/* * Copyright (c) 2020 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. * */ #include #ifdef RTC_ENABLE_VP9 #include #include #include #include #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/strings/match.h" #include "absl/types/optional.h" #include "api/video/color_space.h" #include "api/video/i010_buffer.h" #include "api/video_codecs/scalability_mode.h" #include "common_video/include/video_frame_buffer.h" #include "common_video/libyuv/include/webrtc_libyuv.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/video_coding/codecs/vp9/libvpx_vp9_encoder.h" #include "modules/video_coding/svc/create_scalability_structure.h" #include "modules/video_coding/svc/scalability_mode_util.h" #include "modules/video_coding/svc/scalable_video_controller.h" #include "modules/video_coding/svc/scalable_video_controller_no_layering.h" #include "modules/video_coding/svc/svc_rate_allocator.h" #include "modules/video_coding/utility/vp9_uncompressed_header_parser.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/field_trial_list.h" #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/logging.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/time_utils.h" #include "rtc_base/trace_event.h" #include "third_party/libyuv/include/libyuv/convert.h" #include "vpx/vp8cx.h" #include "vpx/vpx_encoder.h" #if (defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64)) && \ (defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)) #define MOBILE_ARM #endif namespace webrtc { namespace { // Maps from gof_idx to encoder internal reference frame buffer index. These // maps work for 1,2 and 3 temporal layers with GOF length of 1,2 and 4 frames. uint8_t kRefBufIdx[4] = {0, 0, 0, 1}; uint8_t kUpdBufIdx[4] = {0, 0, 1, 0}; // Maximum allowed PID difference for differnet per-layer frame-rate case. const int kMaxAllowedPidDiff = 30; namespace variable_framerate_screenshare { constexpr double kMinFps = 5.0; constexpr int kMinQP = 32; constexpr int kUndershootPct = 30; constexpr int kFramesBeforeSteadyState = 5; } // namespace variable_framerate_screenshare // TODO(ilink): Tune these thresholds further. // Selected using ConverenceMotion_1280_720_50.yuv clip. // No toggling observed on any link capacity from 100-2000kbps. // HD was reached consistently when link capacity was 1500kbps. // Set resolutions are a bit more conservative than svc_config.cc sets, e.g. // for 300kbps resolution converged to 270p instead of 360p. constexpr int kLowVp9QpThreshold = 149; constexpr int kHighVp9QpThreshold = 205; std::pair GetActiveLayers( const VideoBitrateAllocation& allocation) { for (size_t sl_idx = 0; sl_idx < kMaxSpatialLayers; ++sl_idx) { if (allocation.GetSpatialLayerSum(sl_idx) > 0) { size_t last_layer = sl_idx + 1; while (last_layer < kMaxSpatialLayers && allocation.GetSpatialLayerSum(last_layer) > 0) { ++last_layer; } return std::make_pair(sl_idx, last_layer); } } return {0, 0}; } std::unique_ptr CreateVp9ScalabilityStructure( const VideoCodec& codec) { int num_spatial_layers = codec.VP9().numberOfSpatialLayers; int num_temporal_layers = std::max(1, int{codec.VP9().numberOfTemporalLayers}); if (num_spatial_layers == 1 && num_temporal_layers == 1) { return std::make_unique(); } char name[20]; rtc::SimpleStringBuilder ss(name); if (codec.mode == VideoCodecMode::kScreensharing) { // TODO(bugs.webrtc.org/11999): Compose names of the structures when they // are implemented. return nullptr; } else if (codec.VP9().interLayerPred == InterLayerPredMode::kOn || num_spatial_layers == 1) { ss << "L" << num_spatial_layers << "T" << num_temporal_layers; } else if (codec.VP9().interLayerPred == InterLayerPredMode::kOnKeyPic) { ss << "L" << num_spatial_layers << "T" << num_temporal_layers << "_KEY"; } else { RTC_DCHECK_EQ(codec.VP9().interLayerPred, InterLayerPredMode::kOff); ss << "S" << num_spatial_layers << "T" << num_temporal_layers; } // Check spatial ratio. if (num_spatial_layers > 1) { if (codec.width != codec.spatialLayers[num_spatial_layers - 1].width || codec.height != codec.spatialLayers[num_spatial_layers - 1].height) { RTC_LOG(LS_WARNING) << "Top layer resolution expected to match overall resolution"; return nullptr; } // Check if the ratio is one of the supported. int numerator; int denominator; if (codec.spatialLayers[1].width == 2 * codec.spatialLayers[0].width) { numerator = 1; denominator = 2; // no suffix for 1:2 ratio. } else if (2 * codec.spatialLayers[1].width == 3 * codec.spatialLayers[0].width) { numerator = 2; denominator = 3; ss << "h"; } else { RTC_LOG(LS_WARNING) << "Unsupported scalability ratio " << codec.spatialLayers[0].width << ":" << codec.spatialLayers[1].width; return nullptr; } // Validate ratio is consistent for all spatial layer transitions. for (int sid = 1; sid < num_spatial_layers; ++sid) { if (codec.spatialLayers[sid].width * numerator != codec.spatialLayers[sid - 1].width * denominator || codec.spatialLayers[sid].height * numerator != codec.spatialLayers[sid - 1].height * denominator) { RTC_LOG(LS_WARNING) << "Inconsistent scalability ratio " << numerator << ":" << denominator; return nullptr; } } } absl::optional scalability_mode = ScalabilityModeFromString(name); if (!scalability_mode.has_value()) { RTC_LOG(LS_WARNING) << "Invalid scalability mode " << name; return nullptr; } auto scalability_structure_controller = CreateScalabilityStructure(*scalability_mode); if (scalability_structure_controller == nullptr) { RTC_LOG(LS_WARNING) << "Unsupported scalability structure " << name; } else { RTC_LOG(LS_INFO) << "Created scalability structure " << name; } return scalability_structure_controller; } vpx_svc_ref_frame_config_t Vp9References( rtc::ArrayView layers) { vpx_svc_ref_frame_config_t ref_config = {}; for (const ScalableVideoController::LayerFrameConfig& layer_frame : layers) { const auto& buffers = layer_frame.Buffers(); RTC_DCHECK_LE(buffers.size(), 3); int sid = layer_frame.SpatialId(); if (!buffers.empty()) { ref_config.lst_fb_idx[sid] = buffers[0].id; ref_config.reference_last[sid] = buffers[0].referenced; if (buffers[0].updated) { ref_config.update_buffer_slot[sid] |= (1 << buffers[0].id); } } if (buffers.size() > 1) { ref_config.gld_fb_idx[sid] = buffers[1].id; ref_config.reference_golden[sid] = buffers[1].referenced; if (buffers[1].updated) { ref_config.update_buffer_slot[sid] |= (1 << buffers[1].id); } } if (buffers.size() > 2) { ref_config.alt_fb_idx[sid] = buffers[2].id; ref_config.reference_alt_ref[sid] = buffers[2].referenced; if (buffers[2].updated) { ref_config.update_buffer_slot[sid] |= (1 << buffers[2].id); } } } // TODO(bugs.webrtc.org/11999): Fill ref_config.duration return ref_config; } bool AllowDenoising() { #ifdef MOBILE_ARM // Keep the denoiser disabled on mobile ARM devices. It increases encode time // by up to 16%. return false; #else return true; #endif } } // namespace void LibvpxVp9Encoder::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt, void* user_data) { LibvpxVp9Encoder* enc = static_cast(user_data); enc->GetEncodedLayerFrame(pkt); } LibvpxVp9Encoder::LibvpxVp9Encoder(const Environment& env, Vp9EncoderSettings settings, std::unique_ptr interface) : libvpx_(std::move(interface)), encoded_image_(), encoded_complete_callback_(nullptr), profile_(settings.profile), inited_(false), timestamp_(0), rc_max_intra_target_(0), encoder_(nullptr), config_(nullptr), raw_(nullptr), input_image_(nullptr), force_key_frame_(true), pics_since_key_(0), num_temporal_layers_(0), num_spatial_layers_(0), num_active_spatial_layers_(0), first_active_layer_(0), layer_deactivation_requires_key_frame_(env.field_trials().IsEnabled( "WebRTC-Vp9IssueKeyFrameOnLayerDeactivation")), is_svc_(false), inter_layer_pred_(InterLayerPredMode::kOn), external_ref_control_(false), // Set in InitEncode because of tests. trusted_rate_controller_(RateControlSettings(env.field_trials()) .LibvpxVp9TrustedRateController()), first_frame_in_picture_(true), ss_info_needed_(false), force_all_active_layers_(false), is_flexible_mode_(false), variable_framerate_controller_(variable_framerate_screenshare::kMinFps), quality_scaler_experiment_(ParseQualityScalerConfig(env.field_trials())), external_ref_ctrl_( !env.field_trials().IsDisabled("WebRTC-Vp9ExternalRefCtrl")), performance_flags_(ParsePerformanceFlagsFromTrials(env.field_trials())), num_steady_state_frames_(0), config_changed_(true), encoder_info_override_(env.field_trials()), svc_frame_drop_config_(ParseSvcFrameDropConfig(env.field_trials())) { codec_ = {}; memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t)); } LibvpxVp9Encoder::~LibvpxVp9Encoder() { Release(); } void LibvpxVp9Encoder::SetFecControllerOverride(FecControllerOverride*) { // Ignored. } int