrc(kSenderSsrc); rr.AddReportBlock(rb); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(1), _, now)); InjectRtcpPacket(rr); EXPECT_EQ(now, rtcp_receiver_.LastReceivedReportBlockMs()); std::vector received_blocks; rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_EQ(1u, received_blocks.size()); } TEST_F(RtcpReceiverTest, InjectSrPacketWithOneReportBlock) { int64_t now = system_clock_.TimeInMilliseconds(); rtcp::ReportBlock rb; rb.SetMediaSsrc(kReceiverMainSsrc); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); sr.AddReportBlock(rb); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(1), _, now)); InjectRtcpPacket(sr); EXPECT_EQ(now, rtcp_receiver_.LastReceivedReportBlockMs()); std::vector received_blocks; rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_EQ(1u, received_blocks.size()); } TEST_F(RtcpReceiverTest, InjectRrPacketWithTwoReportBlocks) { const uint16_t kSequenceNumbers[] = {10, 12423}; const uint32_t kCumLost[] = {13, 555}; const uint8_t kFracLost[] = {20, 11}; int64_t now = system_clock_.TimeInMilliseconds(); rtcp::ReportBlock rb1; rb1.SetMediaSsrc(kReceiverMainSsrc); rb1.SetExtHighestSeqNum(kSequenceNumbers[0]); rb1.SetFractionLost(10); rtcp::ReportBlock rb2; rb2.SetMediaSsrc(kReceiverExtraSsrc); rb2.SetExtHighestSeqNum(kSequenceNumbers[1]); rb2.SetFractionLost(0); rtcp::ReceiverReport rr1; rr1.SetSenderSsrc(kSenderSsrc); rr1.AddReportBlock(rb1); rr1.AddReportBlock(rb2); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(2))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(2), _, now)); InjectRtcpPacket(rr1); EXPECT_EQ(now, rtcp_receiver_.LastReceivedReportBlockMs()); std::vector received_blocks; rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_THAT(received_blocks, UnorderedElementsAre(Field(&RTCPReportBlock::fraction_lost, 0), Field(&RTCPReportBlock::fraction_lost, 10))); // Insert next receiver report with same ssrc but new values. rtcp::ReportBlock rb3; rb3.SetMediaSsrc(kReceiverMainSsrc); rb3.SetExtHighestSeqNum(kSequenceNumbers[0]); rb3.SetFractionLost(kFracLost[0]); rb3.SetCumulativeLost(kCumLost[0]); rtcp::ReportBlock rb4; rb4.SetMediaSsrc(kReceiverExtraSsrc); rb4.SetExtHighestSeqNum(kSequenceNumbers[1]); rb4.SetFractionLost(kFracLost[1]); rb4.SetCumulativeLost(kCumLost[1]); rtcp::ReceiverReport rr2; rr2.SetSenderSsrc(kSenderSsrc); rr2.AddReportBlock(rb3); rr2.AddReportBlock(rb4); // Advance time to make 1st sent time and 2nd sent time different. system_clock_.AdvanceTimeMilliseconds(500); now = system_clock_.TimeInMilliseconds(); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(2))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(2), _, now)); InjectRtcpPacket(rr2); received_blocks.clear(); rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_EQ(2u, received_blocks.size()); EXPECT_THAT( received_blocks, UnorderedElementsAre( AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverMainSsrc), Field(&RTCPReportBlock::fraction_lost, kFracLost[0]), Field(&RTCPReportBlock::packets_lost, kCumLost[0]), Field(&RTCPReportBlock::extended_highest_sequence_number, kSequenceNumbers[0])), AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverExtraSsrc), Field(&RTCPReportBlock::fraction_lost, kFracLost[1]), Field(&RTCPReportBlock::packets_lost, kCumLost[1]), Field(&RTCPReportBlock::extended_highest_sequence_number, kSequenceNumbers[1])))); } TEST_F(RtcpReceiverTest, InjectRrPacketsFromTwoRemoteSsrcs) { const uint32_t kSenderSsrc2 = 0x20304; const uint16_t kSequenceNumbers[] = {10, 12423}; const int32_t kCumLost[] = {13, 555}; const uint8_t kFracLost[] = {20, 11}; rtcp::ReportBlock rb1; rb1.SetMediaSsrc(kReceiverMainSsrc); rb1.SetExtHighestSeqNum(kSequenceNumbers[0]); rb1.SetFractionLost(kFracLost[0]); rb1.SetCumulativeLost(kCumLost[0]); rtcp::ReceiverReport rr1; rr1.SetSenderSsrc(kSenderSsrc); rr1.AddReportBlock(rb1); int64_t now = system_clock_.TimeInMilliseconds(); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(1), _, now)); InjectRtcpPacket(rr1); EXPECT_EQ(now, rtcp_receiver_.LastReceivedReportBlockMs()); std::vector received_blocks; rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_EQ(1u, received_blocks.size()); EXPECT_EQ(kSenderSsrc, received_blocks[0].sender_ssrc); EXPECT_EQ(kReceiverMainSsrc, received_blocks[0].source_ssrc); EXPECT_EQ(kFracLost[0], received_blocks[0].fraction_lost); EXPECT_EQ(kCumLost[0], received_blocks[0].packets_lost); EXPECT_EQ(kSequenceNumbers[0], received_blocks[0].extended_highest_sequence_number); rtcp::ReportBlock rb2; rb2.SetMediaSsrc(kReceiverMainSsrc); rb2.SetExtHighestSeqNum(kSequenceNumbers[1]); rb2.SetFractionLost(kFracLost[1]); rb2.SetCumulativeLost(kCumLost[1]); rtcp::ReceiverReport rr2; rr2.SetSenderSsrc(kSenderSsrc2); rr2.AddReportBlock(rb2); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(SizeIs(1), _, now)); InjectRtcpPacket(rr2); received_blocks.clear(); rtcp_receiver_.StatisticsReceived(&received_blocks); ASSERT_EQ(2u, received_blocks.size()); EXPECT_THAT( received_blocks, UnorderedElementsAre( AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverMainSsrc), Field(&RTCPReportBlock::sender_ssrc, kSenderSsrc), Field(&RTCPReportBlock::fraction_lost, kFracLost[0]), Field(&RTCPReportBlock::packets_lost, kCumLost[0]), Field(&RTCPReportBlock::extended_highest_sequence_number, kSequenceNumbers[0])), AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverMainSsrc), Field(&RTCPReportBlock::sender_ssrc, kSenderSsrc2), Field(&RTCPReportBlock::fraction_lost, kFracLost[1]), Field(&RTCPReportBlock::packets_lost, kCumLost[1]), Field(&RTCPReportBlock::extended_highest_sequence_number, kSequenceNumbers[1])))); } TEST_F(RtcpReceiverTest, GetRtt) { const uint32_t kSentCompactNtp = 0x1234; const uint32_t kDelayCompactNtp = 0x222; // No report block received. EXPECT_EQ( -1, rtcp_receiver_.RTT(kSenderSsrc, nullptr, nullptr, nullptr, nullptr)); rtcp::ReportBlock rb; rb.SetMediaSsrc(kReceiverMainSsrc); rb.SetLastSr(kSentCompactNtp); rb.SetDelayLastSr(kDelayCompactNtp); rtcp::ReceiverReport rr; rr.SetSenderSsrc(kSenderSsrc); rr.AddReportBlock(rb); int64_t now = system_clock_.TimeInMilliseconds(); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr); EXPECT_EQ(now, rtcp_receiver_.LastReceivedReportBlockMs()); EXPECT_EQ( 0, rtcp_receiver_.RTT(kSenderSsrc, nullptr, nullptr, nullptr, nullptr)); } // Ij packets are ignored. TEST_F(RtcpReceiverTest, InjectIjWithNoItem) { rtcp::ExtendedJitterReport ij; InjectRtcpPacket(ij); } // App packets are ignored. TEST_F(RtcpReceiverTest, InjectApp) { rtcp::App app; app.SetSubType(30); app.SetName(0x17a177e); const uint8_t kData[] = {'t', 'e', 's', 't', 'd', 'a', 't', 'a'}; app.SetData(kData, sizeof(kData)); InjectRtcpPacket(app); } TEST_F(RtcpReceiverTest, InjectSdesWithOneChunk) { const char kCname[] = "alice@host"; MockRtcpCallbackImpl callback; rtcp_receiver_.RegisterRtcpStatisticsCallback(&callback); rtcp::Sdes sdes; sdes.AddCName(kSenderSsrc, kCname); EXPECT_CALL(callback, CNameChanged(StrEq(kCname), kSenderSsrc)); InjectRtcpPacket(sdes); char cName[RTCP_CNAME_SIZE]; EXPECT_EQ(0, rtcp_receiver_.CNAME(kSenderSsrc, cName)); EXPECT_EQ(0, strncmp(cName, kCname, RTCP_CNAME_SIZE)); } TEST_F(RtcpReceiverTest, InjectByePacket_RemovesCname) { const char kCname[] = "alice@host"; rtcp::Sdes sdes; sdes.AddCName(kSenderSsrc, kCname); InjectRtcpPacket(sdes); char cName[RTCP_CNAME_SIZE]; EXPECT_EQ(0, rtcp_receiver_.CNAME(kSenderSsrc, cName)); // Verify that BYE removes the CNAME. rtcp::Bye bye; bye.SetSenderSsrc(kSenderSsrc); InjectRtcpPacket(bye); EXPECT_EQ(-1, rtcp_receiver_.CNAME(kSenderSsrc, cName)); } TEST_F(RtcpReceiverTest, InjectByePacket_RemovesReportBlocks) { rtcp::ReportBlock rb1; rb1.SetMediaSsrc(kReceiverMainSsrc); rtcp::ReportBlock rb2; rb2.SetMediaSsrc(kReceiverExtraSsrc); rtcp::ReceiverReport