/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/codecs/opus/audio_encoder_opus.h" #include #include #include #include #include #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "modules/audio_coding/audio_network_adaptor/audio_network_adaptor_impl.h" #include "modules/audio_coding/audio_network_adaptor/controller_manager.h" #include "modules/audio_coding/codecs/opus/audio_coder_opus_common.h" #include "modules/audio_coding/codecs/opus/opus_interface.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/exp_filter.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/numerics/safe_minmax.h" #include "rtc_base/string_encode.h" #include "rtc_base/string_to_number.h" #include "rtc_base/time_utils.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { // Codec parameters for Opus. // draft-spittka-payload-rtp-opus-03 // Recommended bitrates: // 8-12 kb/s for NB speech, // 16-20 kb/s for WB speech, // 28-40 kb/s for FB speech, // 48-64 kb/s for FB mono music, and // 64-128 kb/s for FB stereo music. // The current implementation applies the following values to mono signals, // and multiplies them by 2 for stereo. constexpr int kOpusBitrateNbBps = 12000; constexpr int kOpusBitrateWbBps = 20000; constexpr int kOpusBitrateFbBps = 32000; constexpr int kRtpTimestampRateHz = 48000; constexpr int kDefaultMaxPlaybackRate = 48000; // These two lists must be sorted from low to high #if WEBRTC_OPUS_SUPPORT_120MS_PTIME constexpr int kANASupportedFrameLengths[] = {20, 40, 60, 120}; constexpr int kOpusSupportedFrameLengths[] = {10, 20, 40, 60, 120}; #else constexpr int kANASupportedFrameLengths[] = {20, 40, 60}; constexpr int kOpusSupportedFrameLengths[] = {10, 20, 40, 60}; #endif // PacketLossFractionSmoother uses an exponential filter with a time constant // of -1.0 / ln(0.9999) = 10000 ms. constexpr float kAlphaForPacketLossFractionSmoother = 0.9999f; constexpr float kMaxPacketLossFraction = 0.2f; int CalculateDefaultBitrate(int max_playback_rate, size_t num_channels) { const int bitrate = [&] { if (max_playback_rate <= 8000) { return kOpusBitrateNbBps * rtc::dchecked_cast(num_channels); } else if (max_playback_rate <= 16000) { return kOpusBitrateWbBps * rtc::dchecked_cast(num_channels); } else { return kOpusBitrateFbBps * rtc::dchecked_cast(num_channels); } }(); RTC_DCHECK_GE(bitrate, AudioEncoderOpusConfig::kMinBitrateBps); RTC_DCHECK_LE(bitrate, AudioEncoderOpusConfig::kMaxBitrateBps); return bitrate; } // Get the maxaveragebitrate parameter in string-form, so we can properly figure // out how invalid it is and accurately log invalid values. int CalculateBitrate(int max_playback_rate_hz, size_t num_channels, absl::optional bitrate_param) { const int default_bitrate = CalculateDefaultBitrate(max_playback_rate_hz, num_channels); if (bitrate_param) { const auto bitrate = rtc::StringToNumber(*bitrate_param); if (bitrate) { const int chosen_bitrate = std::max(AudioEncoderOpusConfig::kMinBitrateBps, std::min(*bitrate, AudioEncoderOpusConfig::kMaxBitrateBps)); if (bitrate != chosen_bitrate) { RTC_LOG(LS_WARNING) << "Invalid maxaveragebitrate " << *bitrate << " clamped to " << chosen_bitrate; } return chosen_bitrate; } RTC_LOG(LS_WARNING) << "Invalid maxaveragebitrate \"" << *bitrate_param << "\" replaced by default bitrate " << default_bitrate; } return default_bitrate; } int GetChannelCount(const SdpAudioFormat& format) { const auto param = GetFormatParameter(format, "stereo"); if (param == "1") { return 2; } else { return 1; } } int GetMaxPlaybackRate(const SdpAudioFormat& format) { const auto param = GetFormatParameter(format, "maxplaybackrate"); if (param && *param >= 8000) { return std::min(*param, kDefaultMaxPlaybackRate); } return kDefaultMaxPlaybackRate; } int GetFrameSizeMs(const SdpAudioFormat& format) { const auto ptime = GetFormatParameter(format, "ptime"); if (ptime) { // Pick the next highest supported frame length from // kOpusSupportedFrameLengths. for (const int supported_frame_length : kOpusSupportedFrameLengths) { if (supported_frame_length >= *ptime) { return supported_frame_length; } } // If none was found, return the largest supported frame length. return *(std::end(kOpusSupportedFrameLengths) - 1); } return AudioEncoderOpusConfig::kDefaultFrameSizeMs; } void FindSupportedFrameLengths(int min_frame_length_ms, int max_frame_length_ms, std::vector* out) { out->clear(); std::copy_if(std::begin(kANASupportedFrameLengths), std::end(kANASupportedFrameLengths), std::back_inserter(*out), [&](int frame_length_ms) { return frame_length_ms >= min_frame_length_ms && frame_length_ms <= max_frame_length_ms; }); RTC_DCHECK(std::is_sorted(out->begin(), out->end())); } int GetBitrateBps(const AudioEncoderOpusConfig& config) { RTC_DCHECK(config.IsOk()); return *config.bitrate_bps; } std::vector GetBitrateMultipliers() { constexpr char kBitrateMultipliersName[] = "WebRTC-Audio-OpusBitrateMultipliers"; const bool use_bitrate_multipliers = webrtc::field_trial::IsEnabled(kBitrateMultipliersName); if (use_bitrate_multipliers) { const std::string field_trial_string = webrtc::field_trial::FindFullName(kBitrateMultipliersName); std::vector pieces; rtc::tokenize(field_trial_string, '-', &pieces); if (pieces.size() < 2 || pieces[0] != "Enabled") { RTC_LOG(LS_WARNING) << "Invalid parameters for " << kBitrateMultipliersName << ", not using custom values."; return std::vector(); } std::vector multipliers(pieces.size() - 1); for (size_t i = 1; i < pieces.size(); i++) { if (!rtc::FromString(pieces[i], &multipliers[i - 1])) { RTC_LOG(LS_WARNING) << "Invalid parameters for " << kBitrateMultipliersName << ", not using custom values."; return std::vector(); } } RTC_LOG(LS_INFO) << "Using custom bitrate multipliers: " << field_trial_string; return multipliers; } return std::vector(); } int GetMultipliedBitrate(int bitrate, const std::vector& multipliers) { // The multipliers are valid from 5 kbps. const size_t bitrate_kbps = static_cast(bitrate / 1000); if (bitrate_kbps < 5 || bitrate_kbps >= multipliers.size() + 5) { return bitrate; } return static_cast(multipliers[bitrate_kbps - 5] * bitrate); } } // namespace void AudioEncoderOpusImpl::AppendSupportedEncoders( std::vector* specs) { const SdpAudioFormat fmt = {"opus", kRtpTimestampRateHz, 2, {{"minptime", "10"}, {"useinbandfec", "1"}}}; const AudioCodecInfo info = QueryAudioEncoder(*SdpToConfig(fmt)); specs->push_back({fmt, info}); } AudioCodecInfo AudioEncoderOpusImpl::QueryAudioEncoder( const AudioEncoderOpusConfig& config) { RTC_DCHECK(config.IsOk()); AudioCodecInfo info(config.sample_rate_hz, config.num_channels, *config.bitrate_bps, AudioEncoderOpusConfig::kMinBitrateBps, AudioEncoderOpusConfig::kMaxBitrateBps); info.allow_comfort_noise = false; info.supports_network_adaption = true; return info; } std::unique_ptr AudioEncoderOpusImpl::MakeAudioEncoder( const AudioEncoderOpusConfig& config, int payload_type) { if (!config.IsOk()) { RTC_DCHECK_NOTREACHED(); return nullptr; } return std::make_unique(config, payload_type); } absl::optional AudioEncoderOpusImpl::SdpToConfig( const SdpAudioFormat& format) { if (!absl::EqualsIgnoreCase(format.name, "opus") || format.clockrate_hz != kRtpTimestampRateHz || format.num_channels != 2) { return absl::nullopt; } AudioEncoderOpusConfig