LibvpxVp9Encoder::Release() { int ret_val = WEBRTC_VIDEO_CODEC_OK; if (encoder_ != nullptr) { if (inited_) { if (libvpx_->codec_destroy(encoder_)) { ret_val = WEBRTC_VIDEO_CODEC_MEMORY; } } delete encoder_; encoder_ = nullptr; } if (config_ != nullptr) { delete config_; config_ = nullptr; } if (raw_ != nullptr) { libvpx_->img_free(raw_); raw_ = nullptr; } inited_ = false; return ret_val; } bool LibvpxVp9Encoder::SetSvcRates( const VideoBitrateAllocation& bitrate_allocation) { std::pair current_layers = GetActiveLayers(current_bitrate_allocation_); std::pair new_layers = GetActiveLayers(bitrate_allocation); const bool layer_activation_requires_key_frame = inter_layer_pred_ == InterLayerPredMode::kOff || inter_layer_pred_ == InterLayerPredMode::kOnKeyPic; const bool lower_layers_enabled = new_layers.first < current_layers.first; const bool higher_layers_enabled = new_layers.second > current_layers.second; const bool disabled_layers = new_layers.first > current_layers.first || new_layers.second < current_layers.second; if (lower_layers_enabled || (higher_layers_enabled && layer_activation_requires_key_frame) || (disabled_layers && layer_deactivation_requires_key_frame_)) { force_key_frame_ = true; } if (current_layers != new_layers) { ss_info_needed_ = true; } config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps(); for (size_t sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { if (config_->ss_target_bitrate[sl_idx] == 0) { // Reset frame rate controller if layer is resumed after pause. framerate_controller_[sl_idx].Reset(); } config_->ss_target_bitrate[sl_idx] = bitrate_allocation.GetSpatialLayerSum(sl_idx) / 1000; for (size_t tl_idx = 0; tl_idx < num_temporal_layers_; ++tl_idx) { config_->layer_target_bitrate[sl_idx * num_temporal_layers_ + tl_idx] = bitrate_allocation.GetTemporalLayerSum(sl_idx, tl_idx) / 1000; } framerate_controller_[sl_idx].SetTargetRate( num_spatial_layers_ > 1 ? codec_.spatialLayers[sl_idx].maxFramerate : codec_.maxFramerate); } num_active_spatial_layers_ = 0; first_active_layer_ = 0; bool seen_active_layer = false; bool expect_no_more_active_layers = false; for (int i = 0; i < num_spatial_layers_; ++i) { if (config_->ss_target_bitrate[i] > 0) { RTC_DCHECK(!expect_no_more_active_layers) << "Only middle layer is " "deactivated."; if (!seen_active_layer) { first_active_layer_ = i; } num_active_spatial_layers_ = i + 1; seen_active_layer = true; } else { expect_no_more_active_layers = seen_active_layer; } } if (seen_active_layer && performance_flags_.use_per_layer_speed) { bool denoiser_on = AllowDenoising() && codec_.VP9()->denoisingOn && performance_flags_by_spatial_index_[num_active_spatial_layers_ - 1] .allow_denoising; libvpx_->codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, denoiser_on ? 1 : 0); } if (higher_layers_enabled && !force_key_frame_) { // Prohibit drop of all layers for the next frame, so newly enabled // layer would have a valid spatial reference. for (size_t i = 0; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = 0; } force_all_active_layers_ = true; } if (svc_controller_) { for (int sid = 0; sid < num_spatial_layers_; ++sid) { // Bitrates in `layer_target_bitrate` are accumulated for each temporal // layer but in `VideoBitrateAllocation` they should be separated. int previous_bitrate_kbps = 0; for (int tid = 0; tid < num_temporal_layers_; ++tid) { int accumulated_bitrate_kbps = config_->layer_target_bitrate[sid * num_temporal_layers_ + tid]; int single_layer_bitrate_kbps = accumulated_bitrate_kbps - previous_bitrate_kbps; RTC_DCHECK_GE(single_layer_bitrate_kbps, 0); current_bitrate_allocation_.SetBitrate( sid, tid, single_layer_bitrate_kbps * 1'000); previous_bitrate_kbps = accumulated_bitrate_kbps; } } svc_controller_->OnRatesUpdated(current_bitrate_allocation_); } else { current_bitrate_allocation_ = bitrate_allocation; } config_changed_ = true; return true; } void LibvpxVp9Encoder::DisableSpatialLayer(int sid) { RTC_DCHECK_LT(sid, num_spatial_layers_); if (config_->ss_target_bitrate[sid] == 0) { return; } config_->ss_target_bitrate[sid] = 0; for (int tid = 0; tid < num_temporal_layers_; ++tid) { config_->layer_target_bitrate[sid * num_temporal_layers_ + tid] = 0; } config_changed_ = true; } void LibvpxVp9Encoder::EnableSpatialLayer(int sid) { RTC_DCHECK_LT(sid, num_spatial_layers_); if (config_->ss_target_bitrate[sid] > 0) { return; } for (int tid = 0; tid < num_temporal_layers_; ++tid) { config_->layer_target_bitrate[sid * num_temporal_layers_ + tid] = current_bitrate_allocation_.GetTemporalLayerSum(sid, tid) / 1000; } config_->ss_target_bitrate[sid] = current_bitrate_allocation_.GetSpatialLayerSum(sid) / 1000; RTC_DCHECK_GT(config_->ss_target_bitrate[sid], 0); config_changed_ = true; } void LibvpxVp9Encoder::SetActiveSpatialLayers() { // Svc controller may decide to skip a frame at certain spatial layer even // when bitrate for it is non-zero, however libvpx uses configured bitrate as // a signal which layers should be produced. RTC_DCHECK(svc_controller_); RTC_DCHECK(!layer_frames_.empty()); RTC_DCHECK(absl::c_is_sorted( layer_frames_, [](const ScalableVideoController::LayerFrameConfig& lhs, const ScalableVideoController::LayerFrameConfig& rhs) { return lhs.SpatialId() < rhs.SpatialId(); })); auto frame_it = layer_frames_.begin(); for (int sid = 0; sid < num_spatial_layers_; ++sid) { if (frame_it != layer_frames_.end() && frame_it->SpatialId() == sid) { EnableSpatialLayer(sid); ++frame_it; } else { DisableSpatialLayer(sid); } } } void LibvpxVp9Encoder::SetRates(const RateControlParameters& parameters) { if (!inited_) { RTC_LOG(LS_WARNING) << "SetRates() called while uninitialized."; return; } if (encoder_->err) { RTC_LOG(LS_WARNING) << "Encoder in error state: " << encoder_->err; return; } if (parameters.framerate_fps < 1.0) { RTC_LOG(LS_WARNING) << "Unsupported framerate: " << parameters.framerate_fps; return; } codec_.maxFramerate = static_cast(parameters.framerate_fps + 0.5); bool res = SetSvcRates(parameters.bitrate); RTC_DCHECK(res) << "Failed to set new bitrate allocation"; config_changed_ = true; } // TODO(eladalon): s/inst/codec_settings/g. int LibvpxVp9Encoder::InitEncode(const VideoCodec* inst, const Settings& settings) { if (inst == nullptr) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->maxFramerate < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Allow zero to represent an unspecified maxBitRate if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->width < 1 || inst->height < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (settings.number_of_cores < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->VP9().numberOfTemporalLayers > 3) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // libvpx probably does not support more than 3 spatial layers. if (inst->VP9().numberOfSpatialLayers > 3) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } absl::optional previous_img_fmt = raw_ ? absl::make_optional(raw_->fmt) : absl::nullopt; int ret_val = Release(); if (ret_val < 0) { return ret_val; } if (encoder_ == nullptr) { encoder_ = new vpx_codec_ctx_t; memset(encoder_, 0, sizeof(*encoder_)); } if (config_ == nullptr) { config_ = new vpx_codec_enc_cfg_t; memset(config_, 0, sizeof(*config_)); } timestamp_ = 0; if (&codec_ != inst) { codec_ = *inst; } memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t)); force_key_frame_ = true; pics_since_key_ = 0; scalability_mode_ = inst->GetScalabilityMode(); if (scalability_mode_.has_value()) { // Use settings from `ScalabilityMode` identifier. RTC_LOG(LS_INFO) << "Create scalability structure " << ScalabilityModeToString(*scalability_mode_); svc_controller_ = CreateScalabilityStructure(*scalability_mode_); if (!svc_controller_) { RTC_LOG(LS_WARNING) << "Failed to create scalability structure."; return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } ScalableVideoController::StreamLayersConfig info = svc_controller_->StreamConfig(); num_spatial_layers_ = info.num_spatial_layers; num_temporal_layers_ = info.num_temporal_layers; inter_layer_pred_ = ScalabilityModeToInterLayerPredMode(*scalability_mode_); } else { num_spatial_layers_ = inst->VP9().numberOfSpatialLayers; RTC_DCHECK_GT(num_spatial_layers_, 0); num_temporal_layers_ = inst->VP9().numberOfTemporalLayers; if (num_temporal_layers_ == 0) { num_temporal_layers_ = 1; } inter_layer_pred_ = inst->VP9().interLayerPred; svc_controller_ = CreateVp9ScalabilityStructure(*inst); } framerate_controller_ = std::vector( num_spatial_layers_, FramerateControllerDeprecated(codec_.maxFramerate)); is_svc_ = (num_spatial_layers_ > 1 || num_temporal_layers_ > 1); // Populate encoder configuration with default values. if (libvpx_->codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) { return WEBRTC_VIDEO_CODEC_ERROR; } vpx_img_fmt img_fmt = VPX_IMG_FMT_NONE; unsigned int bits_for_storage = 8; switch (profile_) { case VP9Profile::kProfile0: img_fmt = previous_img_fmt.value_or(VPX_IMG_FMT_I420); bits_for_storage = 8; config_->g_bit_depth = VPX_BITS_8; config_->g_profile = 0; config_->g_input_bit_depth = 8; break; case VP9Profile::kProfile1: // Encoding of profile 1 is not implemented. It would require extended // support for I444, I422, and I440 buffers. RTC_DCHECK_NOTREACHED(); break; case VP9Profile::kProfile2: img_fmt = VPX_IMG_FMT_I42016; bits_for_storage = 16; config_->g_bit_depth = VPX_BITS_10; config_->g_profile = 2; config_->g_input_bit_depth = 10; break; case VP9Profile::kProfile3: // Encoding of profile 3 is not implemented. RTC_DCHECK_NOTREACHED(); break; } // Creating a wrapper to the image - setting image data to nullptr. Actual // pointer will be set in encode. Setting align to 1, as it is meaningless // (actual memory is not allocated). raw_ = libvpx_->img_wrap(nullptr, img_fmt, codec_.width, codec_.height, 1, nullptr); raw_->bit_depth = bits_for_storage; config_->g_w = codec_.width; config_->g_h = codec_.height; config_->rc_target_bitrate = inst->startBitrate; // in kbit/s config_->g_error_resilient = is_svc_ ? VPX_ERROR_RESILIENT_DEFAULT : 0; // Setting the time base of the codec. config_->g_timebase.num = 1; config_->g_timebase.den = 90000; config_->g_lag_in_frames = 0; // 0- no frame lagging config_->g_threads = 1; // Rate control settings. config_->rc_dropframe_thresh = inst->GetFrameDropEnabled() ? 30 : 0; config_->rc_end_usage = VPX_CBR; config_->g_pass = VPX_RC_ONE_PASS; config_->rc_min_quantizer = codec_.mode == VideoCodecMode::kScreensharing ? 8 : 2; config_->rc_max_quantizer = 52; config_->rc_undershoot_pct = 50; config_->rc_overshoot_pct = 50; config_->rc_buf_initial_sz = 500; config_->rc_buf_optimal_sz = 600; config_->rc_buf_sz = 1000; // Set the maximum target size of any key-frame. rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz); // Key-frame interval is enforced manually by this wrapper. config_->kf_mode = VPX_KF_DISABLED; // TODO(webm:1592): work-around for libvpx issue, as it can still // put some key-frames at will even in VPX_KF_DISABLED kf_mode. config_->kf_max_dist = inst->VP9().keyFrameInterval; config_->kf_min_dist = config_->kf_max_dist; if (quality_scaler_experiment_.enabled) { // In that experiment webrtc wide quality scaler is used instead of libvpx // internal scaler. config_->rc_resize_allowed = 0; } else { config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0; } // Determine number of threads based on the image size and #cores. config_->g_threads = NumberOfThreads(config_->g_w, config_->g_h, settings.number_of_cores); is_flexible_mode_ = inst->VP9().flexibleMode; if (num_spatial_layers_ > 1 && codec_.mode == VideoCodecMode::kScreensharing && !is_flexible_mode_) { RTC_LOG(LS_ERROR) << "Flexible mode is required for screenshare with " "several spatial layers"; return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // External reference control is required for different frame rate on spatial // layers because libvpx generates rtp incompatible references in this case. external_ref_control_ = external_ref_ctrl_ || (num_spatial_layers_ > 1 && codec_.mode == VideoCodecMode::kScreensharing) || inter_layer_pred_ == InterLayerPredMode::kOn; if (num_temporal_layers_ == 1) { gof_.SetGofInfoVP9(kTemporalStructureMode1); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING; config_->ts_number_layers = 1; config_->ts_rate_decimator[0] = 1; config_->ts_periodicity = 1; config_->ts_layer_id[0] = 0; } else if (num_temporal_layers_ == 2) { gof_.SetGofInfoVP9(kTemporalStructureMode2); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101; config_->ts_number_layers = 2; config_->ts_rate_decimator[0] = 2; config_->ts_rate_decimator[1] = 1; config_->ts_periodicity = 2; config_->ts_layer_id[0] = 0; config_->ts_layer_id[1] = 1; } else if (num_temporal_layers_ == 3) { gof_.SetGofInfoVP9(kTemporalStructureMode3); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212; config_->ts_number_layers = 3; config_->ts_rate_decimator[0] = 4; config_->ts_rate_decimator[1] = 2; config_->ts_rate_decimator[2] = 1; config_->ts_periodicity = 4; config_->ts_layer_id[0] = 0; config_->ts_layer_id[1] = 2; config_->ts_layer_id[2] = 1; config_->ts_layer_id[3] = 2; } else { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (external_ref_control_) { config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; if (num_temporal_layers_ > 1 && num_spatial_layers_ > 1 && codec_.mode == VideoCodecMode::kScreensharing) { // External reference control for several temporal layers with different // frame rates on spatial layers is not implemented yet. return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } } ref_buf_ = {}; return InitAndSetControlSettings(inst); } int LibvpxVp9Encoder::NumberOfThreads(int width, int height, int number_of_cores) { // Keep the number of encoder threads equal to the possible number of column // tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS. if (width * height >= 1280 * 720 && number_of_cores > 4) { return 4; } else if (width * height >= 640 * 360 && number_of_cores > 2) { return 2; } else { // Use 2 threads for low res on mobile ARM. #ifdef MOBILE_ARM if (width * height >= 320 * 180 && number_of_cores > 2) { return 2; } #endif // 1 thread less than VGA. return 1; } } int LibvpxVp9Encoder::InitAndSetControlSettings(const VideoCodec* inst) { // Set QP-min/max per spatial and temporal layer. int tot_num_layers = num_spatial_layers_ * num_temporal_layers_; for (int i = 0; i < tot_num_layers; ++i) { svc_params_.max_quantizers[i] = config_->rc_max_quantizer; svc_params_.min_quantizers[i] = config_->rc_min_quantizer; } config_->ss_number_layers = num_spatial_layers_; if (svc_controller_) { auto stream_config = svc_controller_->StreamConfig(); for (int i = 0; i < stream_config.num_spatial_layers; ++i) { svc_params_.scaling_factor_num[i] = stream_config.scaling_factor_num[i]; svc_params_.scaling_factor_den[i] = stream_config.scaling_factor_den[i]; } } else if (num_spatial_layers_ > 1) { for (int i = 0; i < num_spatial_layers_; ++i) { const auto& layer = codec_.spatialLayers[i]; RTC_CHECK_GT(layer.width, 0); const int scale_factor = codec_.width / layer.width; RTC_DCHECK_GT(scale_factor, 0); // Ensure scaler factor is integer. if (scale_factor * layer.width != codec_.width) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Ensure scale factor is the same in both dimensions. if (scale_factor * layer.height != codec_.height) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Ensure scale factor is power of two. const bool is_pow_of_two = (scale_factor & (scale_factor - 1)) == 0; if (!is_pow_of_two) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } svc_params_.scaling_factor_num[i] = 1; svc_params_.scaling_factor_den[i] = scale_factor; RTC_DCHECK_GT(codec_.spatialLayers[i].maxFramerate, 0); RTC_DCHECK_LE(codec_.spatialLayers[i].maxFramerate, codec_.maxFramerate); if (i > 0) { // Frame rate of high spatial layer is supposed to be equal or higher // than frame rate of low spatial layer. RTC_DCHECK_GE(codec_.spatialLayers[i].maxFramerate, codec_.spatialLayers[i - 1].maxFramerate); } } } UpdatePerformanceFlags(); RTC_DCHECK_EQ(performance_flags_by_spatial_index_.size(), static_cast(num_spatial_layers_)); SvcRateAllocator init_allocator(codec_); current_bitrate_allocation_ = init_allocator.Allocate(VideoBitrateAllocationParameters( inst->startBitrate * 1000, inst->maxFramerate)); if (!SetSvcRates(current_bitrate_allocation_)) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } const vpx_codec_err_t rv = libvpx_->codec_enc_init( encoder_, vpx_codec_vp9_cx(), config_, config_->g_bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH); if (rv != VPX_CODEC_OK) { RTC_LOG(LS_ERROR) << "Init error: " << libvpx_->codec_err_to_string(rv); return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (performance_flags_.use_per_layer_speed) { for (int si = 0; si < num_spatial_layers_; ++si) { svc_params_.speed_per_layer[si] = performance_flags_by_spatial_index_[si].base_layer_speed; svc_params_.loopfilter_ctrl[si] = performance_flags_by_spatial_index_[si].deblock_mode; } bool denoiser_on = AllowDenoising() && inst->VP9().denoisingOn && performance_flags_by_spatial_index_[num_spatial_layers_ - 1] .allow_denoising; libvpx_->codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, denoiser_on ? 