/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/rtp/control_handler.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_minmax.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { // When PacerPushbackExperiment is enabled, build-up in the pacer due to // the congestion window and/or data spikes reduces encoder allocations. bool IsPacerPushbackExperimentEnabled() { return field_trial::IsEnabled("WebRTC-PacerPushbackExperiment"); } // By default, pacer emergency stops encoder when buffer reaches a high level. bool IsPacerEmergencyStopDisabled() { return field_trial::IsEnabled("WebRTC-DisablePacerEmergencyStop"); } } // namespace CongestionControlHandler::CongestionControlHandler( NetworkChangedObserver* observer, PacedSender* pacer) : observer_(observer), pacer_(pacer), pacer_pushback_experiment_(IsPacerPushbackExperimentEnabled()), disable_pacer_emergency_stop_(IsPacerEmergencyStopDisabled()) { sequenced_checker_.Detach(); } CongestionControlHandler::~CongestionControlHandler() {} void CongestionControlHandler::PostUpdates(NetworkControlUpdate update) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_); if (update.congestion_window) { if (update.congestion_window->IsFinite()) pacer_->SetCongestionWindow(update.congestion_window->bytes()); else pacer_->SetCongestionWindow(PacedSender::kNoCongestionWindow); } if (update.pacer_config) { pacer_->SetPacingRates(update.pacer_config->data_rate().bps(), update.pacer_config->pad_rate().bps()); } for (const auto& probe : update.probe_cluster_configs) { int64_t bitrate_bps = probe.target_data_rate.bps(); pacer_->CreateProbeCluster(bitrate_bps); } if (update.target_rate) { current_target_rate_msg_ = *update.target_rate; OnNetworkInvalidation(); } } void CongestionControlHandler::OnNetworkAvailability(NetworkAvailability msg) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_); if (network_available_ != msg.network_available) { network_available_ = msg.network_available; pacer_->UpdateOutstandingData(0); SetPacerState(!msg.network_available); OnNetworkInvalidation(); } } void CongestionControlHandler::OnOutstandingData(DataSize in_flight_data) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_); pacer_->UpdateOutstandingData(in_flight_data.bytes()); OnNetworkInvalidation(); } void CongestionControlHandler::OnPacerQueueUpdate( TimeDelta expected_queue_time) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_); pacer_expected_queue_ms_ = expected_queue_time.ms(); OnNetworkInvalidation(); } void CongestionControlHandler::SetPacerState(bool paused) { if (paused && !pacer_paused_) pacer_->Pause(); else if (!paused && pacer_paused_) pacer_->Resume(); pacer_paused_ = paused; } void CongestionControlHandler::OnNetworkInvalidation() { if (!current_target_rate_msg_.has_value()) return; uint32_t target_bitrate_bps = current_target_rate_msg_->target_rate.bps(); int64_t rtt_ms = current_target_rate_msg_->network_estimate.round_trip_time.ms(); float loss_rate_ratio = current_target_rate_msg_->network_estimate.loss_rate_ratio; int loss_ratio_255 = loss_rate_ratio * 255; uint8_t fraction_loss = rtc::dchecked_cast(rtc::SafeClamp(loss_ratio_255, 0, 255)); int64_t probing_interval_ms = current_target_rate_msg_->network_estimate.bwe_period.ms(); if (!network_available_) { target_bitrate_bps = 0; } else if (pacer_pushback_experiment_) { int64_t queue_length_ms = pacer_expected_queue_ms_; if (queue_length_ms == 0) { encoding_rate_ratio_ = 1.0; } else if (queue_length_ms > 50) { double encoding_ratio = 1.0 - queue_length_ms / 1000.0; encoding_rate_ratio_ = std::min(encoding_rate_ratio_, encoding_ratio); encoding_rate_ratio_ = std::max(encoding_rate_ratio_, 0.0); } target_bitrate_bps *= encoding_rate_ratio_; target_bitrate_bps = target_bitrate_bps < 50000 ? 0 : target_bitrate_bps; } else if (!disable_pacer_emergency_stop_) { target_bitrate_bps = IsSendQueueFull() ? 0 : target_bitrate_bps; } if (HasNetworkParametersToReportChanged(target_bitrate_bps, fraction_loss, rtt_ms)) { observer_->OnNetworkChanged(target_bitrate_bps, fraction_loss, rtt_ms, probing_interval_ms); } } bool CongestionControlHandler::HasNetworkParametersToReportChanged( int64_t target_bitrate_bps, uint8_t fraction_loss, int64_t rtt_ms) { bool changed = last_reported_target_bitrate_bps_ != target_bitrate_bps || (target_bitrate_bps > 0 && (last_reported_fraction_loss_ != fraction_loss || last_reported_rtt_ms_ != rtt_ms)); if (changed && (last_reported_target_bitrate_bps_ == 0 || target_bitrate_bps == 0)) { RTC_LOG(LS_INFO) << "Bitrate estimate state changed, BWE: " << target_bitrate_bps << " bps."; } last_reported_target_bitrate_bps_ = target_bitrate_bps; last_reported_fraction_loss_ = fraction_loss; last_reported_rtt_ms_ = rtt_ms; return changed; } bool CongestionControlHandler::IsSendQueueFull() const { return pacer_expected_queue_ms_ > PacedSender::kMaxQueueLengthMs; } absl::optional CongestionControlHandler::last_transfer_rate() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_); return current_target_rate_msg_; } } // namespace webrtc