config; config.num_channels = GetChannelCount(format); config.frame_size_ms = GetFrameSizeMs(format); config.max_playback_rate_hz = GetMaxPlaybackRate(format); config.fec_enabled = (GetFormatParameter(format, "useinbandfec") == "1"); config.dtx_enabled = (GetFormatParameter(format, "usedtx") == "1"); config.cbr_enabled = (GetFormatParameter(format, "cbr") == "1"); config.bitrate_bps = CalculateBitrate(config.max_playback_rate_hz, config.num_channels, GetFormatParameter(format, "maxaveragebitrate")); config.application = config.num_channels == 1 ? AudioEncoderOpusConfig::ApplicationMode::kVoip : AudioEncoderOpusConfig::ApplicationMode::kAudio; constexpr int kMinANAFrameLength = kANASupportedFrameLengths[0]; constexpr int kMaxANAFrameLength = kANASupportedFrameLengths[arraysize(kANASupportedFrameLengths) - 1]; // For now, minptime and maxptime are only used with ANA. If ptime is outside // of this range, it will get adjusted once ANA takes hold. Ideally, we'd know // if ANA was to be used when setting up the config, and adjust accordingly. const int min_frame_length_ms = GetFormatParameter(format, "minptime").value_or(kMinANAFrameLength); const int max_frame_length_ms = GetFormatParameter(format, "maxptime").value_or(kMaxANAFrameLength); FindSupportedFrameLengths(min_frame_length_ms, max_frame_length_ms, &config.supported_frame_lengths_ms); if (!config.IsOk()) { RTC_DCHECK_NOTREACHED(); return absl::nullopt; } return config; } absl::optional AudioEncoderOpusImpl::GetNewComplexity( const AudioEncoderOpusConfig& config) { RTC_DCHECK(config.IsOk()); const int bitrate_bps = GetBitrateBps(config); if (bitrate_bps >= config.complexity_threshold_bps - config.complexity_threshold_window_bps && bitrate_bps <= config.complexity_threshold_bps + config.complexity_threshold_window_bps) { // Within the hysteresis window; make no change. return absl::nullopt; } else { return bitrate_bps <= config.complexity_threshold_bps ? config.low_rate_complexity : config.complexity; } } absl::optional AudioEncoderOpusImpl::GetNewBandwidth( const AudioEncoderOpusConfig& config, OpusEncInst* inst) { constexpr int kMinWidebandBitrate = 8000; constexpr int kMaxNarrowbandBitrate = 9000; constexpr int kAutomaticThreshold = 11000; RTC_DCHECK(config.IsOk()); const int bitrate = GetBitrateBps(config); if (bitrate > kAutomaticThreshold) { return absl::optional(OPUS_AUTO); } const int bandwidth = WebRtcOpus_GetBandwidth(inst); RTC_DCHECK_GE(bandwidth, 0); if (bitrate > kMaxNarrowbandBitrate && bandwidth < OPUS_BANDWIDTH_WIDEBAND) { return absl::optional(OPUS_BANDWIDTH_WIDEBAND); } else if (bitrate < kMinWidebandBitrate && bandwidth > OPUS_BANDWIDTH_NARROWBAND) { return absl::optional(OPUS_BANDWIDTH_NARROWBAND); } return absl::optional(); } class AudioEncoderOpusImpl::PacketLossFractionSmoother { public: explicit PacketLossFractionSmoother() : last_sample_time_ms_(rtc::TimeMillis()), smoother_(kAlphaForPacketLossFractionSmoother) {} // Gets the smoothed packet loss fraction. float GetAverage() const { float value = smoother_.filtered(); return (value == rtc::ExpFilter::kValueUndefined) ? 