1 : 0); } libvpx_->codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT, rc_max_intra_target_); libvpx_->codec_control(encoder_, VP9E_SET_AQ_MODE, inst->VP9().adaptiveQpMode ? 3 : 0); libvpx_->codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0); libvpx_->codec_control(encoder_, VP9E_SET_SVC_GF_TEMPORAL_REF, 0); if (is_svc_) { libvpx_->codec_control(encoder_, VP9E_SET_SVC, 1); libvpx_->codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_); } if (!is_svc_ || !performance_flags_.use_per_layer_speed) { libvpx_->codec_control( encoder_, VP8E_SET_CPUUSED, performance_flags_by_spatial_index_.rbegin()->base_layer_speed); } if (num_spatial_layers_ > 1) { switch (inter_layer_pred_) { case InterLayerPredMode::kOn: libvpx_->codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 0); break; case InterLayerPredMode::kOff: libvpx_->codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 1); break; case InterLayerPredMode::kOnKeyPic: libvpx_->codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 2); break; default: RTC_DCHECK_NOTREACHED(); } memset(&svc_drop_frame_, 0, sizeof(svc_drop_frame_)); const bool reverse_constrained_drop_mode = inter_layer_pred_ == InterLayerPredMode::kOn && codec_.mode == VideoCodecMode::kScreensharing && num_spatial_layers_ > 1; if (reverse_constrained_drop_mode) { // Screenshare dropping mode: drop a layer only together with all lower // layers. This ensures that drops on lower layers won't reduce frame-rate // for higher layers and reference structure is RTP-compatible. svc_drop_frame_.framedrop_mode = CONSTRAINED_FROM_ABOVE_DROP; svc_drop_frame_.max_consec_drop = 5; for (size_t i = 0; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; } } else { if (svc_frame_drop_config_.enabled && svc_frame_drop_config_.layer_drop_mode == LAYER_DROP && is_flexible_mode_ && svc_controller_ && (inter_layer_pred_ == InterLayerPredMode::kOff || inter_layer_pred_ == InterLayerPredMode::kOnKeyPic)) { // SVC controller is required since it properly accounts for dropped // refs (unlike SetReferences(), which assumes full superframe drop). svc_drop_frame_.framedrop_mode = LAYER_DROP; } else { // Configure encoder to drop entire superframe whenever it needs to drop // a layer. This mode is preferred over per-layer dropping which causes // quality flickering and is not compatible with RTP non-flexible mode. svc_drop_frame_.framedrop_mode = FULL_SUPERFRAME_DROP; } svc_drop_frame_.max_consec_drop = svc_frame_drop_config_.enabled ? svc_frame_drop_config_.max_consec_drop : std::numeric_limits::max(); for (size_t i = 0; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; } } libvpx_->codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame_); } // Register callback for getting each spatial layer. vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = { LibvpxVp9Encoder::EncoderOutputCodedPacketCallback, reinterpret_cast(this)}; libvpx_->codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK, reinterpret_cast(&cbp)); // Control function to set the number of column tiles in encoding a frame, in // log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns. // The number tile columns will be capped by the encoder based on image size // (minimum width of tile column is 256 pixels, maximum is 4096). libvpx_->codec_control(encoder_, VP9E_SET_TILE_COLUMNS, static_cast((config_->g_threads >> 1))); // Turn on row-based multithreading. libvpx_->codec_control(encoder_, VP9E_SET_ROW_MT, 1); if (AllowDenoising() && !performance_flags_.use_per_layer_speed) { libvpx_->codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, inst->VP9().denoisingOn ? 1 : 0); } if (codec_.mode == VideoCodecMode::kScreensharing) { // Adjust internal parameters to screen content. libvpx_->codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1); } // Enable encoder skip of static/low content blocks. libvpx_->codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1); inited_ = true; config_changed_ = true; return WEBRTC_VIDEO_CODEC_OK; } uint32_t LibvpxVp9Encoder::MaxIntraTarget(uint32_t optimal_buffer_size) { // Set max to the optimal buffer level (normalized by target BR), // and scaled by a scale_par. // Max target size = scale_par * optimal_buffer_size * targetBR[Kbps]. // This value is presented in percentage of perFrameBw: // perFrameBw = targetBR[Kbps] * 1000 / framerate. // The target in % is as follows: float scale_par = 0.5; uint32_t target_pct = optimal_buffer_size * scale_par * codec_.maxFramerate / 10; // Don't go below 3 times the per frame bandwidth. const uint32_t min_intra_size = 300; return (target_pct < min_intra_size) ? min_intra_size : target_pct; } int LibvpxVp9Encoder::Encode(const VideoFrame& input_image, const std::vector* frame_types) { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (encoded_complete_callback_ == nullptr) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (num_active_spatial_layers_ == 0) { // All spatial layers are disabled, return without encoding anything. return WEBRTC_VIDEO_CODEC_OK; } // We only support one stream at the moment. if (frame_types && !frame_types->empty()) { if ((*frame_types)[0] == VideoFrameType::kVideoFrameKey) { force_key_frame_ = true; } } if (pics_since_key_ + 1 == static_cast(codec_.VP9()->keyFrameInterval)) { force_key_frame_ = true; } if (svc_controller_) { layer_frames_ = svc_controller_->NextFrameConfig(force_key_frame_); if (layer_frames_.empty()) { return WEBRTC_VIDEO_CODEC_ERROR; } if (layer_frames_.front().IsKeyframe()) { force_key_frame_ = true; } } vpx_svc_layer_id_t layer_id = {0}; if (!force_key_frame_) { const size_t gof_idx = (pics_since_key_ + 1) % gof_.num_frames_in_gof; layer_id.temporal_layer_id = gof_.temporal_idx[gof_idx]; if (codec_.mode == VideoCodecMode::kScreensharing) { const uint32_t frame_timestamp_ms = 1000 * input_image.rtp_timestamp() / kVideoPayloadTypeFrequency; // To ensure that several rate-limiters with different limits don't // interfere, they must be queried in order of increasing limit. bool use_steady_state_limiter = input_image.update_rect().IsEmpty() && num_steady_state_frames_ >= variable_framerate_screenshare::kFramesBeforeSteadyState; // Need to check all frame limiters, even if lower layers are disabled, // because variable frame-rate limiter should be checked after the first // layer. It's easier to overwrite active layers after, then check all // cases. for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { const float layer_fps = framerate_controller_[layer_id.spatial_layer_id].GetTargetRate(); // Use steady state rate-limiter at the correct place. if (use_steady_state_limiter && layer_fps > variable_framerate_screenshare::kMinFps - 1e-9) { if (variable_framerate_controller_.DropFrame(frame_timestamp_ms)) { layer_id.spatial_layer_id = num_active_spatial_layers_; } // Break always: if rate limiter triggered frame drop, no need to // continue; otherwise, the rate is less than the next limiters. break; } if (framerate_controller_[sl_idx].DropFrame(frame_timestamp_ms)) { ++layer_id.spatial_layer_id; } else { break; } } if (use_steady_state_limiter && layer_id.spatial_layer_id < num_active_spatial_layers_) { variable_framerate_controller_.AddFrame(frame_timestamp_ms); } } if (force_all_active_layers_) { layer_id.spatial_layer_id = first_active_layer_; force_all_active_layers_ = false; } RTC_DCHECK_LE(layer_id.spatial_layer_id, num_active_spatial_layers_); if (layer_id.spatial_layer_id >= num_active_spatial_layers_) { // Drop entire picture. return WEBRTC_VIDEO_CODEC_OK; } } // Need to set temporal layer id on ALL layers, even disabled ones. // Otherwise libvpx might produce frames on a disabled layer: // http://crbug.com/1051476 for (int sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { layer_id.temporal_layer_id_per_spatial[sl_idx] = layer_id.temporal_layer_id; } if (layer_id.spatial_layer_id < first_active_layer_) { layer_id.spatial_layer_id = first_active_layer_; } if (svc_controller_) { layer_id.spatial_layer_id = layer_frames_.front().SpatialId(); layer_id.temporal_layer_id = layer_frames_.front().TemporalId(); for (const auto& layer : layer_frames_) { layer_id.temporal_layer_id_per_spatial[layer.SpatialId()] = layer.TemporalId(); } SetActiveSpatialLayers(); } if (is_svc_ && performance_flags_.use_per_layer_speed) { // Update speed settings that might depend on temporal index. bool speed_updated = false; for (int sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { const int target_speed = layer_id.temporal_layer_id_per_spatial[sl_idx] == 0 ? performance_flags_by_spatial_index_[sl_idx].base_layer_speed : performance_flags_by_spatial_index_[sl_idx].high_layer_speed; if (svc_params_.speed_per_layer[sl_idx] != target_speed) { svc_params_.speed_per_layer[sl_idx] = target_speed; speed_updated = true; } } if (speed_updated) { libvpx_->codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_); } } libvpx_->codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id); if (num_spatial_layers_ > 1) { // Update frame dropping settings as they may change on per-frame basis. libvpx_->codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame_); } if (config_changed_) { if (libvpx_->codec_enc_config_set(encoder_, config_)) { return WEBRTC_VIDEO_CODEC_ERROR; } if (!performance_flags_.use_per_layer_speed) { // Not setting individual speeds per layer, find the highest active // resolution instead and base the speed on that. for (int i = num_spatial_layers_ - 1; i >= 0; --i) { if (config_->ss_target_bitrate[i] > 0) { int width = (svc_params_.scaling_factor_num[i] * config_->g_w) / svc_params_.scaling_factor_den[i]; int height = (svc_params_.scaling_factor_num[i] * config_->g_h) / svc_params_.scaling_factor_den[i]; int speed = std::prev(performance_flags_.settings_by_resolution.lower_bound( width * height)) ->second.base_layer_speed; libvpx_->codec_control(encoder_, VP8E_SET_CPUUSED, speed); break; } } } config_changed_ = false; } RTC_DCHECK_EQ(input_image.width(), raw_->d_w); RTC_DCHECK_EQ(input_image.height(), raw_->d_h); // Set input image for use in the callback. // This was necessary since you need some information from input_image. // You can save only the necessary information (such as timestamp) instead of // doing this. input_image_ = &input_image; // In case we need to map the buffer, `mapped_buffer` is used to keep it alive // through reference counting until after encoding has finished. rtc::scoped_refptr mapped_buffer; const I010BufferInterface* i010_buffer; rtc::scoped_refptr i010_copy; switch (profile_) { case VP9Profile::kProfile0: { mapped_buffer = PrepareBufferForProfile0(input_image.video_frame_buffer()); if (!mapped_buffer) { return WEBRTC_VIDEO_CODEC_ERROR; } break; } case VP9Profile::kProfile1: { RTC_DCHECK_NOTREACHED(); break; } case VP9Profile::kProfile2: { // We can inject kI010 frames directly for encode. All other formats // should be converted to it. switch (input_image.video_frame_buffer()->type()) { case VideoFrameBuffer::Type::kI010: { i010_buffer = input_image.video_frame_buffer()->GetI010(); break; } default: { auto i420_buffer = input_image.video_frame_buffer()->ToI420(); if (!i420_buffer) { RTC_LOG(LS_ERROR) << "Failed to convert " << VideoFrameBufferTypeToString( input_image.video_frame_buffer()->type()) << " image to I420. Can't encode frame."; return WEBRTC_VIDEO_CODEC_ERROR; } i010_copy = I010Buffer::Copy(*i420_buffer); i010_buffer = i010_copy.get(); } } raw_->planes[VPX_PLANE_Y] = const_cast( reinterpret_cast(i010_buffer->DataY())); raw_->planes[VPX_PLANE_U] = const_cast( reinterpret_cast(i010_buffer->DataU())); raw_->planes[VPX_PLANE_V] = const_cast( reinterpret_cast(i010_buffer->DataV())); raw_->stride[VPX_PLANE_Y] = i010_buffer->StrideY() * 2; raw_->stride[VPX_PLANE_U] = i010_buffer->StrideU() * 2; raw_->stride[VPX_PLANE_V] = i010_buffer->StrideV() * 2; break; } case VP9Profile::kProfile3: { RTC_DCHECK_NOTREACHED(); break; } } vpx_enc_frame_flags_t flags = 0; if (force_key_frame_) { flags = VPX_EFLAG_FORCE_KF; } if (svc_controller_) { vpx_svc_ref_frame_config_t ref_config = Vp9References(layer_frames_); libvpx_->codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_config); } else if (external_ref_control_) { vpx_svc_ref_frame_config_t ref_config = SetReferences(force_key_frame_, layer_id.spatial_layer_id); if (VideoCodecMode::kScreensharing == codec_.mode) { for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { ref_config.duration[sl_idx] = static_cast( 90000 / (std::min(static_cast(codec_.maxFramerate), framerate_controller_[sl_idx].GetTargetRate()))); } } libvpx_->codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_config); } first_frame_in_picture_ = true; // TODO(ssilkin): Frame duration should be specified per spatial layer // since their frame rate can be different. For now calculate frame duration // based on target frame rate of the highest spatial layer, which frame rate // is supposed to be equal or higher than frame rate of low spatial layers. // Also, timestamp should represent actual time passed since previous frame // (not 'expected' time). Then rate controller can drain buffer more // accurately. RTC_DCHECK_GE(framerate_controller_.size(), num_active_spatial_layers_); float target_framerate_fps = (codec_.mode == VideoCodecMode::kScreensharing) ? std::min(static_cast(codec_.maxFramerate), framerate_controller_[num_active_spatial_layers_ - 1] .GetTargetRate()) : codec_.maxFramerate; uint32_t duration = static_cast(90000 / target_framerate_fps); const vpx_codec_err_t rv = libvpx_->codec_encode( encoder_, raw_, timestamp_, duration, flags, VPX_DL_REALTIME); if (rv != VPX_CODEC_OK) { RTC_LOG(LS_ERROR) << "Encoding error: " << libvpx_->codec_err_to_string(rv) << "\n" "Details: " << libvpx_->codec_error(encoder_) << "\n" << libvpx_->codec_error_detail(encoder_); return WEBRTC_VIDEO_CODEC_ERROR; } timestamp_ += duration; return WEBRTC_VIDEO_CODEC_OK; } bool LibvpxVp9Encoder::PopulateCodecSpecific(CodecSpecificInfo* codec_specific, absl::optional* spatial_idx, absl::optional* temporal_idx, const vpx_codec_cx_pkt& pkt) { RTC_CHECK(codec_specific != nullptr); codec_specific->codecType = kVideoCodecVP9; CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9); vp9_info->first_frame_in_picture = first_frame_in_picture_; vp9_info->flexible_mode = is_flexible_mode_; if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) { pics_since_key_ = 0; } else if (first_frame_in_picture_) { ++pics_since_key_; } vpx_svc_layer_id_t layer_id = {0}; libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); // Can't have keyframe with non-zero temporal layer. RTC_DCHECK(pics_since_key_ != 0 || layer_id.temporal_layer_id == 0); RTC_CHECK_GT(num_temporal_layers_, 0); RTC_CHECK_GT(num_active_spatial_layers_, 0); if (num_temporal_layers_ == 1) { RTC_CHECK_EQ(layer_id.temporal_layer_id, 0); vp9_info->temporal_idx = kNoTemporalIdx; *temporal_idx = absl::nullopt; } else { vp9_info->temporal_idx = layer_id.temporal_layer_id; *temporal_idx = layer_id.temporal_layer_id; } if (num_active_spatial_layers_ == 1) { RTC_CHECK_EQ(layer_id.spatial_layer_id, 0); *spatial_idx = absl::nullopt; } else { *spatial_idx = layer_id.spatial_layer_id; } const bool is_key_pic = (pics_since_key_ == 0); const bool is_inter_layer_pred_allowed = (inter_layer_pred_ == InterLayerPredMode::kOn || (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic)); // Always set inter_layer_predicted to true on high layer frame if inter-layer // prediction (ILP) is allowed even if encoder didn't actually use it. // Setting inter_layer_predicted to false would allow receiver to decode high // layer frame without decoding low layer frame. If that would happen (e.g. // if low layer frame is lost) then receiver won't be able to decode next high // layer frame which uses ILP. vp9_info->inter_layer_predicted = first_frame_in_picture_ ? false : is_inter_layer_pred_allowed; // Mark all low spatial layer frames as references (not just frames of // active low spatial layers) if inter-layer prediction is enabled since // these frames are indirect references of high spatial layer, which can // later be enabled without key frame. vp9_info->non_ref_for_inter_layer_pred = !is_inter_layer_pred_allowed || layer_id.spatial_layer_id + 1 == num_spatial_layers_; // Always populate this, so that the packetizer can properly set the marker // bit. vp9_info->num_spatial_layers = num_active_spatial_layers_; vp9_info->first_active_layer = first_active_layer_; vp9_info->num_ref_pics = 0; FillReferenceIndices(pkt, pics_since_key_, vp9_info->inter_layer_predicted, vp9_info); if (vp9_info->flexible_mode) { vp9_info->gof_idx = kNoGofIdx; if (!svc_controller_) { if (num_temporal_layers_ == 1) { vp9_info->temporal_up_switch = true; } else { // In flexible mode with > 1 temporal layer but no SVC controller we // can't techincally determine if a frame is an upswitch point, use // gof-based data as proxy for now. // TODO(sprang): Remove once SVC controller is the only choice. vp9_info->gof_idx = static_cast(pics_since_key_ % gof_.num_frames_in_gof); vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx]; } } } else { vp9_info->gof_idx = static_cast(pics_since_key_ % gof_.num_frames_in_gof); vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx]; RTC_DCHECK(vp9_info->num_ref_pics == gof_.num_ref_pics[vp9_info->gof_idx] || vp9_info->num_ref_pics == 0); } vp9_info->inter_pic_predicted = (!is_key_pic && vp9_info->num_ref_pics > 