/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_sender_video.h" #include #include #include #include #include #include #include "absl/memory/memory.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/rtp_format_video_generic.h" #include "modules/rtp_rtcp/source/rtp_format_vp8.h" #include "modules/rtp_rtcp/source/rtp_format_vp9.h" #include "modules/rtp_rtcp/source/rtp_header_extensions.h" #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/trace_event.h" namespace webrtc { namespace { constexpr size_t kRedForFecHeaderLength = 1; constexpr int64_t kMaxUnretransmittableFrameIntervalMs = 33 * 4; void BuildRedPayload(const RtpPacketToSend& media_packet, RtpPacketToSend* red_packet) { uint8_t* red_payload = red_packet->AllocatePayload( kRedForFecHeaderLength + media_packet.payload_size()); RTC_DCHECK(red_payload); red_payload[0] = media_packet.PayloadType(); auto media_payload = media_packet.payload(); memcpy(&red_payload[kRedForFecHeaderLength], media_payload.data(), media_payload.size()); } } // namespace RTPSenderVideo::RTPSenderVideo(Clock* clock, RTPSender* rtp_sender, FlexfecSender* flexfec_sender) : rtp_sender_(rtp_sender), clock_(clock), video_type_(kVideoCodecGeneric), retransmission_settings_(kRetransmitBaseLayer | kConditionallyRetransmitHigherLayers), last_rotation_(kVideoRotation_0), red_payload_type_(-1), ulpfec_payload_type_(-1), flexfec_sender_(flexfec_sender), delta_fec_params_{0, 1, kFecMaskRandom}, key_fec_params_{0, 1, kFecMaskRandom}, fec_bitrate_(1000, RateStatistics::kBpsScale), video_bitrate_(1000, RateStatistics::kBpsScale) {} RTPSenderVideo::~RTPSenderVideo() {} void RTPSenderVideo::SetVideoCodecType(enum VideoCodecType video_type) { video_type_ = video_type; } VideoCodecType RTPSenderVideo::VideoCodecType() const { return video_type_; } // Static. RtpUtility::Payload* RTPSenderVideo::CreateVideoPayload( const char payload_name[RTP_PAYLOAD_NAME_SIZE], int8_t payload_type) { enum VideoCodecType video_type = kVideoCodecGeneric; if (RtpUtility::StringCompare(payload_name, "VP8", 3)) { video_type = kVideoCodecVP8; } else if (RtpUtility::StringCompare(payload_name, "VP9", 3)) { video_type = kVideoCodecVP9; } else if (RtpUtility::StringCompare(payload_name, "H264", 4)) { video_type = kVideoCodecH264; } else if (RtpUtility::StringCompare(payload_name, "I420", 4)) { video_type = kVideoCodecGeneric; } else if (RtpUtility::StringCompare(payload_name, "stereo", 6)) { video_type = kVideoCodecGeneric; } else { video_type = kVideoCodecGeneric; } VideoPayload vp; vp.videoCodecType = video_type; return new RtpUtility::Payload(payload_name, PayloadUnion(vp)); } void RTPSenderVideo::SendVideoPacket(std::unique_ptr packet, StorageType storage) { // Remember some values about the packet before sending it away. size_t packet_size = packet->size(); uint16_t seq_num = packet->SequenceNumber(); if (!rtp_sender_->SendToNetwork(std::move(packet), storage, RtpPacketSender::kLowPriority)) { RTC_LOG(LS_WARNING) << "Failed to send video packet " << seq_num; return; } rtc::CritScope cs(&stats_crit_); video_bitrate_.Update(packet_size, clock_->TimeInMilliseconds()); } void RTPSenderVideo::SendVideoPacketAsRedMaybeWithUlpfec( std::unique_ptr media_packet, StorageType media_packet_storage, bool protect_media_packet) { uint16_t media_seq_num = media_packet->SequenceNumber(); std::unique_ptr red_packet( new RtpPacketToSend(*media_packet)); BuildRedPayload(*media_packet, red_packet.get()); std::vector> fec_packets; StorageType