0.0f : value; } // Add new observation to the packet loss fraction smoother. void AddSample(float packet_loss_fraction) { int64_t now_ms = rtc::TimeMillis(); smoother_.Apply(static_cast(now_ms - last_sample_time_ms_), packet_loss_fraction); last_sample_time_ms_ = now_ms; } private: int64_t last_sample_time_ms_; // An exponential filter is used to smooth the packet loss fraction. rtc::ExpFilter smoother_; }; AudioEncoderOpusImpl::AudioEncoderOpusImpl(const AudioEncoderOpusConfig& config, int payload_type) : AudioEncoderOpusImpl( config, payload_type, [this](absl::string_view config_string, RtcEventLog* event_log) { return DefaultAudioNetworkAdaptorCreator(config_string, event_log); }, // We choose 5sec as initial time constant due to empirical data. std::make_unique(5000)) {} AudioEncoderOpusImpl::AudioEncoderOpusImpl( const AudioEncoderOpusConfig& config, int payload_type, const AudioNetworkAdaptorCreator& audio_network_adaptor_creator, std::unique_ptr bitrate_smoother) : payload_type_(payload_type), use_stable_target_for_adaptation_(!webrtc::field_trial::IsDisabled( "WebRTC-Audio-StableTargetAdaptation")), adjust_bandwidth_( webrtc::field_trial::IsEnabled("WebRTC-AdjustOpusBandwidth")), bitrate_changed_(true), bitrate_multipliers_(GetBitrateMultipliers()), packet_loss_rate_(0.0), inst_(nullptr), packet_loss_fraction_smoother_(new PacketLossFractionSmoother()), audio_network_adaptor_creator_(audio_network_adaptor_creator), bitrate_smoother_(std::move(bitrate_smoother)), consecutive_dtx_frames_(0) { RTC_DCHECK(0 <= payload_type && payload_type <= 127); // Sanity check of the redundant payload type field that we want to get rid // of. See https://bugs.chromium.org/p/webrtc/issues/detail?id=7847 RTC_CHECK(config.payload_type == -1 || config.payload_type == payload_type); RTC_CHECK(RecreateEncoderInstance(config)); SetProjectedPacketLossRate(packet_loss_rate_); } AudioEncoderOpusImpl::AudioEncoderOpusImpl(int payload_type, const SdpAudioFormat& format) : AudioEncoderOpusImpl(*SdpToConfig(format), payload_type) {} AudioEncoderOpusImpl::~AudioEncoderOpusImpl() { RTC_CHECK_EQ(0, WebRtcOpus_EncoderFree(inst_)); } int AudioEncoderOpusImpl::SampleRateHz() const { return config_.sample_rate_hz; } size_t AudioEncoderOpusImpl::NumChannels() const { return config_.num_channels; } int AudioEncoderOpusImpl::RtpTimestampRateHz() const { return kRtpTimestampRateHz; } size_t AudioEncoderOpusImpl::Num10MsFramesInNextPacket() const { return Num10msFramesPerPacket(); } size_t AudioEncoderOpusImpl::Max10MsFramesInAPacket() const { return Num10msFramesPerPacket(); } int AudioEncoderOpusImpl::GetTargetBitrate() const { return GetBitrateBps(config_); } void AudioEncoderOpusImpl::Reset() { RTC_CHECK(RecreateEncoderInstance(config_)); } bool AudioEncoderOpusImpl::SetFec(bool enable) { if (enable) { RTC_CHECK_EQ(0, WebRtcOpus_EnableFec(inst_)); } else { RTC_CHECK_EQ(0, WebRtcOpus_DisableFec(inst_)); } config_.fec_enabled = enable; return true; } bool AudioEncoderOpusImpl::SetDtx(bool enable) { if (enable) { RTC_CHECK_EQ(0, WebRtcOpus_EnableDtx(inst_)); } else { RTC_CHECK_EQ(0, WebRtcOpus_DisableDtx(inst_)); } config_.dtx_enabled = enable; return true; } bool AudioEncoderOpusImpl::GetDtx() const { return config_.dtx_enabled; } bool AudioEncoderOpusImpl::SetApplication(Application application) { auto conf = config_; switch (application) { case Application::kSpeech: conf.application = AudioEncoderOpusConfig::ApplicationMode::kVoip; break; case Application::kAudio: conf.application = AudioEncoderOpusConfig::ApplicationMode::kAudio; break; } return RecreateEncoderInstance(conf); } void AudioEncoderOpusImpl::SetMaxPlaybackRate(int frequency_hz) { auto conf = config_; conf.max_playback_rate_hz = frequency_hz; RTC_CHECK(RecreateEncoderInstance(conf)); } bool AudioEncoderOpusImpl::EnableAudioNetworkAdaptor( const std::string& config_string, RtcEventLog* event_log) { audio_network_adaptor_ = audio_network_adaptor_creator_(config_string, event_log); return audio_network_adaptor_.get() != nullptr; } void AudioEncoderOpusImpl::DisableAudioNetworkAdaptor() { audio_network_adaptor_.reset(nullptr); } void