rr; rr.SetSenderSsrc(kSenderSsrc); rr.AddReportBlock(rb1); rr.AddReportBlock(rb2); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr); std::vector received_blocks; rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_EQ(2u, received_blocks.size()); // Verify that BYE removes the report blocks. rtcp::Bye bye; bye.SetSenderSsrc(kSenderSsrc); InjectRtcpPacket(bye); received_blocks.clear(); rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_TRUE(received_blocks.empty()); // Inject packet again. EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr); received_blocks.clear(); rtcp_receiver_.StatisticsReceived(&received_blocks); EXPECT_EQ(2u, received_blocks.size()); } TEST_F(RtcpReceiverTest, InjectByePacketRemovesReferenceTimeInfo) { rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); rtcp::Rrtr rrtr; rrtr.SetNtp(NtpTime(0x10203, 0x40506)); xr.SetRrtr(rrtr); InjectRtcpPacket(xr); rtcp::Bye bye; bye.SetSenderSsrc(kSenderSsrc); InjectRtcpPacket(bye); EXPECT_THAT(rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(), IsEmpty()); } TEST_F(RtcpReceiverTest, InjectPliPacket) { rtcp::Pli pli; pli.SetMediaSsrc(kReceiverMainSsrc); EXPECT_CALL( packet_type_counter_observer_, RtcpPacketTypesCounterUpdated( kReceiverMainSsrc, Field(&RtcpPacketTypeCounter::pli_packets, 1))); EXPECT_CALL(intra_frame_observer_, OnReceivedIntraFrameRequest(kReceiverMainSsrc)); InjectRtcpPacket(pli); } TEST_F(RtcpReceiverTest, PliPacketNotToUsIgnored) { rtcp::Pli pli; pli.SetMediaSsrc(kNotToUsSsrc); EXPECT_CALL( packet_type_counter_observer_, RtcpPacketTypesCounterUpdated( kReceiverMainSsrc, Field(&RtcpPacketTypeCounter::pli_packets, 0))); EXPECT_CALL(intra_frame_observer_, OnReceivedIntraFrameRequest(_)).Times(0); InjectRtcpPacket(pli); } TEST_F(RtcpReceiverTest, InjectFirPacket) { rtcp::Fir fir; fir.AddRequestTo(kReceiverMainSsrc, 13); EXPECT_CALL( packet_type_counter_observer_, RtcpPacketTypesCounterUpdated( kReceiverMainSsrc, Field(&RtcpPacketTypeCounter::fir_packets, 1))); EXPECT_CALL(intra_frame_observer_, OnReceivedIntraFrameRequest(kReceiverMainSsrc)); InjectRtcpPacket(fir); } TEST_F(RtcpReceiverTest, FirPacketNotToUsIgnored) { rtcp::Fir fir; fir.AddRequestTo(kNotToUsSsrc, 13); EXPECT_CALL(intra_frame_observer_, OnReceivedIntraFrameRequest(_)).Times(0); InjectRtcpPacket(fir); } TEST_F(RtcpReceiverTest, ExtendedReportsPacketWithZeroReportBlocksIgnored) { rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); InjectRtcpPacket(xr); } // VOiP reports are ignored. TEST_F(RtcpReceiverTest, InjectExtendedReportsVoipPacket) { const uint8_t kLossRate = 123; rtcp::VoipMetric voip_metric; voip_metric.SetMediaSsrc(kReceiverMainSsrc); RTCPVoIPMetric metric; metric.lossRate = kLossRate; voip_metric.SetVoipMetric(metric); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.SetVoipMetric(voip_metric); InjectRtcpPacket(xr); } TEST_F(RtcpReceiverTest, ExtendedReportsVoipPacketNotToUsIgnored) { rtcp::VoipMetric voip_metric; voip_metric.SetMediaSsrc(kNotToUsSsrc); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.SetVoipMetric(voip_metric); InjectRtcpPacket(xr); } TEST_F(RtcpReceiverTest, InjectExtendedReportsReceiverReferenceTimePacket) { const NtpTime kNtp(0x10203, 0x40506); rtcp::Rrtr rrtr; rrtr.SetNtp(kNtp); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.SetRrtr(rrtr); std::vector last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); EXPECT_THAT(last_xr_rtis, IsEmpty()); InjectRtcpPacket(xr); last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); ASSERT_THAT(last_xr_rtis, SizeIs(1)); EXPECT_EQ(kSenderSsrc, last_xr_rtis[0].ssrc); EXPECT_EQ(CompactNtp(kNtp), last_xr_rtis[0].last_rr); EXPECT_EQ(0U, last_xr_rtis[0].delay_since_last_rr); } TEST_F(RtcpReceiverTest, ExtendedReportsDlrrPacketNotToUsIgnored) { // Allow calculate rtt using dlrr/rrtr, simulating media receiver