/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_coding/neteq/include/neteq.h" #include #include #include // memset #include #include #include #include #include #include "webrtc/api/audio_codecs/builtin_audio_decoder_factory.h" #include "webrtc/common_types.h" #include "webrtc/modules/audio_coding/codecs/pcm16b/pcm16b.h" #include "webrtc/modules/audio_coding/neteq/tools/audio_loop.h" #include "webrtc/modules/audio_coding/neteq/tools/rtp_file_source.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/rtc_base/flags.h" #include "webrtc/rtc_base/ignore_wundef.h" #include "webrtc/rtc_base/protobuf_utils.h" #include "webrtc/rtc_base/sha1digest.h" #include "webrtc/rtc_base/stringencode.h" #include "webrtc/test/gtest.h" #include "webrtc/test/testsupport/fileutils.h" #include "webrtc/typedefs.h" #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT RTC_PUSH_IGNORING_WUNDEF() #ifdef WEBRTC_ANDROID_PLATFORM_BUILD #include "external/webrtc/webrtc/modules/audio_coding/neteq/neteq_unittest.pb.h" #else #include "webrtc/modules/audio_coding/neteq/neteq_unittest.pb.h" #endif RTC_POP_IGNORING_WUNDEF() #endif DEFINE_bool(gen_ref, false, "Generate reference files."); namespace webrtc { namespace { const std::string& PlatformChecksum(const std::string& checksum_general, const std::string& checksum_android, const std::string& checksum_win_32, const std::string& checksum_win_64) { #if defined(WEBRTC_ANDROID) return checksum_android; #elif defined(WEBRTC_WIN) #ifdef WEBRTC_ARCH_64_BITS return checksum_win_64; #else return checksum_win_32; #endif // WEBRTC_ARCH_64_BITS #else return checksum_general; #endif // WEBRTC_WIN } #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT void Convert(const webrtc::NetEqNetworkStatistics& stats_raw, webrtc::neteq_unittest::NetEqNetworkStatistics* stats) { stats->set_current_buffer_size_ms(stats_raw.current_buffer_size_ms); stats->set_preferred_buffer_size_ms(stats_raw.preferred_buffer_size_ms); stats->set_jitter_peaks_found(stats_raw.jitter_peaks_found); stats->set_packet_loss_rate(stats_raw.packet_loss_rate); stats->set_expand_rate(stats_raw.expand_rate); stats->set_speech_expand_rate(stats_raw.speech_expand_rate); stats->set_preemptive_rate(stats_raw.preemptive_rate); stats->set_accelerate_rate(stats_raw.accelerate_rate); stats->set_secondary_decoded_rate(stats_raw.secondary_decoded_rate); stats->set_secondary_discarded_rate(stats_raw.secondary_discarded_rate); stats->set_clockdrift_ppm(stats_raw.clockdrift_ppm); stats->set_added_zero_samples(stats_raw.added_zero_samples); stats->set_mean_waiting_time_ms(stats_raw.mean_waiting_time_ms); stats->set_median_waiting_time_ms(stats_raw.median_waiting_time_ms); stats->set_min_waiting_time_ms(stats_raw.min_waiting_time_ms); stats->set_max_waiting_time_ms(stats_raw.max_waiting_time_ms); } void Convert(const webrtc::RtcpStatistics& stats_raw, webrtc::neteq_unittest::RtcpStatistics* stats) { stats->set_fraction_lost(stats_raw.fraction_lost); stats->set_cumulative_lost(stats_raw.packets_lost); stats->set_extended_max_sequence_number( stats_raw.extended_highest_sequence_number); stats->set_jitter(stats_raw.jitter); } void AddMessage(FILE* file, rtc::MessageDigest* digest, const std::string& message) { int32_t size = message.length(); if (file) ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file)); digest->Update(&size, sizeof(size)); if (file) ASSERT_EQ(static_cast(size), fwrite(message.data(), sizeof(char), size, file)); digest->Update(message.data(), sizeof(char) * size); } #endif // WEBRTC_NETEQ_UNITTEST_BITEXACT void LoadDecoders(webrtc::NetEq* neteq) { ASSERT_EQ(true, neteq->RegisterPayloadType(0, SdpAudioFormat("pcmu", 8000, 1))); // Use non-SdpAudioFormat argument when registering PCMa, so that we get test // coverage for that as well. ASSERT_EQ(0, neteq->RegisterPayloadType(webrtc::NetEqDecoder::kDecoderPCMa, "pcma", 8)); #ifdef WEBRTC_CODEC_ILBC