AudioEncoderOpusImpl::OnReceivedUplinkPacketLossFraction( float uplink_packet_loss_fraction) { if (audio_network_adaptor_) { audio_network_adaptor_->SetUplinkPacketLossFraction( uplink_packet_loss_fraction); ApplyAudioNetworkAdaptor(); } packet_loss_fraction_smoother_->AddSample(uplink_packet_loss_fraction); float average_fraction_loss = packet_loss_fraction_smoother_->GetAverage(); SetProjectedPacketLossRate(average_fraction_loss); } void AudioEncoderOpusImpl::OnReceivedTargetAudioBitrate( int target_audio_bitrate_bps) { SetTargetBitrate(target_audio_bitrate_bps); } void AudioEncoderOpusImpl::OnReceivedUplinkBandwidth( int target_audio_bitrate_bps, absl::optional bwe_period_ms, absl::optional stable_target_bitrate_bps) { if (audio_network_adaptor_) { audio_network_adaptor_->SetTargetAudioBitrate(target_audio_bitrate_bps); if (use_stable_target_for_adaptation_) { if (stable_target_bitrate_bps) audio_network_adaptor_->SetUplinkBandwidth(*stable_target_bitrate_bps); } else { // We give smoothed bitrate allocation to audio network adaptor as // the uplink bandwidth. // The BWE spikes should not affect the bitrate smoother more than 25%. // To simplify the calculations we use a step response as input signal. // The step response of an exponential filter is // u(t) = 1 - e^(-t / time_constant). // In order to limit the affect of a BWE spike within 25% of its value // before // the next BWE update, we would choose a time constant that fulfills // 1 - e^(-bwe_period_ms / time_constant) < 0.25 // Then 4 * bwe_period_ms is a good choice. if (bwe_period_ms) bitrate_smoother_->SetTimeConstantMs(*bwe_period_ms * 4); bitrate_smoother_->AddSample(target_audio_bitrate_bps); } ApplyAudioNetworkAdaptor(); } else { if (!overhead_bytes_per_packet_) { RTC_LOG(LS_INFO) << "AudioEncoderOpusImpl: Overhead unknown, target audio bitrate " << target_audio_bitrate_bps << " bps is ignored."; return; } const int overhead_bps = static_cast( *overhead_bytes_per_packet_ * 8 * 100 / Num10MsFramesInNextPacket()); SetTargetBitrate( std::min(AudioEncoderOpusConfig::kMaxBitrateBps, std::max(AudioEncoderOpusConfig::kMinBitrateBps, target_audio_bitrate_bps - overhead_bps))); } } void AudioEncoderOpusImpl::OnReceivedUplinkBandwidth( int target_audio_bitrate_bps, absl::optional bwe_period_ms) { OnReceivedUplinkBandwidth(target_audio_bitrate_bps, bwe_period_ms, absl::nullopt); } void AudioEncoderOpusImpl::OnReceivedUplinkAllocation( BitrateAllocationUpdate update) { OnReceivedUplinkBandwidth(update.target_bitrate.bps(), update.bwe_period.ms(), update.stable_target_bitrate.bps()); } void AudioEncoderOpusImpl::OnReceivedRtt(int rtt_ms) { if (!audio_network_adaptor_) return; audio_network_adaptor_->SetRtt(rtt_ms); ApplyAudioNetworkAdaptor(); } void AudioEncoderOpusImpl::OnReceivedOverhead( size_t overhead_bytes_per_packet) { if (audio_network_adaptor_) { audio_network_adaptor_->SetOverhead(overhead_bytes_per_packet); ApplyAudioNetworkAdaptor(); } else { overhead_bytes_per_packet_ = overhead_bytes_per_packet; } } void AudioEncoderOpusImpl::SetReceiverFrameLengthRange( int min_frame_length_ms, int max_frame_length_ms) { // Ensure that `SetReceiverFrameLengthRange` is called before // `EnableAudioNetworkAdaptor`, otherwise we need to recreate // `audio_network_adaptor_`, which is not a needed use case. RTC_DCHECK(!audio_network_adaptor_); FindSupportedFrameLengths(min_frame_length_ms, max_frame_length_ms, &config_.supported_frame_lengths_ms); } AudioEncoder::EncodedInfo AudioEncoderOpusImpl::EncodeImpl( uint32_t rtp_timestamp, rtc::ArrayView audio, rtc::Buffer* encoded) { MaybeUpdateUplinkBandwidth(); if (input_buffer_.empty()) first_timestamp_in_buffer_ = rtp_timestamp; input_buffer_.insert(input_buffer_.end(), audio.cbegin(), audio.cend()); if (input_buffer_.size() < (Num10msFramesPerPacket() * SamplesPer10msFrame())) { return EncodedInfo(); } RTC_CHECK_EQ(input_buffer_.size(), Num10msFramesPerPacket() * SamplesPer10msFrame()); const size_t max_encoded_bytes = SufficientOutputBufferSize(); EncodedInfo info; info.encoded_bytes = encoded->AppendData( max_encoded_bytes, [&](rtc::ArrayView encoded) { int status = WebRtcOpus_Encode( inst_, &input_buffer_[0], rtc::CheckedDivExact(input_buffer_.size(), config_.num_channels), rtc::saturated_cast(max_encoded_bytes), encoded.data()); RTC_CHECK_GE(status, 0); // Fails only if fed invalid data. return static_cast(status); }); input_buffer_.clear(); if (adjust_bandwidth_ && bitrate_changed_) { const auto bandwidth = GetNewBandwidth(config_, inst_); if (bandwidth) { RTC_CHECK_EQ(0, WebRtcOpus_SetBandwidth(inst_, *bandwidth)); } bitrate_changed_ = false; } info.encoded_timestamp = first_timestamp_in_buffer_; info.payload_type = payload_type_; info.send_even_if_empty = true; // Allows Opus to send empty packets. // After 20 DTX frames (MAX_CONSECUTIVE_DTX) Opus will send a frame // coding the background noise. Avoid flagging this frame as speech // (even though there is a probability of the frame being speech). // RingRTC change to detect if an encoded packet contains speech or not. if (WebRtcOpus_GetInDtx(inst_) == 0) { info.speech = true; consecutive_dtx_frames_ = 0; } else { // Handle the case where the encoder is now in DTX mode but there might be a speech frame in the packet. if (consecutive_dtx_frames_ == 0 && info.encoded_bytes > 2) { info.speech = true; } else { info.speech = false; } consecutive_dtx_frames_ += 1; } info.encoder_type = CodecType::kOpus; // Will use new packet size for next encoding. config_.frame_size_ms = next_frame_length_ms_; return info; } size_t AudioEncoderOpusImpl::Num10msFramesPerPacket() const { return static_cast(rtc::CheckedDivExact(config_.frame_size_ms, 10)); } size_t AudioEncoderOpusImpl::SamplesPer10msFrame() const { return rtc::CheckedDivExact(config_.sample_rate_hz, 100) * config_.num_channels; } size_t AudioEncoderOpusImpl::SufficientOutputBufferSize() const { // Calculate the number of bytes we expect the encoder to produce, // then multiply by two to give a wide margin for error. const size_t bytes_per_millisecond = static_cast(GetBitrateBps(config_) / (1000 * 8) + 1); const size_t approx_encoded_bytes = Num10msFramesPerPacket() * 10 * bytes_per_millisecond; return 2 * approx_encoded_bytes; } // If the given config is OK, recreate the Opus encoder instance with those // settings, save the config, and return true. Otherwise, do nothing and return // false. bool AudioEncoderOpusImpl::RecreateEncoderInstance( const AudioEncoderOpusConfig& config) { if (!config.IsOk()) return false; config_ = config; if (inst_) RTC_CHECK_EQ(0, WebRtcOpus_EncoderFree(inst_)); input_buffer_.clear(); input_buffer_.reserve(Num10msFramesPerPacket() * SamplesPer10msFrame()); RTC_CHECK_EQ(0, WebRtcOpus_EncoderCreate( &inst_, config.num_channels, config.application == AudioEncoderOpusConfig::ApplicationMode::kVoip ? 