side. rtcp_receiver_.SetRtcpXrRrtrStatus(true); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.AddDlrrItem(ReceiveTimeInfo(kNotToUsSsrc, 0x12345, 0x67890)); InjectRtcpPacket(xr); int64_t rtt_ms = 0; EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); } TEST_F(RtcpReceiverTest, InjectExtendedReportsDlrrPacketWithSubBlock) { const uint32_t kLastRR = 0x12345; const uint32_t kDelay = 0x23456; rtcp_receiver_.SetRtcpXrRrtrStatus(true); int64_t rtt_ms = 0; EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, kLastRR, kDelay)); InjectRtcpPacket(xr); uint32_t compact_ntp_now = CompactNtp(system_clock_.CurrentNtpTime()); EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); uint32_t rtt_ntp = compact_ntp_now - kDelay - kLastRR; EXPECT_NEAR(CompactNtpRttToMs(rtt_ntp), rtt_ms, 1); } TEST_F(RtcpReceiverTest, InjectExtendedReportsDlrrPacketWithMultipleSubBlocks) { const uint32_t kLastRR = 0x12345; const uint32_t kDelay = 0x56789; rtcp_receiver_.SetRtcpXrRrtrStatus(true); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, kLastRR, kDelay)); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc + 1, 0x12345, 0x67890)); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc + 2, 0x12345, 0x67890)); InjectRtcpPacket(xr); uint32_t compact_ntp_now = CompactNtp(system_clock_.CurrentNtpTime()); int64_t rtt_ms = 0; EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); uint32_t rtt_ntp = compact_ntp_now - kDelay - kLastRR; EXPECT_NEAR(CompactNtpRttToMs(rtt_ntp), rtt_ms, 1); } TEST_F(RtcpReceiverTest, InjectExtendedReportsPacketWithMultipleReportBlocks) { rtcp_receiver_.SetRtcpXrRrtrStatus(true); rtcp::Rrtr rrtr; rtcp::VoipMetric metric; metric.SetMediaSsrc(kReceiverMainSsrc); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.SetRrtr(rrtr); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, 0x12345, 0x67890)); xr.SetVoipMetric(metric); InjectRtcpPacket(xr); std::vector last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); EXPECT_THAT(last_xr_rtis, SizeIs(1)); int64_t rtt_ms = 0; EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); } TEST_F(RtcpReceiverTest, InjectExtendedReportsPacketWithUnknownReportBlock) { rtcp_receiver_.SetRtcpXrRrtrStatus(true); rtcp::Rrtr rrtr; rtcp::VoipMetric metric; metric.SetMediaSsrc(kReceiverMainSsrc); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.SetRrtr(rrtr); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, 0x12345, 0x67890)); xr.SetVoipMetric(metric); rtc::Buffer packet = xr.Build(); // Modify the DLRR block to have an unsupported block type, from 5 to 6. ASSERT_EQ(5, packet.data()[20]); packet.data()[20] = 6; InjectRtcpPacket(packet); // Validate Rrtr was received and processed. std::vector last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); EXPECT_THAT(last_xr_rtis, SizeIs(1)); // Validate Dlrr report wasn't processed. int64_t rtt_ms = 0; EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); } TEST_F(RtcpReceiverTest, TestExtendedReportsRrRttInitiallyFalse) { rtcp_receiver_.SetRtcpXrRrtrStatus(true); int64_t rtt_ms; EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); } TEST_F(RtcpReceiverTest, RttCalculatedAfterExtendedReportsDlrr) { Random rand(0x0123456789abcdef); const int64_t kRttMs = rand.Rand(1, 9 * 3600 * 1000); const uint32_t kDelayNtp = rand.Rand(0, 0x7fffffff); const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp); rtcp_receiver_.SetRtcpXrRrtrStatus(true); NtpTime now = system_clock_.CurrentNtpTime(); uint32_t sent_ntp = CompactNtp(now); system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, sent_ntp, kDelayNtp)); InjectRtcpPacket(xr); int64_t rtt_ms = 0; EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); EXPECT_NEAR(kRttMs, rtt_ms, 1); } TEST_F(RtcpReceiverTest, XrDlrrCalculatesNegativeRttAsOne) { Random rand(0x0123456789abcdef); const int64_t kRttMs = rand.Rand(-3600 * 1000, -1); const uint32_t kDelayNtp = rand.Rand(0, 