fec_storage = kDontRetransmit; { // Only protect while creating RED and FEC packets, not when sending. rtc::CritScope cs(&crit_); red_packet->SetPayloadType(red_payload_type_); if (ulpfec_enabled()) { if (protect_media_packet) { ulpfec_generator_.AddRtpPacketAndGenerateFec( media_packet->data(), media_packet->payload_size(), media_packet->headers_size()); } uint16_t num_fec_packets = ulpfec_generator_.NumAvailableFecPackets(); if (num_fec_packets > 0) { uint16_t first_fec_sequence_number = rtp_sender_->AllocateSequenceNumber(num_fec_packets); fec_packets = ulpfec_generator_.GetUlpfecPacketsAsRed( red_payload_type_, ulpfec_payload_type_, first_fec_sequence_number); RTC_DCHECK_EQ(num_fec_packets, fec_packets.size()); if (retransmission_settings_ & kRetransmitFECPackets) fec_storage = kAllowRetransmission; } } } // Send |red_packet| instead of |packet| for allocated sequence number. size_t red_packet_size = red_packet->size(); if (rtp_sender_->SendToNetwork(std::move(red_packet), media_packet_storage, RtpPacketSender::kLowPriority)) { rtc::CritScope cs(&stats_crit_); video_bitrate_.Update(red_packet_size, clock_->TimeInMilliseconds()); } else { RTC_LOG(LS_WARNING) << "Failed to send RED packet " << media_seq_num; } for (const auto& fec_packet : fec_packets) { // TODO(danilchap): Make ulpfec_generator_ generate RtpPacketToSend to avoid // reparsing them. std::unique_ptr rtp_packet( new RtpPacketToSend(*media_packet)); RTC_CHECK(rtp_packet->Parse(fec_packet->data(), fec_packet->length())); rtp_packet->set_capture_time_ms(media_packet->capture_time_ms()); uint16_t fec_sequence_number = rtp_packet->SequenceNumber(); if (rtp_sender_->SendToNetwork(std::move(rtp_packet), fec_storage, RtpPacketSender::kLowPriority)) { rtc::CritScope cs(&stats_crit_); fec_bitrate_.Update(fec_packet->length(), clock_->TimeInMilliseconds()); } else { RTC_LOG(LS_WARNING) << "Failed to send ULPFEC packet " << fec_sequence_number; } } } void RTPSenderVideo::SendVideoPacketWithFlexfec( std::unique_ptr media_packet, StorageType media_packet_storage, bool protect_media_packet) { RTC_DCHECK(flexfec_sender_); if (protect_media_packet) flexfec_sender_->AddRtpPacketAndGenerateFec(*media_packet); SendVideoPacket(std::move(media_packet), media_packet_storage); if (flexfec_sender_->FecAvailable()) { std::vector> fec_packets = flexfec_sender_->GetFecPackets(); for (auto& fec_packet : fec_packets) { size_t packet_length = fec_packet->size(); uint16_t seq_num = fec_packet->SequenceNumber(); if (rtp_sender_->SendToNetwork(std::move(fec_packet), kDontRetransmit, RtpPacketSender::kLowPriority)) { rtc::CritScope cs(&stats_crit_); fec_bitrate_.Update(packet_length, clock_->TimeInMilliseconds()); } else { RTC_LOG(LS_WARNING) << "Failed to send FlexFEC packet " << seq_num; } } } } void RTPSenderVideo::SetUlpfecConfig(int red_payload_type, int ulpfec_payload_type) { // Sanity check. Per the definition of UlpfecConfig (see config.h), // a payload type of -1 means that the corresponding feature is // turned off. RTC_DCHECK_GE(red_payload_type, -1); RTC_DCHECK_LE(red_payload_type, 127); RTC_DCHECK_GE(ulpfec_payload_type, -1); RTC_DCHECK_LE(ulpfec_payload_type, 127); rtc::CritScope cs(&crit_); red_payload_type_ = red_payload_type; ulpfec_payload_type_ = ulpfec_payload_type; // Must not enable ULPFEC without RED. RTC_DCHECK(!