ASSERT_EQ(true, neteq->RegisterPayloadType(102, SdpAudioFormat("ilbc", 8000, 1))); #endif #if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX) ASSERT_EQ(true, neteq->RegisterPayloadType(103, SdpAudioFormat("isac", 16000, 1))); #endif #ifdef WEBRTC_CODEC_ISAC ASSERT_EQ(true, neteq->RegisterPayloadType(104, SdpAudioFormat("isac", 32000, 1))); #endif #ifdef WEBRTC_CODEC_OPUS ASSERT_EQ(true, neteq->RegisterPayloadType( 111, SdpAudioFormat("opus", 48000, 2, {{"stereo", "0"}}))); #endif ASSERT_EQ(true, neteq->RegisterPayloadType(93, SdpAudioFormat("L16", 8000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(94, SdpAudioFormat("L16", 16000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(95, SdpAudioFormat("L16", 32000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(13, SdpAudioFormat("cn", 8000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(98, SdpAudioFormat("cn", 16000, 1))); } } // namespace class ResultSink { public: explicit ResultSink(const std::string& output_file); ~ResultSink(); template void AddResult(const T* test_results, size_t length); void AddResult(const NetEqNetworkStatistics& stats); void AddResult(const RtcpStatistics& stats); void VerifyChecksum(const std::string& ref_check_sum); private: FILE* output_fp_; std::unique_ptr digest_; }; ResultSink::ResultSink(const std::string &output_file) : output_fp_(nullptr), digest_(new rtc::Sha1Digest()) { if (!output_file.empty()) { output_fp_ = fopen(output_file.c_str(), "wb"); EXPECT_TRUE(output_fp_ != NULL); } } ResultSink::~ResultSink() { if (output_fp_) fclose(output_fp_); } template void ResultSink::AddResult(const T* test_results, size_t length) { if (output_fp_) { ASSERT_EQ(length, fwrite(test_results, sizeof(T), length, output_fp_)); } digest_->Update(test_results, sizeof(T) * length); } void ResultSink::AddResult(const NetEqNetworkStatistics& stats_raw) { #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT neteq_unittest::NetEqNetworkStatistics stats; Convert(stats_raw, &stats); ProtoString stats_string; ASSERT_TRUE(stats.SerializeToString(&stats_string)); AddMessage(output_fp_, digest_.get(), stats_string); #else FAIL() << "Writing to reference file requires Proto Buffer."; #endif // WEBRTC_NETEQ_UNITTEST_BITEXACT } void ResultSink::AddResult(const RtcpStatistics& stats_raw) { #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT neteq_unittest::RtcpStatistics stats; Convert(stats_raw, &stats); ProtoString stats_string; ASSERT_TRUE(stats.SerializeToString(&stats_string)); AddMessage(output_fp_, digest_.get(), stats_string); #else FAIL() << "Writing to reference file requires Proto Buffer."; #endif // WEBRTC_NETEQ_UNITTEST_BITEXACT } void ResultSink::VerifyChecksum(const std::string& checksum) { std::vector buffer; buffer.resize(digest_->Size()); digest_->Finish(&buffer[0], buffer.size()); const std::string result = rtc::hex_encode(&buffer[0], digest_->Size()); EXPECT_EQ(checksum, result); } class NetEqDecodingTest : public ::testing::Test { protected: // NetEQ must be polled for data once every 10 ms. Thus, neither of the // constants below can be changed. static const int kTimeStepMs = 10; static const size_t kBlockSize8kHz = kTimeStepMs * 8; static const size_t kBlockSize16kHz = kTimeStepMs * 16; static const size_t kBlockSize32kHz = kTimeStepMs * 32; static const size_t kBlockSize48kHz = kTimeStepMs * 48; static const int kInitSampleRateHz = 8000; NetEqDecodingTest(); virtual void SetUp(); virtual void TearDown(); void SelectDecoders(NetEqDecoder* used_codec); void OpenInputFile(const std::string &rtp_file); void Process(); void DecodeAndCompare(const std::string& rtp_file, const std::string& output_checksum, const std::string& network_stats_checksum, const std::string& rtcp_stats_checksum, bool gen_ref); static void PopulateRtpInfo(int frame_index, int timestamp, RTPHeader* rtp_info); static void PopulateCng(int frame_index, int