0x7fffffff); const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp); NtpTime now = system_clock_.CurrentNtpTime(); uint32_t sent_ntp = CompactNtp(now); system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs); rtcp_receiver_.SetRtcpXrRrtrStatus(true); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, sent_ntp, kDelayNtp)); InjectRtcpPacket(xr); int64_t rtt_ms = 0; EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)); EXPECT_EQ(1, rtt_ms); } TEST_F(RtcpReceiverTest, ConsumeReceivedXrReferenceTimeInfoInitiallyEmpty) { EXPECT_THAT(rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(), IsEmpty()); } TEST_F(RtcpReceiverTest, ConsumeReceivedXrReferenceTimeInfo) { const NtpTime kNtp(0x10203, 0x40506); const uint32_t kNtpMid = CompactNtp(kNtp); rtcp::Rrtr rrtr; rrtr.SetNtp(kNtp); rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); xr.SetRrtr(rrtr); InjectRtcpPacket(xr); system_clock_.AdvanceTimeMilliseconds(1000); std::vector last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); ASSERT_THAT(last_xr_rtis, SizeIs(1)); EXPECT_EQ(kSenderSsrc, last_xr_rtis[0].ssrc); EXPECT_EQ(kNtpMid, last_xr_rtis[0].last_rr); EXPECT_EQ(65536U, last_xr_rtis[0].delay_since_last_rr); } TEST_F(RtcpReceiverTest, ReceivedRrtrFromSameSsrcUpdatesReceivedReferenceTimeInfo) { const NtpTime kNtp1(0x10203, 0x40506); const NtpTime kNtp2(0x11223, 0x44556); const int64_t kDelayMs = 2000; rtcp::ExtendedReports xr; xr.SetSenderSsrc(kSenderSsrc); rtcp::Rrtr rrtr1; rrtr1.SetNtp(kNtp1); xr.SetRrtr(rrtr1); InjectRtcpPacket(xr); system_clock_.AdvanceTimeMilliseconds(kDelayMs); rtcp::Rrtr rrtr2; rrtr2.SetNtp(kNtp2); xr.SetRrtr(rrtr2); InjectRtcpPacket(xr); system_clock_.AdvanceTimeMilliseconds(kDelayMs); std::vector last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); ASSERT_THAT(last_xr_rtis, SizeIs(1)); EXPECT_EQ(kSenderSsrc, last_xr_rtis[0].ssrc); EXPECT_EQ(CompactNtp(kNtp2), last_xr_rtis[0].last_rr); EXPECT_EQ(kDelayMs * 65536 / 1000, last_xr_rtis[0].delay_since_last_rr); } TEST_F(RtcpReceiverTest, StoresLastReceivedRrtrPerSsrc) { const size_t kNumBufferedReports = 1; const size_t kNumReports = rtcp::ExtendedReports::kMaxNumberOfDlrrItems + kNumBufferedReports; for (size_t i = 0; i < kNumReports; ++i) { rtcp::ExtendedReports xr; xr.SetSenderSsrc(i * 100); rtcp::Rrtr rrtr; rrtr.SetNtp(NtpTime(i * 200, i * 300)); xr.SetRrtr(rrtr); InjectRtcpPacket(xr); system_clock_.AdvanceTimeMilliseconds(1000); } std::vector last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); ASSERT_THAT(last_xr_rtis, SizeIs(rtcp::ExtendedReports::kMaxNumberOfDlrrItems)); for (size_t i = 0; i < rtcp::ExtendedReports::kMaxNumberOfDlrrItems; ++i) { EXPECT_EQ(i * 100, last_xr_rtis[i].ssrc); EXPECT_EQ(CompactNtp(NtpTime(i * 200, i * 300)), last_xr_rtis[i].last_rr); EXPECT_EQ(65536U * (kNumReports - i), last_xr_rtis[i].delay_since_last_rr); } last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo(); ASSERT_THAT(last_xr_rtis, SizeIs(kNumBufferedReports)); } TEST_F(RtcpReceiverTest, ReceiveReportTimeout) { const int64_t kRtcpIntervalMs = 1000; const uint16_t kSequenceNumber = 1234; system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs); // No RR received, shouldn't trigger a timeout. EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs)); // Add a RR and advance the clock just enough to not trigger a timeout. rtcp::ReportBlock rb1; rb1.SetMediaSsrc(kReceiverMainSsrc); rb1.SetExtHighestSeqNum(kSequenceNumber); rtcp::ReceiverReport rr1; rr1.SetSenderSsrc(kSenderSsrc); rr1.AddReportBlock(rb1); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr1); system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs - 1); EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs)); // Add a RR with the same extended max as the previous RR to trigger a // sequence number timeout, but not a RR