0); // Write SS on key frame of independently coded spatial layers and on base // temporal/spatial layer frame if number of layers changed without issuing // of key picture (inter-layer prediction is enabled). const bool is_key_frame = is_key_pic && !vp9_info->inter_layer_predicted; if (is_key_frame || (ss_info_needed_ && layer_id.temporal_layer_id == 0 && layer_id.spatial_layer_id == first_active_layer_)) { vp9_info->ss_data_available = true; vp9_info->spatial_layer_resolution_present = true; // Signal disabled layers. for (size_t i = 0; i < first_active_layer_; ++i) { vp9_info->width[i] = 0; vp9_info->height[i] = 0; } for (size_t i = first_active_layer_; i < num_active_spatial_layers_; ++i) { vp9_info->width[i] = codec_.width * svc_params_.scaling_factor_num[i] / svc_params_.scaling_factor_den[i]; vp9_info->height[i] = codec_.height * svc_params_.scaling_factor_num[i] / svc_params_.scaling_factor_den[i]; } if (vp9_info->flexible_mode) { vp9_info->gof.num_frames_in_gof = 0; } else { vp9_info->gof.CopyGofInfoVP9(gof_); } ss_info_needed_ = false; } else { vp9_info->ss_data_available = false; } first_frame_in_picture_ = false; // Populate codec-agnostic section in the codec specific structure. if (svc_controller_) { auto it = absl::c_find_if( layer_frames_, [&](const ScalableVideoController::LayerFrameConfig& config) { return config.SpatialId() == layer_id.spatial_layer_id; }); if (it == layer_frames_.end()) { RTC_LOG(LS_ERROR) << "Encoder produced a frame for layer S" << layer_id.spatial_layer_id << "T" << layer_id.temporal_layer_id << " that wasn't requested."; return false; } codec_specific->generic_frame_info = svc_controller_->OnEncodeDone(*it); if (is_key_frame) { codec_specific->template_structure = svc_controller_->DependencyStructure(); auto& resolutions = codec_specific->template_structure->resolutions; resolutions.resize(num_spatial_layers_); for (int sid = 0; sid < num_spatial_layers_; ++sid) { resolutions[sid] = RenderResolution( /*width=*/codec_.width * svc_params_.scaling_factor_num[sid] / svc_params_.scaling_factor_den[sid], /*height=*/codec_.height * svc_params_.scaling_factor_num[sid] / svc_params_.scaling_factor_den[sid]); } } if (is_flexible_mode_) { // Populate data for legacy temporal-upswitch state. // We can switch up to a higher temporal layer only if all temporal layers // higher than this (within the current spatial layer) are switch points. vp9_info->temporal_up_switch = true; for (int i = layer_id.temporal_layer_id + 1; i < num_temporal_layers_; ++i) { // Assumes decode targets are always ordered first by spatial then by // temporal id. size_t dti_index = (layer_id.spatial_layer_id * num_temporal_layers_) + i; vp9_info->temporal_up_switch &= (codec_specific->generic_frame_info ->decode_target_indications[dti_index] == DecodeTargetIndication::kSwitch); } } } // If returned the configured scalability mode in standard mode, otherwise // create one if it is based on layer activation. if (scalability_mode_) { codec_specific->scalability_mode = scalability_mode_; } else { codec_specific_.scalability_mode = MakeScalabilityMode( num_active_spatial_layers_, num_temporal_layers_, inter_layer_pred_, num_active_spatial_layers_ > 1 ? absl::make_optional(ScalabilityModeResolutionRatio::kTwoToOne) : absl::nullopt, /*shift=*/false); } return true; } void LibvpxVp9Encoder::FillReferenceIndices(const vpx_codec_cx_pkt& pkt, const size_t pic_num, const bool inter_layer_predicted, CodecSpecificInfoVP9* vp9_info) { vpx_svc_layer_id_t layer_id = {0}; libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); const bool is_key_frame = (pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; std::vector ref_buf_list; if (is_svc_) { vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; libvpx_->codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); char ref_buf_flags[] = "00000000"; // There should be one character per buffer + 1 termination '\0'. static_assert(sizeof(ref_buf_flags) == kNumVp9Buffers + 1); if (enc_layer_conf.reference_last[layer_id.spatial_layer_id]) { const size_t fb_idx = enc_layer_conf.lst_fb_idx[layer_id.spatial_layer_id]; RTC_DCHECK_LT(fb_idx, ref_buf_.size()); if (std::find(ref_buf_list.begin(), ref_buf_list.end(), ref_buf_[fb_idx]) == ref_buf_list.end()) { ref_buf_list.push_back(ref_buf_[fb_idx]); ref_buf_flags[fb_idx] = '1'; } } if (enc_layer_conf.reference_alt_ref[layer_id.spatial_layer_id]) { const size_t fb_idx = enc_layer_conf.alt_fb_idx[layer_id.spatial_layer_id]; RTC_DCHECK_LT(fb_idx, ref_buf_.size()); if (std::find(ref_buf_list.begin(), ref_buf_list.end(), ref_buf_[fb_idx]) == ref_buf_list.end()) { ref_buf_list.push_back(ref_buf_[fb_idx]); ref_buf_flags[fb_idx] = '1'; } } if (enc_layer_conf.reference_golden[layer_id.spatial_layer_id]) { const size_t fb_idx = enc_layer_conf.gld_fb_idx[layer_id.spatial_layer_id]; RTC_DCHECK_LT(fb_idx, ref_buf_.size()); if (std::find(ref_buf_list.begin(), ref_buf_list.end(), ref_buf_[fb_idx]) == ref_buf_list.end()) { ref_buf_list.push_back(ref_buf_[fb_idx]); ref_buf_flags[fb_idx] = '1'; } } RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " << layer_id.spatial_layer_id << " tl " << layer_id.temporal_layer_id << " refered buffers " << ref_buf_flags; } else if (!is_key_frame) { RTC_DCHECK_EQ(num_spatial_layers_, 1); RTC_DCHECK_EQ(num_temporal_layers_, 1); // In non-SVC mode encoder doesn't provide reference list. Assume each frame // refers previous one, which is stored in buffer 0. ref_buf_list.push_back(ref_buf_[0]); } std::vector ref_pid_list; vp9_info->num_ref_pics = 0; for (const RefFrameBuffer& ref_buf : ref_buf_list) { RTC_DCHECK_LE(ref_buf.pic_num, pic_num); if (ref_buf.pic_num < pic_num) { if (inter_layer_pred_ != InterLayerPredMode::kOn) { // RTP spec limits temporal prediction to the same spatial layer. // It is safe to ignore this requirement if inter-layer prediction is // enabled for all frames when all base frames are relayed to receiver. RTC_DCHECK_EQ(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); } else { RTC_DCHECK_LE(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); } RTC_DCHECK_LE(ref_buf.temporal_layer_id, layer_id.temporal_layer_id); // Encoder may reference several spatial layers on the same previous // frame in case if some spatial layers are skipped on the current frame. // We shouldn't put duplicate references as it may break some old // clients and isn't RTP compatible. if (std::find(ref_pid_list.begin(), ref_pid_list.end(), ref_buf.pic_num) != ref_pid_list.end()) { continue; } ref_pid_list.push_back(ref_buf.pic_num); const size_t p_diff = pic_num - ref_buf.pic_num; RTC_DCHECK_LE(p_diff, 127UL); vp9_info->p_diff[vp9_info->num_ref_pics] = static_cast(p_diff); ++vp9_info->num_ref_pics; } else { RTC_DCHECK(inter_layer_predicted); // RTP spec only allows to use previous spatial layer for inter-layer // prediction. RTC_DCHECK_EQ(ref_buf.spatial_layer_id + 1, layer_id.spatial_layer_id); } } } void LibvpxVp9Encoder::UpdateReferenceBuffers(const vpx_codec_cx_pkt& pkt, const size_t pic_num) { vpx_svc_layer_id_t layer_id = {0}; libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); RefFrameBuffer frame_buf = {.pic_num = pic_num, .spatial_layer_id = layer_id.spatial_layer_id, .temporal_layer_id = layer_id.temporal_layer_id}; if (is_svc_) { vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; libvpx_->codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); const int update_buffer_slot = enc_layer_conf.update_buffer_slot[layer_id.spatial_layer_id]; for (size_t i = 0; i < ref_buf_.size(); ++i) { if (update_buffer_slot & (1 << i)) { ref_buf_[i] = frame_buf; } } RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " << layer_id.spatial_layer_id << " tl " << layer_id.temporal_layer_id << " updated buffers " << (update_buffer_slot & (1 << 0) ? 1 : 0) << (update_buffer_slot & (1 << 1) ? 1 : 0) << (update_buffer_slot & (1 << 2) ? 1 : 0) << (update_buffer_slot & (1 << 3) ? 1 : 0) << (update_buffer_slot & (1 << 4) ? 1 : 0) << (update_buffer_slot & (1 << 5) ? 1 : 0) << (update_buffer_slot & (1 << 6) ? 1 : 0) << (update_buffer_slot & (1 << 7) ? 