(red_enabled() ^ ulpfec_enabled())); // Reset FEC parameters. delta_fec_params_ = FecProtectionParams{0, 1, kFecMaskRandom}; key_fec_params_ = FecProtectionParams{0, 1, kFecMaskRandom}; } void RTPSenderVideo::GetUlpfecConfig(int* red_payload_type, int* ulpfec_payload_type) const { rtc::CritScope cs(&crit_); *red_payload_type = red_payload_type_; *ulpfec_payload_type = ulpfec_payload_type_; } size_t RTPSenderVideo::CalculateFecPacketOverhead() const { if (flexfec_enabled()) return flexfec_sender_->MaxPacketOverhead(); size_t overhead = 0; if (red_enabled()) { // The RED overhead is due to a small header. overhead += kRedForFecHeaderLength; } if (ulpfec_enabled()) { // For ULPFEC, the overhead is the FEC headers plus RED for FEC header // (see above) plus anything in RTP header beyond the 12 bytes base header // (CSRC list, extensions...) // This reason for the header extensions to be included here is that // from an FEC viewpoint, they are part of the payload to be protected. // (The base RTP header is already protected by the FEC header.) overhead += ulpfec_generator_.MaxPacketOverhead() + (rtp_sender_->RtpHeaderLength() - kRtpHeaderSize); } return overhead; } void RTPSenderVideo::SetFecParameters(const FecProtectionParams& delta_params, const FecProtectionParams& key_params) { rtc::CritScope cs(&crit_); delta_fec_params_ = delta_params; key_fec_params_ = key_params; } absl::optional RTPSenderVideo::FlexfecSsrc() const { if (flexfec_sender_) { return flexfec_sender_->ssrc(); } return absl::nullopt; } bool RTPSenderVideo::SendVideo(enum VideoCodecType video_type, FrameType frame_type, int8_t payload_type, uint32_t rtp_timestamp, int64_t capture_time_ms, const uint8_t* payload_data, size_t payload_size, const RTPFragmentationHeader* fragmentation, const RTPVideoHeader* video_header, int64_t expected_retransmission_time_ms) { if (payload_size == 0) return false; RTC_CHECK(video_header); // Create header that will be reused in all packets. std::unique_ptr rtp_header = rtp_sender_->AllocatePacket(); rtp_header->SetPayloadType(payload_type); rtp_header->SetTimestamp(rtp_timestamp); rtp_header->set_capture_time_ms(capture_time_ms); auto last_packet = absl::make_unique(*rtp_header); size_t fec_packet_overhead; bool red_enabled; int32_t retransmission_settings; { rtc::CritScope cs(&crit_); // According to // http://www.etsi.org/deliver/etsi_ts/126100_126199/126114/12.07.00_60/ // ts_126114v120700p.pdf Section 7.4.5: // The MTSI client shall add the payload bytes as defined in this clause // onto the last RTP packet in each group of packets which make up a key // frame (I-frame or IDR frame in H.264 (AVC), or an IRAP picture in H.265 // (HEVC)). The MTSI client may also add the payload bytes onto the last RTP // packet in each group of packets which make up another type of frame // (e.g. a P-Frame) only if the current value is different from the previous // value sent. // Set rotation when key frame or when changed (to follow standard). // Or when different from 0 (to follow current receiver implementation). VideoRotation current_rotation = video_header->rotation; if (frame_type == kVideoFrameKey || current_rotation != last_rotation_ || current_rotation != kVideoRotation_0) last_packet->SetExtension(current_rotation); last_rotation_ = current_rotation; // Report content type only for key frames. if (frame_type == kVideoFrameKey && video_header->content_type != VideoContentType::UNSPECIFIED) { last_packet->SetExtension( video_header->content_type); } if (video_header->video_timing.flags != VideoSendTiming::kInvalid) { last_packet->SetExtension( video_header->video_timing); } // FEC settings. const FecProtectionParams& fec_params = frame_type == kVideoFrameKey ? key_fec_params_ : delta_fec_params_; if (flexfec_enabled()) flexfec_sender_->SetFecParameters(fec_params); if (ulpfec_enabled()) ulpfec_generator_.SetFecParameters(fec_params); fec_packet_overhead = CalculateFecPacketOverhead(); red_enabled = this->red_enabled(); retransmission_settings = retransmission_settings_; } size_t packet_capacity = rtp_sender_->MaxRtpPacketSize() - fec_packet_overhead - (rtp_sender_->RtxStatus() ? kRtxHeaderSize : 0); RTC_DCHECK_LE(packet_capacity, rtp_header->capacity()); RTC_DCHECK_GT(packet_capacity, rtp_header->headers_size()); RTC_DCHECK_GT(packet_capacity, last_packet->headers_size()); size_t max_data_payload_length = packet_capacity - rtp_header->headers_size(); RTC_DCHECK_GE(last_packet->headers_size(), rtp_header->headers_size()); size_t last_packet_reduction_len = last_packet->headers_size() - rtp_header->headers_size(); RtpPacketizer::PayloadSizeLimits limits; limits.max_payload_len = max_data_payload_length; limits.last_packet_reduction_len = last_packet_reduction_len; std::unique_ptr packetizer = RtpPacketizer::Create( video_type, rtc::MakeArrayView(payload_data, payload_size), limits, *video_header, frame_type, fragmentation); const uint8_t temporal_id = GetTemporalId(*video_header); StorageType storage = GetStorageType(temporal_id, retransmission_settings, expected_retransmission_time_ms); size_t num_packets = packetizer->NumPackets(); if (num_packets == 0) return false; bool first_frame = first_frame_sent_(); for (size_t i = 0; i < num_packets; ++i) { bool last = (i + 1) == num_packets; auto packet = last ? std::move(last_packet) : absl::make_unique(*rtp_header); if (!packetizer->NextPacket(packet.get())) return false; RTC_DCHECK_LE(packet->payload_size(), last ? max_data_payload_length - last_packet_reduction_len : max_data_payload_length); if (!rtp_sender_->AssignSequenceNumber(packet.get())) return false; // No FEC protection for upper temporal layers, if used. bool protect_packet = temporal_id == 0 || temporal_id == kNoTemporalIdx; // Put packetization finish timestamp into extension. if (packet->HasExtension()) { packet->set_packetization_finish_time_ms(clock_->TimeInMilliseconds()); // TODO(ilnik): Due to webrtc:7859, packets with timing extensions are not // protected by FEC. It reduces FEC efficiency a bit. When FEC is moved // below the pacer, it can be re-enabled for these packets. // NOTE: Any RTP stream processor in the network, modifying 'network' // timestamps in the timing frames extension have to be an end-point for // FEC, otherwise recovered by FEC packets will be corrupted. protect_packet = false; } if (flexfec_enabled()) { // TODO(brandtr): Remove the FlexFEC code path when FlexfecSender // is wired up to PacedSender instead. SendVideoPacketWithFlexfec(std::move(packet), storage, protect_packet); } else if (red_enabled) { SendVideoPacketAsRedMaybeWithUlpfec(std::move(packet), storage, protect_packet); } else { SendVideoPacket(std::move(packet), storage); } if (first_frame) { if (i == 0) { RTC_LOG(LS_INFO) << "Sent first RTP packet of the first video frame (pre-pacer)"; } if (last) { RTC_LOG(LS_INFO) << "Sent last RTP packet of the first video frame (pre-pacer)"; } } } TRACE_EVENT_ASYNC_END1("webrtc", "Video", capture_time_ms, "timestamp", rtp_timestamp); return