timeout. EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr1); system_clock_.AdvanceTimeMilliseconds(2); EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); EXPECT_TRUE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs)); // Advance clock enough to trigger an RR timeout too. system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs); EXPECT_TRUE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); // We should only get one timeout even though we still haven't received a new // RR. EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs)); // Add a new RR with increase sequence number to reset timers. rtcp::ReportBlock rb2; rb2.SetMediaSsrc(kReceiverMainSsrc); rb2.SetExtHighestSeqNum(kSequenceNumber + 1); rtcp::ReceiverReport rr2; rr2.SetSenderSsrc(kSenderSsrc); rr2.AddReportBlock(rb2); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr2); EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs)); // Verify we can get a timeout again once we've received new RR. system_clock_.AdvanceTimeMilliseconds(2 * kRtcpIntervalMs); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr2); system_clock_.AdvanceTimeMilliseconds(kRtcpIntervalMs + 1); EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); EXPECT_TRUE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs)); system_clock_.AdvanceTimeMilliseconds(2 * kRtcpIntervalMs); EXPECT_TRUE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs)); } TEST_F(RtcpReceiverTest, TmmbrReceivedWithNoIncomingPacket) { EXPECT_EQ(0u, rtcp_receiver_.TmmbrReceived().size()); } TEST_F(RtcpReceiverTest, TmmbrPacketAccepted) { const uint32_t kBitrateBps = 30000; rtcp::Tmmbr tmmbr; tmmbr.SetSenderSsrc(kSenderSsrc); tmmbr.AddTmmbr(rtcp::TmmbItem(kReceiverMainSsrc, kBitrateBps, 0)); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); rtcp::CompoundPacket compound; compound.Append(&sr); compound.Append(&tmmbr); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(rtp_rtcp_impl_, SetTmmbn(SizeIs(1))); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(kBitrateBps)); InjectRtcpPacket(compound); std::vector tmmbr_received = rtcp_receiver_.TmmbrReceived(); ASSERT_EQ(1u, tmmbr_received.size()); EXPECT_EQ(kBitrateBps, tmmbr_received[0].bitrate_bps()); EXPECT_EQ(kSenderSsrc, tmmbr_received[0].ssrc()); } TEST_F(RtcpReceiverTest, TmmbrPacketNotForUsIgnored) { const uint32_t kBitrateBps = 30000; rtcp::Tmmbr tmmbr; tmmbr.SetSenderSsrc(kSenderSsrc); tmmbr.AddTmmbr(rtcp::TmmbItem(kNotToUsSsrc, kBitrateBps, 0)); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); rtcp::CompoundPacket compound; compound.Append(&sr); compound.Append(&tmmbr); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(_)).Times(0); InjectRtcpPacket(compound); EXPECT_EQ(0u, rtcp_receiver_.TmmbrReceived().size()); } TEST_F(RtcpReceiverTest, TmmbrPacketZeroRateIgnored) { rtcp::Tmmbr tmmbr; tmmbr.SetSenderSsrc(kSenderSsrc); tmmbr.AddTmmbr(rtcp::TmmbItem(kReceiverMainSsrc, 0, 0)); rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); rtcp::CompoundPacket compound; compound.Append(&sr); compound.Append(&tmmbr); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(_)).Times(0); InjectRtcpPacket(compound); EXPECT_EQ(0u, rtcp_receiver_.TmmbrReceived().size()); } TEST_F(RtcpReceiverTest, TmmbrThreeConstraintsTimeOut) { // Inject 3 packets "from" kSenderSsrc, kSenderSsrc+1, kSenderSsrc+2. // The times of arrival are starttime + 0, starttime + 5 and starttime + 10. for (uint32_t ssrc = kSenderSsrc; ssrc < kSenderSsrc + 3; ++ssrc) { rtcp::Tmmbr tmmbr; tmmbr.SetSenderSsrc(ssrc); tmmbr.AddTmmbr(rtcp::TmmbItem(kReceiverMainSsrc, 30000, 0)); rtcp::SenderReport sr; sr.SetSenderSsrc(ssrc); rtcp::CompoundPacket compound; compound.Append(&sr); compound.Append(&tmmbr); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(rtp_rtcp_impl_, SetTmmbn(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(_)); InjectRtcpPacket(compound); // 5 seconds between each packet. system_clock_.AdvanceTimeMilliseconds(5000); } // It