1 : 0); } else { RTC_DCHECK_EQ(num_spatial_layers_, 1); RTC_DCHECK_EQ(num_temporal_layers_, 1); // In non-svc mode encoder doesn't provide reference list. Assume each frame // is reference and stored in buffer 0. ref_buf_[0] = frame_buf; } } vpx_svc_ref_frame_config_t LibvpxVp9Encoder::SetReferences( bool is_key_pic, int first_active_spatial_layer_id) { // kRefBufIdx, kUpdBufIdx need to be updated to support longer GOFs. RTC_DCHECK_LE(gof_.num_frames_in_gof, 4); vpx_svc_ref_frame_config_t ref_config; memset(&ref_config, 0, sizeof(ref_config)); const size_t num_temporal_refs = std::max(1, num_temporal_layers_ - 1); const bool is_inter_layer_pred_allowed = inter_layer_pred_ == InterLayerPredMode::kOn || (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic); absl::optional last_updated_buf_idx; // Put temporal reference to LAST and spatial reference to GOLDEN. Update // frame buffer (i.e. store encoded frame) if current frame is a temporal // reference (i.e. it belongs to a low temporal layer) or it is a spatial // reference. In later case, always store spatial reference in the last // reference frame buffer. // For the case of 3 temporal and 3 spatial layers we need 6 frame buffers // for temporal references plus 1 buffer for spatial reference. 7 buffers // in total. for (int sl_idx = first_active_spatial_layer_id; sl_idx < num_active_spatial_layers_; ++sl_idx) { const size_t curr_pic_num = is_key_pic ? 0 : pics_since_key_ + 1; const size_t gof_idx = curr_pic_num % gof_.num_frames_in_gof; if (!is_key_pic) { // Set up temporal reference. const int buf_idx = sl_idx * num_temporal_refs + kRefBufIdx[gof_idx]; // Last reference frame buffer is reserved for spatial reference. It is // not supposed to be used for temporal prediction. RTC_DCHECK_LT(buf_idx, kNumVp9Buffers - 1); const int pid_diff = curr_pic_num - ref_buf_[buf_idx].pic_num; // Incorrect spatial layer may be in the buffer due to a key-frame. const bool same_spatial_layer = ref_buf_[buf_idx].spatial_layer_id == sl_idx; bool correct_pid = false; if (is_flexible_mode_) { correct_pid = pid_diff > 0 && pid_diff < kMaxAllowedPidDiff; } else { // Below code assumes single temporal referecence. RTC_DCHECK_EQ(gof_.num_ref_pics[gof_idx], 1); correct_pid = pid_diff == gof_.pid_diff[gof_idx][0]; } if (same_spatial_layer && correct_pid) { ref_config.lst_fb_idx[sl_idx] = buf_idx; ref_config.reference_last[sl_idx] = 1; } else { // This reference doesn't match with one specified by GOF. This can // only happen if spatial layer is enabled dynamically without key // frame. Spatial prediction is supposed to be enabled in this case. RTC_DCHECK(is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id); } } if (is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id) { // Set up spatial reference. RTC_DCHECK(last_updated_buf_idx); ref_config.gld_fb_idx[sl_idx] = *last_updated_buf_idx; ref_config.reference_golden[sl_idx] = 1; } else { RTC_DCHECK(ref_config.reference_last[sl_idx] != 0 || sl_idx == first_active_spatial_layer_id || inter_layer_pred_ == InterLayerPredMode::kOff); } last_updated_buf_idx.reset(); if (gof_.temporal_idx[gof_idx] < num_temporal_layers_ - 1 || num_temporal_layers_ == 1) { last_updated_buf_idx = sl_idx * num_temporal_refs + kUpdBufIdx[gof_idx]; // Ensure last frame buffer is not used for temporal prediction (it is // reserved for spatial reference). RTC_DCHECK_LT(*last_updated_buf_idx, kNumVp9Buffers - 1); } else if (is_inter_layer_pred_allowed) { last_updated_buf_idx = kNumVp9Buffers - 1; } if (last_updated_buf_idx) { ref_config.update_buffer_slot[sl_idx] = 1 << *last_updated_buf_idx; } } return ref_config; } void LibvpxVp9Encoder::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) { RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT); if (pkt->data.frame.sz == 0) { // Ignore dropped frame. return; } vpx_svc_layer_id_t layer_id = {0}; libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); encoded_image_.SetEncodedData(EncodedImageBuffer::Create( static_cast(pkt->data.frame.buf), pkt->data.frame.sz)); codec_specific_ = {}; absl::optional spatial_index; absl::optional temporal_index; if (!PopulateCodecSpecific(&codec_specific_, &spatial_index, &temporal_index, *pkt)) { // Drop the frame. encoded_image_.set_size(0); return; } encoded_image_.SetSpatialIndex(spatial_index); encoded_image_.SetTemporalIndex(temporal_index); const bool is_key_frame = ((pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false) && !codec_specific_.codecSpecific.VP9.inter_layer_predicted; // Ensure encoder issued key frame on request. RTC_DCHECK(is_key_frame || !force_key_frame_); // Check if encoded frame is a key frame. encoded_image_._frameType = VideoFrameType::kVideoFrameDelta; if (is_key_frame) { encoded_image_._frameType = VideoFrameType::kVideoFrameKey; force_key_frame_ = false; } UpdateReferenceBuffers(*pkt, pics_since_key_); TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_.size()); encoded_image_.SetRtpTimestamp(input_image_->rtp_timestamp()); encoded_image_.SetCaptureTimeIdentifier( input_image_->capture_time_identifier()); encoded_image_.SetColorSpace(input_image_->color_space()); encoded_image_._encodedHeight = pkt->data.frame.height[layer_id.spatial_layer_id]; encoded_image_._encodedWidth = pkt->data.frame.width[layer_id.spatial_layer_id]; int qp = -1; libvpx_->codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp); encoded_image_.qp_ = qp; const bool end_of_picture = encoded_image_.SpatialIndex().value_or(0) + 1 == num_active_spatial_layers_; DeliverBufferedFrame(end_of_picture); } void LibvpxVp9Encoder::DeliverBufferedFrame(bool end_of_picture) { if (encoded_image_.size() > 0) { if (num_spatial_layers_ > 1) { // Restore frame dropping settings, as dropping may be temporary forbidden // due to dynamically enabled layers. for (size_t i = 0; i < num_spatial_layers_; ++i) { svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; } } codec_specific_.end_of_picture = end_of_picture; encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific_); if (codec_.mode == VideoCodecMode::kScreensharing) { const uint8_t spatial_idx = encoded_image_.SpatialIndex().value_or(0); const uint32_t frame_timestamp_ms = 1000 * encoded_image_.RtpTimestamp() / kVideoPayloadTypeFrequency; framerate_controller_[spatial_idx].AddFrame(frame_timestamp_ms); const size_t steady_state_size = SteadyStateSize( spatial_idx, codec_specific_.codecSpecific.VP9.temporal_idx); // Only frames on spatial layers, which may be limited in a steady state // are considered for steady state detection. if (framerate_controller_[spatial_idx].GetTargetRate() > variable_framerate_screenshare::kMinFps + 1e-9) { if (encoded_image_.qp_ <= variable_framerate_screenshare::kMinQP && encoded_image_.size() <= steady_state_size) { ++num_steady_state_frames_; } else { num_steady_state_frames_ = 0; } } } encoded_image_.set_size(0); } } int LibvpxVp9Encoder::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { encoded_complete_callback_ = callback; return WEBRTC_VIDEO_CODEC_OK; } VideoEncoder::EncoderInfo LibvpxVp9Encoder::GetEncoderInfo() const { EncoderInfo info; info.supports_native_handle = false; info.implementation_name = "libvpx"; if (quality_scaler_experiment_.enabled && inited_ && codec_.VP9().automaticResizeOn) { info.scaling_settings = VideoEncoder::ScalingSettings( quality_scaler_experiment_.low_qp, quality_scaler_experiment_.high_qp); } else { info.scaling_settings = VideoEncoder::ScalingSettings::kOff; } info.has_trusted_rate_controller = trusted_rate_controller_; info.is_hardware_accelerated = false; if (inited_) { // Find the max configured fps of any active spatial layer. float max_fps = 0.0; for (size_t si = 0; si < num_spatial_layers_; ++si) { if (codec_.spatialLayers[si].active && codec_.spatialLayers[si].maxFramerate > max_fps) { max_fps = codec_.spatialLayers[si].maxFramerate; } } for (size_t si = 0; si < num_spatial_layers_; ++si) { info.fps_allocation[si].clear(); if (!codec_.spatialLayers[si].active) { continue; } // This spatial layer may already use a fraction of the total frame rate. const float sl_fps_fraction = codec_.spatialLayers[si].maxFramerate / max_fps; for (size_t ti = 0; ti < num_temporal_layers_; ++ti) { const uint32_t decimator = num_temporal_layers_ <= 1 ? 1 : config_->ts_rate_decimator[ti]; RTC_DCHECK_GT(decimator, 0); info.fps_allocation[si].push_back( rtc::saturated_cast(EncoderInfo::kMaxFramerateFraction * (sl_fps_fraction / decimator))); } } if (profile_ == VP9Profile::kProfile0) { info.preferred_pixel_formats = {VideoFrameBuffer::Type::kI420, VideoFrameBuffer::Type::kNV12}; } } if (!encoder_info_override_.resolution_bitrate_limits().empty()) { info.resolution_bitrate_limits = encoder_info_override_.resolution_bitrate_limits(); } return info; } size_t LibvpxVp9Encoder::SteadyStateSize(int sid, int tid) { const size_t bitrate_bps = current_bitrate_allocation_.GetBitrate( sid, tid == kNoTemporalIdx ? 