true; } uint32_t RTPSenderVideo::VideoBitrateSent() const { rtc::CritScope cs(&stats_crit_); return video_bitrate_.Rate(clock_->TimeInMilliseconds()).value_or(0); } uint32_t RTPSenderVideo::FecOverheadRate() const { rtc::CritScope cs(&stats_crit_); return fec_bitrate_.Rate(clock_->TimeInMilliseconds()).value_or(0); } int RTPSenderVideo::SelectiveRetransmissions() const { rtc::CritScope cs(&crit_); return retransmission_settings_; } void RTPSenderVideo::SetSelectiveRetransmissions(uint8_t settings) { rtc::CritScope cs(&crit_); retransmission_settings_ = settings; } StorageType RTPSenderVideo::GetStorageType( uint8_t temporal_id, int32_t retransmission_settings, int64_t expected_retransmission_time_ms) { if (retransmission_settings == kRetransmitOff) return StorageType::kDontRetransmit; if (retransmission_settings == kRetransmitAllPackets) return StorageType::kAllowRetransmission; rtc::CritScope cs(&stats_crit_); // Media packet storage. if ((retransmission_settings & kConditionallyRetransmitHigherLayers) && UpdateConditionalRetransmit(temporal_id, expected_retransmission_time_ms)) { retransmission_settings |= kRetransmitHigherLayers; } if (temporal_id == kNoTemporalIdx) return kAllowRetransmission; if ((retransmission_settings & kRetransmitBaseLayer) && temporal_id == 0) return kAllowRetransmission; if ((retransmission_settings & kRetransmitHigherLayers) && temporal_id > 0) return kAllowRetransmission; return kDontRetransmit; } uint8_t RTPSenderVideo::GetTemporalId(const RTPVideoHeader& header) { switch (header.codec) { case kVideoCodecVP8: return header.vp8().temporalIdx; case kVideoCodecVP9: return absl::get(header.video_type_header) .temporal_idx; default: return kNoTemporalIdx; } } bool RTPSenderVideo::UpdateConditionalRetransmit( uint8_t temporal_id, int64_t expected_retransmission_time_ms) { int64_t now_ms = clock_->TimeInMilliseconds(); // Update stats for any temporal layer. TemporalLayerStats* current_layer_stats = &frame_stats_by_temporal_layer_[temporal_id]; current_layer_stats->frame_rate_fp1000s.Update(1, now_ms); int64_t tl_frame_interval = now_ms - current_layer_stats->last_frame_time_ms; current_layer_stats->last_frame_time_ms = now_ms; // Conditional retransmit only applies to upper layers. if (temporal_id != kNoTemporalIdx && temporal_id > 0) { if (tl_frame_interval >= kMaxUnretransmittableFrameIntervalMs) { // Too long since a retransmittable frame in this layer, enable NACK // protection. return true; } else { // Estimate when the next frame of any lower layer will be sent. const int64_t kUndefined = std::numeric_limits::max(); int64_t expected_next_frame_time = kUndefined; for (int i = temporal_id - 1; i >= 0; --i) { TemporalLayerStats* stats = &frame_stats_by_temporal_layer_[i]; absl::optional rate = stats->frame_rate_fp1000s.Rate(now_ms); if (rate) { int64_t tl_next = stats->last_frame_time_ms + 1000000 / *rate; if (tl_next - now_ms > -expected_retransmission_time_ms && tl_next < expected_next_frame_time) { expected_next_frame_time = tl_next; } } } if (expected_next_frame_time == kUndefined || expected_next_frame_time - now_ms > expected_retransmission_time_ms) { // The next frame in a lower layer is expected at a later time (or // unable to tell due to lack of data) than a retransmission is // estimated to be able to arrive, so allow this packet to be nacked. return true; } } } return false; } } // namespace webrtc