timestamp, RTPHeader* rtp_info, uint8_t* payload, size_t* payload_len); void WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, const std::set& drop_seq_numbers, bool expect_seq_no_wrap, bool expect_timestamp_wrap); void LongCngWithClockDrift(double drift_factor, double network_freeze_ms, bool pull_audio_during_freeze, int delay_tolerance_ms, int max_time_to_speech_ms); void DuplicateCng(); NetEq* neteq_; NetEq::Config config_; std::unique_ptr rtp_source_; std::unique_ptr packet_; unsigned int sim_clock_; AudioFrame out_frame_; int output_sample_rate_; int algorithmic_delay_ms_; }; // Allocating the static const so that it can be passed by reference. const int NetEqDecodingTest::kTimeStepMs; const size_t NetEqDecodingTest::kBlockSize8kHz; const size_t NetEqDecodingTest::kBlockSize16kHz; const size_t NetEqDecodingTest::kBlockSize32kHz; const int NetEqDecodingTest::kInitSampleRateHz; NetEqDecodingTest::NetEqDecodingTest() : neteq_(NULL), config_(), sim_clock_(0), output_sample_rate_(kInitSampleRateHz), algorithmic_delay_ms_(0) { config_.sample_rate_hz = kInitSampleRateHz; } void NetEqDecodingTest::SetUp() { neteq_ = NetEq::Create(config_, CreateBuiltinAudioDecoderFactory()); NetEqNetworkStatistics stat; ASSERT_EQ(0, neteq_->NetworkStatistics(&stat)); algorithmic_delay_ms_ = stat.current_buffer_size_ms; ASSERT_TRUE(neteq_); LoadDecoders(neteq_); } void NetEqDecodingTest::TearDown() { delete neteq_; } void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) { rtp_source_.reset(test::RtpFileSource::Create(rtp_file)); } void NetEqDecodingTest::Process() { // Check if time to receive. while (packet_ && sim_clock_ >= packet_->time_ms()) { if (packet_->payload_length_bytes() > 0) { #ifndef WEBRTC_CODEC_ISAC // Ignore payload type 104 (iSAC-swb) if ISAC is not supported. if (packet_->header().payloadType != 104) #endif ASSERT_EQ(0, neteq_->InsertPacket( packet_->header(), rtc::ArrayView( packet_->payload(), packet_->payload_length_bytes()), static_cast(packet_->time_ms() * (output_sample_rate_ / 1000)))); } // Get next packet. packet_ = rtp_source_->NextPacket(); } // Get audio from NetEq. bool muted; ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_FALSE(muted); ASSERT_TRUE((out_frame_.samples_per_channel_ == kBlockSize8kHz) || (out_frame_.samples_per_channel_ == kBlockSize16kHz) || (out_frame_.samples_per_channel_ == kBlockSize32kHz) || (out_frame_.samples_per_channel_ == kBlockSize48kHz)); output_sample_rate_ = out_frame_.sample_rate_hz_; EXPECT_EQ(output_sample_rate_, neteq_->last_output_sample_rate_hz()); // Increase time. sim_clock_ += kTimeStepMs; } void NetEqDecodingTest::DecodeAndCompare( const std::string& rtp_file, const std::string& output_checksum, const std::string& network_stats_checksum, const std::string& rtcp_stats_checksum, bool gen_ref) { OpenInputFile(rtp_file); std::string ref_out_file = gen_ref ? webrtc::test::OutputPath() + "neteq_universal_ref.pcm" : ""; ResultSink output(ref_out_file); std::string stat_out_file = gen_ref ? webrtc::test::OutputPath() + "neteq_network_stats.dat" : ""; ResultSink network_stats(stat_out_file); std::string rtcp_out_file = gen_ref ? webrtc::test::OutputPath() + "neteq_rtcp_stats.dat" : ""; ResultSink rtcp_stats(rtcp_out_file); packet_ = rtp_source_->NextPacket(); int i = 0; while (packet_) { std::ostringstream ss; ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. ASSERT_NO_FATAL_FAILURE(Process()); ASSERT_NO_FATAL_FAILURE(output.AddResult( out_frame_.data(), out_frame_.samples_per_channel_)); // Query the network statistics API once per second if (sim_clock_ % 1000 == 0) { // Process NetworkStatistics. NetEqNetworkStatistics current_network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(¤t_network_stats)); ASSERT_NO_FATAL_FAILURE(network_stats.AddResult(current_network_stats)); // Compare with CurrentDelay, which should be