0 : 1, config.sample_rate_hz)); const int bitrate = GetBitrateBps(config); RTC_CHECK_EQ(0, WebRtcOpus_SetBitRate(inst_, bitrate)); RTC_LOG(LS_VERBOSE) << "Set Opus bitrate to " << bitrate << " bps."; if (config.fec_enabled) { RTC_CHECK_EQ(0, WebRtcOpus_EnableFec(inst_)); } else { RTC_CHECK_EQ(0, WebRtcOpus_DisableFec(inst_)); } RTC_CHECK_EQ( 0, WebRtcOpus_SetMaxPlaybackRate(inst_, config.max_playback_rate_hz)); // Use the default complexity if the start bitrate is within the hysteresis // window. complexity_ = GetNewComplexity(config).value_or(config.complexity); RTC_CHECK_EQ(0, WebRtcOpus_SetComplexity(inst_, complexity_)); bitrate_changed_ = true; if (config.dtx_enabled) { RTC_CHECK_EQ(0, WebRtcOpus_EnableDtx(inst_)); } else { RTC_CHECK_EQ(0, WebRtcOpus_DisableDtx(inst_)); } RTC_CHECK_EQ(0, WebRtcOpus_SetPacketLossRate( inst_, static_cast(packet_loss_rate_ * 100 + .5))); if (config.cbr_enabled) { RTC_CHECK_EQ(0, WebRtcOpus_EnableCbr(inst_)); } else { RTC_CHECK_EQ(0, WebRtcOpus_DisableCbr(inst_)); } num_channels_to_encode_ = NumChannels(); next_frame_length_ms_ = config_.frame_size_ms; return true; } void AudioEncoderOpusImpl::SetFrameLength(int frame_length_ms) { if (next_frame_length_ms_ != frame_length_ms) { RTC_LOG(LS_VERBOSE) << "Update Opus frame length " << "from " << next_frame_length_ms_ << " ms " << "to " << frame_length_ms << " ms."; } next_frame_length_ms_ = frame_length_ms; } void AudioEncoderOpusImpl::SetNumChannelsToEncode( size_t num_channels_to_encode) { RTC_DCHECK_GT(num_channels_to_encode, 0); RTC_DCHECK_LE(num_channels_to_encode, config_.num_channels); if (num_channels_to_encode_ == num_channels_to_encode) return; RTC_CHECK_EQ(0, WebRtcOpus_SetForceChannels(inst_, num_channels_to_encode)); num_channels_to_encode_ = num_channels_to_encode; } void AudioEncoderOpusImpl::SetProjectedPacketLossRate(float fraction) { fraction = std::min(std::max(fraction, 0.0f), kMaxPacketLossFraction); if (packet_loss_rate_ != fraction) { packet_loss_rate_ = fraction; RTC_CHECK_EQ( 0, WebRtcOpus_SetPacketLossRate( inst_, static_cast(packet_loss_rate_ * 100 + .5))); } } void AudioEncoderOpusImpl::SetTargetBitrate(int bits_per_second) { const int new_bitrate = rtc::SafeClamp( bits_per_second, AudioEncoderOpusConfig::kMinBitrateBps, AudioEncoderOpusConfig::kMaxBitrateBps); if (config_.bitrate_bps && *config_.bitrate_bps != new_bitrate) { config_.bitrate_bps = new_bitrate; RTC_DCHECK(config_.IsOk()); const int bitrate = GetBitrateBps(config_); RTC_CHECK_EQ( 0, WebRtcOpus_SetBitRate( inst_, GetMultipliedBitrate(bitrate, bitrate_multipliers_))); RTC_LOG(LS_VERBOSE) << "Set Opus bitrate to " << bitrate << " bps."; bitrate_changed_ = true; } const auto new_complexity = GetNewComplexity(config_); if (new_complexity && complexity_ != *new_complexity) { complexity_ = *new_complexity; RTC_CHECK_EQ(0, WebRtcOpus_SetComplexity(inst_, complexity_)); } } void AudioEncoderOpusImpl::ApplyAudioNetworkAdaptor() { auto config = audio_network_adaptor_->GetEncoderRuntimeConfig(); if (config.bitrate_bps) SetTargetBitrate(*config.bitrate_bps); if (config.frame_length_ms) SetFrameLength(*config.frame_length_ms); if (config.enable_dtx) SetDtx(*config.enable_dtx); if (config.num_channels) SetNumChannelsToEncode(*config.num_channels); } std::unique_ptr AudioEncoderOpusImpl::DefaultAudioNetworkAdaptorCreator( absl::string_view config_string, RtcEventLog* event_log) const { AudioNetworkAdaptorImpl::Config config; config.event_log = event_log; return std::unique_ptr(new AudioNetworkAdaptorImpl( config, ControllerManagerImpl::Create( config_string, NumChannels(), supported_frame_lengths_ms(), AudioEncoderOpusConfig::kMinBitrateBps, num_channels_to_encode_, next_frame_length_ms_, GetTargetBitrate(), config_.fec_enabled, GetDtx()))); } void AudioEncoderOpusImpl::MaybeUpdateUplinkBandwidth() { if (audio_network_adaptor_ && !use_stable_target_for_adaptation_) { int64_t now_ms = rtc::TimeMillis(); if (!bitrate_smoother_last_update_time_ || now_ms - *bitrate_smoother_last_update_time_ >= config_.uplink_bandwidth_update_interval_ms) { absl::optional smoothed_bitrate = bitrate_smoother_->GetAverage(); if (smoothed_bitrate) audio_network_adaptor_->SetUplinkBandwidth(*smoothed_bitrate); bitrate_smoother_last_update_time_ = now_ms; } } } ANAStats AudioEncoderOpusImpl::GetANAStats() const { if (audio_network_adaptor_) { return audio_network_adaptor_->GetStats(); } return ANAStats(); } absl::optional > AudioEncoderOpusImpl::GetFrameLengthRange() const { if (audio_network_adaptor_) { if (config_.supported_frame_lengths_ms.empty()) { return absl::nullopt; } return {{TimeDelta::Millis(config_.supported_frame_lengths_ms.front()), TimeDelta::Millis(config_.supported_frame_lengths_ms.back())}}; } else { return {{TimeDelta::Millis(config_.frame_size_ms), TimeDelta::Millis(config_.frame_size_ms)}}; } } // RingRTC change to configure opus bool AudioEncoderOpusImpl::Configure(const webrtc::AudioEncoder::Config& config) { // This sets next_frame_length_ms_ until the next time audio is sampled, // and then it sets config_.frame_size_ms as well. // It needs to be delayed to avoid a CHECK in Encode. SetFrameLength(config.initial_packet_size_ms); // I don't think any of the below are necessary, but the above is, so we might as well set these. config_.bitrate_bps = config.initial_bitrate_bps; config_.fec_enabled = config.enable_fec; config_.cbr_enabled = config.enable_cbr; config_.complexity = config.complexity; config_.low_rate_complexity = config.complexity; config_.dtx_enabled = config.enable_dtx; if (config.adaptation > 0) { RTC_LOG(LS_WARNING) << "ringrtc_adapt!,audio,0," << config.initial_bitrate_bps << "," << config.initial_packet_size_ms; } if (WebRtcOpus_SetBandwidth(inst_, config.bandwidth) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to bandwidth=" << config.bandwidth; return false; } RTC_LOG(LS_INFO) << "Successfully configured OPUS to bandwidth=" << config.bandwidth; if (WebRtcOpus_SetBitRate(inst_, config.initial_bitrate_bps) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to bitrate_bps=" << config.initial_bitrate_bps; return false; } RTC_LOG(LS_INFO) << "Successfully configured OPUS to bitrate_bps=" << config.initial_bitrate_bps; if (WebRtcOpus_SetComplexity(inst_, config.complexity) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to complexity=" << config.complexity; return false; } RTC_LOG(LS_INFO) << "Successfully configured OPUS to complexity=" << config.complexity; if (config.enable_fec) { if (WebRtcOpus_EnableFec(inst_) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to enable_fec=" << config.enable_fec; return false; } } else { if (WebRtcOpus_DisableFec(inst_) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to enable_fec=" << config.enable_fec; return false; } } RTC_LOG(LS_INFO) << "Successfully configured OPUS to enable_fec=" << config.enable_fec; if (config.enable_dtx) { if (WebRtcOpus_EnableDtx(inst_) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to enable_dtx=" << config.enable_dtx; return false; } } else { if (WebRtcOpus_DisableDtx(inst_) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to enable_dtx=" << config.enable_dtx; return false; } } RTC_LOG(LS_INFO) << "Successfully configured OPUS to enable_dtx=" << config.enable_dtx; if (config.enable_cbr) { if (WebRtcOpus_EnableCbr(inst_) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to enable_cbr=" << config.enable_cbr; return false; } } else { if (WebRtcOpus_DisableCbr(inst_) == -1) { RTC_LOG(LS_WARNING) << "Failed to configure OPUS to enable_cbr=" << config.enable_cbr; return false; } } return true; } } // namespace webrtc