is now starttime + 15. std::vector candidate_set = rtcp_receiver_.TmmbrReceived(); ASSERT_EQ(3u, candidate_set.size()); EXPECT_EQ(30000U, candidate_set[0].bitrate_bps()); // We expect the timeout to be 25 seconds. Advance the clock by 12 // seconds, timing out the first packet. system_clock_.AdvanceTimeMilliseconds(12000); candidate_set = rtcp_receiver_.TmmbrReceived(); ASSERT_EQ(2u, candidate_set.size()); EXPECT_EQ(kSenderSsrc + 1, candidate_set[0].ssrc()); } TEST_F(RtcpReceiverTest, Callbacks) { MockRtcpCallbackImpl callback; rtcp_receiver_.RegisterRtcpStatisticsCallback(&callback); const uint8_t kFractionLoss = 3; const uint32_t kCumulativeLoss = 7; const uint32_t kJitter = 9; const uint16_t kSequenceNumber = 1234; // First packet, all numbers should just propagate. rtcp::ReportBlock rb1; rb1.SetMediaSsrc(kReceiverMainSsrc); rb1.SetExtHighestSeqNum(kSequenceNumber); rb1.SetFractionLost(kFractionLoss); rb1.SetCumulativeLost(kCumulativeLoss); rb1.SetJitter(kJitter); rtcp::ReceiverReport rr1; rr1.SetSenderSsrc(kSenderSsrc); rr1.AddReportBlock(rb1); EXPECT_CALL(callback, StatisticsUpdated( AllOf(Field(&RtcpStatistics::fraction_lost, kFractionLoss), Field(&RtcpStatistics::packets_lost, kCumulativeLoss), Field(&RtcpStatistics::extended_highest_sequence_number, kSequenceNumber), Field(&RtcpStatistics::jitter, kJitter)), kReceiverMainSsrc)); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); InjectRtcpPacket(rr1); rtcp_receiver_.RegisterRtcpStatisticsCallback(nullptr); // Add arbitrary numbers, callback should not be called. rtcp::ReportBlock rb2; rb2.SetMediaSsrc(kReceiverMainSsrc); rb2.SetExtHighestSeqNum(kSequenceNumber + 1); rb2.SetFractionLost(42); rb2.SetCumulativeLost(137); rb2.SetJitter(4711); rtcp::ReceiverReport rr2; rr2.SetSenderSsrc(kSenderSsrc); rr2.AddReportBlock(rb2); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_)); EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _)); EXPECT_CALL(callback, StatisticsUpdated(_, _)).Times(0); InjectRtcpPacket(rr2); } TEST_F(RtcpReceiverTest, ReceivesTransportFeedback) { rtcp::TransportFeedback packet; packet.SetMediaSsrc(kReceiverMainSsrc); packet.SetSenderSsrc(kSenderSsrc); packet.SetBase(1, 1000); packet.AddReceivedPacket(1, 1000); EXPECT_CALL( transport_feedback_observer_, OnTransportFeedback(AllOf( Property(&rtcp::TransportFeedback::media_ssrc, kReceiverMainSsrc), Property(&rtcp::TransportFeedback::sender_ssrc, kSenderSsrc)))); InjectRtcpPacket(packet); } TEST_F(RtcpReceiverTest, ReceivesRemb) { const uint32_t kBitrateBps = 500000; rtcp::Remb remb; remb.SetSenderSsrc(kSenderSsrc); remb.SetBitrateBps(kBitrateBps); EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(kBitrateBps)); InjectRtcpPacket(remb); } TEST_F(RtcpReceiverTest, HandlesInvalidTransportFeedback) { // Send a compound packet with a TransportFeedback followed by something else. rtcp::TransportFeedback packet; packet.SetMediaSsrc(kReceiverMainSsrc); packet.SetSenderSsrc(kSenderSsrc); packet.SetBase(1, 1000); packet.AddReceivedPacket(1, 1000); static uint32_t kBitrateBps = 50000; rtcp::Remb remb; remb.SetSenderSsrc(kSenderSsrc); remb.SetBitrateBps(kBitrateBps); rtcp::CompoundPacket compound; compound.Append(&packet); compound.Append(&remb); rtc::Buffer built_packet = compound.Build(); // Modify the TransportFeedback packet so that it is invalid. const size_t kStatusCountOffset = 14; ByteWriter::WriteBigEndian(&built_packet.data()[kStatusCountOffset], 42); // Stress no transport feedback is expected. EXPECT_CALL(transport_feedback_observer_, OnTransportFeedback(_)).Times(0); // But remb should be processed and cause a callback EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(kBitrateBps)); InjectRtcpPacket(built_packet); } TEST_F(RtcpReceiverTest, Nack) { const uint16_t kNackList1[] = {1, 2, 3, 5}; const uint16_t kNackList23[] = {5, 7, 30, 40, 41, 58, 59, 