/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/vad_with_level.h" #include #include #include #include "api/array_view.h" #include "common_audio/include/audio_util.h" #include "common_audio/resampler/include/push_resampler.h" #include "modules/audio_processing/agc2/agc2_common.h" #include "modules/audio_processing/agc2/rnn_vad/common.h" #include "modules/audio_processing/agc2/rnn_vad/features_extraction.h" #include "modules/audio_processing/agc2/rnn_vad/rnn.h" #include "rtc_base/checks.h" namespace webrtc { namespace { using VoiceActivityDetector = VadLevelAnalyzer::VoiceActivityDetector; // Default VAD that combines a resampler and the RNN VAD. // Computes the speech probability on the first channel. class Vad : public VoiceActivityDetector { public: explicit Vad(const AvailableCpuFeatures& cpu_features) : features_extractor_(cpu_features), rnn_vad_(cpu_features) {} Vad(const Vad&) = delete; Vad& operator=(const Vad&) = delete; ~Vad() = default; void Reset() override { rnn_vad_.Reset(); } float ComputeProbability(AudioFrameView frame) override { // The source number of channels is 1, because we always use the 1st // channel. resampler_.InitializeIfNeeded( /*sample_rate_hz=*/static_cast(frame.samples_per_channel() * 100), rnn_vad::kSampleRate24kHz, /*num_channels=*/1); std::array work_frame; // Feed the 1st channel to the resampler. resampler_.Resample(frame.channel(0).data(), frame.samples_per_channel(), work_frame.data(), rnn_vad::kFrameSize10ms24kHz); std::array feature_vector; const bool is_silence = features_extractor_.CheckSilenceComputeFeatures( work_frame, feature_vector); return rnn_vad_.ComputeVadProbability(feature_vector, is_silence); } private: PushResampler resampler_; rnn_vad::FeaturesExtractor features_extractor_; rnn_vad::RnnVad rnn_vad_; }; } // namespace VadLevelAnalyzer::VadLevelAnalyzer(int vad_reset_period_ms, const AvailableCpuFeatures& cpu_features) : VadLevelAnalyzer(vad_reset_period_ms, std::make_unique(cpu_features)) {} VadLevelAnalyzer::VadLevelAnalyzer(int vad_reset_period_ms, std::unique_ptr vad) : vad_(std::move(vad)), vad_reset_period_frames_( rtc::CheckedDivExact(vad_reset_period_ms, kFrameDurationMs)), time_to_vad_reset_(vad_reset_period_frames_) { RTC_DCHECK(vad_); RTC_DCHECK_GT(vad_reset_period_frames_, 1); } VadLevelAnalyzer::~VadLevelAnalyzer() = default; VadLevelAnalyzer::Result VadLevelAnalyzer::AnalyzeFrame( AudioFrameView frame) { // Periodically reset the VAD. time_to_vad_reset_--; if (time_to_vad_reset_ <= 0) { vad_->Reset(); time_to_vad_reset_ = vad_reset_period_frames_; } // Compute levels. float peak = 0.0f; float rms = 0.0f; for (const auto& x : frame.channel(0)) { peak = std::max(std::fabs(x), peak); rms += x * x; } return {vad_->ComputeProbability(frame), FloatS16ToDbfs(std::sqrt(rms / frame.samples_per_channel())), FloatS16ToDbfs(peak)}; } } // namespace webrtc