0 : tid); const float fps = (codec_.mode == VideoCodecMode::kScreensharing) ? std::min(static_cast(codec_.maxFramerate), framerate_controller_[sid].GetTargetRate()) : codec_.maxFramerate; return static_cast( bitrate_bps / (8 * fps) * (100 - variable_framerate_screenshare::kUndershootPct) / 100 + 0.5); } // static LibvpxVp9Encoder::QualityScalerExperiment LibvpxVp9Encoder::ParseQualityScalerConfig(const FieldTrialsView& trials) { FieldTrialFlag disabled = FieldTrialFlag("Disabled"); FieldTrialParameter low_qp("low_qp", kLowVp9QpThreshold); FieldTrialParameter high_qp("hihg_qp", kHighVp9QpThreshold); ParseFieldTrial({&disabled, &low_qp, &high_qp}, trials.Lookup("WebRTC-VP9QualityScaler")); QualityScalerExperiment config; config.enabled = !disabled.Get(); RTC_LOG(LS_INFO) << "Webrtc quality scaler for vp9 is " << (config.enabled ? "enabled." : "disabled"); config.low_qp = low_qp.Get(); config.high_qp = high_qp.Get(); return config; } LibvpxVp9Encoder::SvcFrameDropConfig LibvpxVp9Encoder::ParseSvcFrameDropConfig( const FieldTrialsView& trials) { FieldTrialFlag enabled = FieldTrialFlag("Enabled"); FieldTrialParameter layer_drop_mode("layer_drop_mode", FULL_SUPERFRAME_DROP); FieldTrialParameter max_consec_drop("max_consec_drop", std::numeric_limits::max()); ParseFieldTrial({&enabled, &layer_drop_mode, &max_consec_drop}, trials.Lookup("WebRTC-LibvpxVp9Encoder-SvcFrameDropConfig")); SvcFrameDropConfig config; config.enabled = enabled.Get(); config.layer_drop_mode = layer_drop_mode.Get(); config.max_consec_drop = max_consec_drop.Get(); RTC_LOG(LS_INFO) << "Libvpx VP9 encoder SVC frame drop config: " << (config.enabled ? "enabled" : "disabled") << " layer_drop_mode " << config.layer_drop_mode << " max_consec_drop " << config.max_consec_drop; return config; } void LibvpxVp9Encoder::UpdatePerformanceFlags() { flat_map params_by_resolution; if (codec_.GetVideoEncoderComplexity() == VideoCodecComplexity::kComplexityLow) { // For low tier devices, always use speed 9. Only disable upper // layer deblocking below QCIF. params_by_resolution[0] = {.base_layer_speed = 9, .high_layer_speed = 9, .deblock_mode = 1, .allow_denoising = true}; params_by_resolution[352 * 288] = {.base_layer_speed = 9, .high_layer_speed = 9, .deblock_mode = 0, .allow_denoising = true}; } else { params_by_resolution = performance_flags_.settings_by_resolution; } const auto find_speed = [&](int min_pixel_count) { RTC_DCHECK(!params_by_resolution.empty()); auto it = params_by_resolution.upper_bound(min_pixel_count); return std::prev(it)->second; }; performance_flags_by_spatial_index_.clear(); if (is_svc_) { for (int si = 0; si < num_spatial_layers_; ++si) { performance_flags_by_spatial_index_.push_back(find_speed( codec_.spatialLayers[si].width * codec_.spatialLayers[si].height)); } } else { performance_flags_by_spatial_index_.push_back( find_speed(codec_.width * codec_.height)); } } // static LibvpxVp9Encoder::PerformanceFlags LibvpxVp9Encoder::ParsePerformanceFlagsFromTrials( const FieldTrialsView& trials) { struct Params : public PerformanceFlags::ParameterSet { int min_pixel_count = 0; }; FieldTrialStructList trials_list( {FieldTrialStructMember("min_pixel_count", [](Params* p) { return &p->min_pixel_count; }), FieldTrialStructMember("high_layer_speed", [](Params* p) { return &p->high_layer_speed; }), FieldTrialStructMember("base_layer_speed", [](Params* p) { return &p->base_layer_speed; }), FieldTrialStructMember("deblock_mode", [](Params* p) { return &p->deblock_mode; }), FieldTrialStructMember("denoiser", [](Params* p) { return &p->allow_denoising; })}, {}); FieldTrialFlag per_layer_speed("use_per_layer_speed"); ParseFieldTrial({&trials_list, &per_layer_speed}, trials.Lookup("WebRTC-VP9-PerformanceFlags")); PerformanceFlags flags; flags.use_per_layer_speed = per_layer_speed.Get(); constexpr int kMinSpeed = 1; constexpr int kMaxSpeed = 9; for (auto& f : trials_list.Get()) { if (f.base_layer_speed < kMinSpeed || f.base_layer_speed > kMaxSpeed || f.high_layer_speed < kMinSpeed || f.high_layer_speed > kMaxSpeed || f.deblock_mode < 0 || f.deblock_mode > 2) { RTC_LOG(LS_WARNING) << "Ignoring invalid performance flags: " << "min_pixel_count = " << f.min_pixel_count << ", high_layer_speed = " << f.high_layer_speed << ", base_layer_speed = " << f.base_layer_speed << ", deblock_mode = " << f.deblock_mode; continue; } flags.settings_by_resolution[f.min_pixel_count] = f; } if (flags.settings_by_resolution.empty()) { return GetDefaultPerformanceFlags(); } return flags; } // static LibvpxVp9Encoder::PerformanceFlags LibvpxVp9Encoder::GetDefaultPerformanceFlags() { PerformanceFlags flags; flags.use_per_layer_speed = true; #ifdef MOBILE_ARM // Speed 8 on all layers for all resolutions. flags.settings_by_resolution[0] = {.base_layer_speed = 8, .high_layer_speed = 8, .deblock_mode = 0, .allow_denoising = true}; #else // For smaller resolutions, use lower speed setting for the temporal base // layer (get some coding gain at the cost of increased encoding complexity). // Set encoder Speed 5 for TL0, encoder Speed 8 for upper temporal layers, and // disable deblocking for upper-most temporal layers. flags.settings_by_resolution[0] = {.base_layer_speed = 5, .high_layer_speed = 8, .deblock_mode = 1, .allow_denoising = true}; // Use speed 7 for QCIF and above. // Set encoder Speed 7 for TL0, encoder Speed 8 for upper temporal layers, and // enable deblocking for all temporal layers. flags.settings_by_resolution[352 * 288] = {.base_layer_speed = 7, .high_layer_speed = 8, .deblock_mode = 0, .allow_denoising = true}; // For very high resolution (1080p and up), turn the speed all the way up // since this is very CPU intensive. Also disable denoising to save CPU, at // these resolutions denoising appear less effective and hopefully you also // have a less noisy video source at this point. flags.settings_by_resolution[1920 * 1080] = {.base_layer_speed = 9, .high_layer_speed = 9, .deblock_mode = 0, .allow_denoising = false}; #endif return flags; } void LibvpxVp9Encoder::MaybeRewrapRawWithFormat(const vpx_img_fmt fmt) { if (!raw_) { raw_ = libvpx_->img_wrap(nullptr, fmt, codec_.width, codec_.height, 1, nullptr); } else if (raw_->fmt != fmt) { RTC_LOG(LS_INFO) << "Switching VP9 encoder pixel format to " << (fmt == VPX_IMG_FMT_NV12 ? "NV12" : "I420"); libvpx_->img_free(raw_); raw_ = libvpx_->img_wrap(nullptr, fmt, codec_.width, codec_.height, 1, nullptr); } // else no-op since the image is already in the right format. } rtc::scoped_refptr LibvpxVp9Encoder::PrepareBufferForProfile0( rtc::scoped_refptr buffer) { absl::InlinedVector supported_formats = {VideoFrameBuffer::Type::kI420, VideoFrameBuffer::Type::kNV12}; rtc::scoped_refptr mapped_buffer; if (buffer->type() != VideoFrameBuffer::Type::kNative) { // `buffer` is already mapped. mapped_buffer = buffer; } else { // Attempt to map to one of the supported formats. mapped_buffer = buffer->GetMappedFrameBuffer(supported_formats); } if (!mapped_buffer || (absl::c_find(supported_formats, mapped_buffer->type()) == supported_formats.end() && mapped_buffer->type() != VideoFrameBuffer::Type::kI420A)) { // Unknown pixel format or unable to map, convert to I420 and prepare that // buffer instead to ensure Scale() is safe to use. auto converted_buffer = buffer->ToI420(); if (!converted_buffer) { RTC_LOG(LS_ERROR) << "Failed to convert " << VideoFrameBufferTypeToString(buffer->type()) << " image to I420. Can't encode frame."; return {}; } RTC_CHECK(converted_buffer->type() == VideoFrameBuffer::Type::kI420 || converted_buffer->type() == VideoFrameBuffer::Type::kI420A); // Because `buffer` had to be converted, use `converted_buffer` instead. buffer = mapped_buffer = converted_buffer; } // Prepare `raw_` from `mapped_buffer`. switch (mapped_buffer->type()) { case VideoFrameBuffer::Type::kI420: case VideoFrameBuffer::Type::kI420A: { MaybeRewrapRawWithFormat(VPX_IMG_FMT_I420); const I420BufferInterface* i420_buffer = mapped_buffer->GetI420(); RTC_DCHECK(i420_buffer); raw_->planes[VPX_PLANE_Y] = const_cast(i420_buffer->DataY()); raw_->planes[VPX_PLANE_U] = const_cast(i420_buffer->DataU()); raw_->planes[VPX_PLANE_V] = const_cast(i420_buffer->DataV()); raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY(); raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU(); raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV(); break; } case VideoFrameBuffer::Type::kNV12: { MaybeRewrapRawWithFormat(VPX_IMG_FMT_NV12); const NV12BufferInterface* nv12_buffer = mapped_buffer->GetNV12(); RTC_DCHECK(nv12_buffer); raw_->planes[VPX_PLANE_Y] = const_cast(nv12_buffer->DataY()); raw_->planes[VPX_PLANE_U] = const_cast(nv12_buffer->DataUV()); raw_->planes[VPX_PLANE_V] = raw_->planes[VPX_PLANE_U] + 1; raw_->stride[VPX_PLANE_Y] = nv12_buffer->StrideY(); raw_->stride[VPX_PLANE_U] = nv12_buffer->StrideUV(); raw_->stride[VPX_PLANE_V] = nv12_buffer->StrideUV(); break; } default: RTC_DCHECK_NOTREACHED(); } return mapped_buffer; } } // namespace webrtc #endif // RTC_ENABLE_VP9