61, 63}; const size_t kNackListLength2 = 4; const size_t kNackListLength3 = arraysize(kNackList23) - kNackListLength2; std::set nack_set; nack_set.insert(std::begin(kNackList1), std::end(kNackList1)); nack_set.insert(std::begin(kNackList23), std::end(kNackList23)); rtcp::Nack nack1; nack1.SetSenderSsrc(kSenderSsrc); nack1.SetMediaSsrc(kReceiverMainSsrc); nack1.SetPacketIds(kNackList1, arraysize(kNackList1)); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedNack(ElementsAreArray(kNackList1))); EXPECT_CALL(packet_type_counter_observer_, RtcpPacketTypesCounterUpdated( kReceiverMainSsrc, AllOf(Field(&RtcpPacketTypeCounter::nack_requests, arraysize(kNackList1)), Field(&RtcpPacketTypeCounter::unique_nack_requests, arraysize(kNackList1))))); InjectRtcpPacket(nack1); rtcp::Nack nack2; nack2.SetSenderSsrc(kSenderSsrc); nack2.SetMediaSsrc(kReceiverMainSsrc); nack2.SetPacketIds(kNackList23, kNackListLength2); rtcp::Nack nack3; nack3.SetSenderSsrc(kSenderSsrc); nack3.SetMediaSsrc(kReceiverMainSsrc); nack3.SetPacketIds(kNackList23 + kNackListLength2, kNackListLength3); rtcp::CompoundPacket two_nacks; two_nacks.Append(&nack2); two_nacks.Append(&nack3); EXPECT_CALL(rtp_rtcp_impl_, OnReceivedNack(ElementsAreArray(kNackList23))); EXPECT_CALL(packet_type_counter_observer_, RtcpPacketTypesCounterUpdated( kReceiverMainSsrc, AllOf(Field(&RtcpPacketTypeCounter::nack_requests, arraysize(kNackList1) + arraysize(kNackList23)), Field(&RtcpPacketTypeCounter::unique_nack_requests, nack_set.size())))); InjectRtcpPacket(two_nacks); } TEST_F(RtcpReceiverTest, NackNotForUsIgnored) { const uint16_t kNackList1[] = {1, 2, 3, 5}; const size_t kNackListLength1 = std::end(kNackList1) - std::begin(kNackList1); rtcp::Nack nack; nack.SetSenderSsrc(kSenderSsrc); nack.SetMediaSsrc(kNotToUsSsrc); nack.SetPacketIds(kNackList1, kNackListLength1); EXPECT_CALL(packet_type_counter_observer_, RtcpPacketTypesCounterUpdated( _, Field(&RtcpPacketTypeCounter::nack_requests, 0))); InjectRtcpPacket(nack); } TEST_F(RtcpReceiverTest, ForceSenderReport) { rtcp::RapidResyncRequest rr; rr.SetSenderSsrc(kSenderSsrc); rr.SetMediaSsrc(kReceiverMainSsrc); EXPECT_CALL(rtp_rtcp_impl_, OnRequestSendReport()); InjectRtcpPacket(rr); } TEST_F(RtcpReceiverTest, ReceivesTargetBitrate) { VideoBitrateAllocation expected_allocation; expected_allocation.SetBitrate(0, 0, 10000); expected_allocation.SetBitrate(0, 1, 20000); expected_allocation.SetBitrate(1, 0, 40000); expected_allocation.SetBitrate(1, 1, 80000); rtcp::TargetBitrate bitrate; bitrate.AddTargetBitrate(0, 0, expected_allocation.GetBitrate(0, 0) / 1000); bitrate.AddTargetBitrate(0, 1, expected_allocation.GetBitrate(0, 1) / 1000); bitrate.AddTargetBitrate(1, 0, expected_allocation.GetBitrate(1, 0) / 1000); bitrate.AddTargetBitrate(1, 1, expected_allocation.GetBitrate(1, 1) / 1000); rtcp::ExtendedReports xr; xr.SetTargetBitrate(bitrate); // Wrong sender ssrc, target bitrate should be discarded. xr.SetSenderSsrc(kSenderSsrc + 1); EXPECT_CALL(bitrate_allocation_observer_, OnBitrateAllocationUpdated(expected_allocation)) .Times(0); InjectRtcpPacket(xr); // Set correct ssrc, callback should be called once. xr.SetSenderSsrc(kSenderSsrc); EXPECT_CALL(bitrate_allocation_observer_, OnBitrateAllocationUpdated(expected_allocation)); InjectRtcpPacket(xr); } TEST_F(RtcpReceiverTest, HandlesIncorrectTargetBitrate) { VideoBitrateAllocation expected_allocation; expected_allocation.SetBitrate(0, 0, 10000); rtcp::TargetBitrate bitrate; bitrate.AddTargetBitrate(0, 0, expected_allocation.GetBitrate(0, 0) / 1000); bitrate.AddTargetBitrate(0, kMaxTemporalStreams, 20000); bitrate.AddTargetBitrate(kMaxSpatialLayers, 0, 40000); rtcp::ExtendedReports xr; xr.SetTargetBitrate(bitrate); xr.SetSenderSsrc(kSenderSsrc); EXPECT_CALL(bitrate_allocation_observer_, OnBitrateAllocationUpdated(expected_allocation)); InjectRtcpPacket(xr); } } // namespace webrtc