identical. EXPECT_EQ(current_network_stats.current_buffer_size_ms, neteq_->CurrentDelayMs()); // Process RTCPstat. RtcpStatistics current_rtcp_stats; neteq_->GetRtcpStatistics(¤t_rtcp_stats); ASSERT_NO_FATAL_FAILURE(rtcp_stats.AddResult(current_rtcp_stats)); } } SCOPED_TRACE("Check output audio."); output.VerifyChecksum(output_checksum); SCOPED_TRACE("Check network stats."); network_stats.VerifyChecksum(network_stats_checksum); SCOPED_TRACE("Check rtcp stats."); rtcp_stats.VerifyChecksum(rtcp_stats_checksum); } void NetEqDecodingTest::PopulateRtpInfo(int frame_index, int timestamp, RTPHeader* rtp_info) { rtp_info->sequenceNumber = frame_index; rtp_info->timestamp = timestamp; rtp_info->ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->payloadType = 94; // PCM16b WB codec. rtp_info->markerBit = 0; } void NetEqDecodingTest::PopulateCng(int frame_index, int timestamp, RTPHeader* rtp_info, uint8_t* payload, size_t* payload_len) { rtp_info->sequenceNumber = frame_index; rtp_info->timestamp = timestamp; rtp_info->ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->payloadType = 98; // WB CNG. rtp_info->markerBit = 0; payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. *payload_len = 1; // Only noise level, no spectral parameters. } #if !defined(WEBRTC_IOS) && defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && \ (defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX)) && \ defined(WEBRTC_CODEC_ILBC) && defined(WEBRTC_CODEC_G722) && \ !defined(WEBRTC_ARCH_ARM64) #define MAYBE_TestBitExactness TestBitExactness #else #define MAYBE_TestBitExactness DISABLED_TestBitExactness #endif TEST_F(NetEqDecodingTest, MAYBE_TestBitExactness) { const std::string input_rtp_file = webrtc::test::ResourcePath("audio_coding/neteq_universal_new", "rtp"); const std::string output_checksum = PlatformChecksum( "09fa7646e2ad032a0b156177b95f09012430f81f", "1c64eb8b55ce8878676c6a1e6ddd78f48de0668b", "09fa7646e2ad032a0b156177b95f09012430f81f", "759fef89a5de52bd17e733dc255c671ce86be909"); const std::string network_stats_checksum = PlatformChecksum("5b4262ca328e5f066af5d34f3380521583dd20de", "80235b6d727281203acb63b98f9a9e85d95f7ec0", "5b4262ca328e5f066af5d34f3380521583dd20de", "5b4262ca328e5f066af5d34f3380521583dd20de"); const std::string rtcp_stats_checksum = PlatformChecksum( "b8880bf9fed2487efbddcb8d94b9937a29ae521d", "f3f7b3d3e71d7e635240b5373b57df6a7e4ce9d4", "b8880bf9fed2487efbddcb8d94b9937a29ae521d", "b8880bf9fed2487efbddcb8d94b9937a29ae521d"); DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum, rtcp_stats_checksum, FLAG_gen_ref); } #if !defined(WEBRTC_IOS) && !defined(WEBRTC_ANDROID) && \ defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && \ defined(WEBRTC_CODEC_OPUS) #define MAYBE_TestOpusBitExactness TestOpusBitExactness #else #define MAYBE_TestOpusBitExactness DISABLED_TestOpusBitExactness #endif TEST_F(NetEqDecodingTest, MAYBE_TestOpusBitExactness) { const std::string input_rtp_file = webrtc::test::ResourcePath("audio_coding/neteq_opus", "rtp"); const std::string output_checksum = PlatformChecksum( "721e1e0c6effe4b2401536a4eef11512c9fb709c", "721e1e0c6effe4b2401536a4eef11512c9fb709c", "721e1e0c6effe4b2401536a4eef11512c9fb709c", "721e1e0c6effe4b2401536a4eef11512c9fb709c"); const std::string network_stats_checksum = PlatformChecksum("4e749c46e2611877120ac7a20cbbe555cfbd70ea", "4e749c46e2611877120ac7a20cbbe555cfbd70ea", "4e749c46e2611877120ac7a20cbbe555cfbd70ea", "4e749c46e2611877120ac7a20cbbe555cfbd70ea"); const std::string rtcp_stats_checksum = PlatformChecksum( "e37c797e3de6a64dda88c9ade7a013d022a2e1e0", "e37c797e3de6a64dda88c9ade7a013d022a2e1e0", "e37c797e3de6a64dda88c9ade7a013d022a2e1e0", "e37c797e3de6a64dda88c9ade7a013d022a2e1e0"); DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum, rtcp_stats_checksum, FLAG_gen_ref); } // Use fax mode to avoid time-scaling. This is to simplify the testing of // packet waiting times in the packet buffer. class NetEqDecodingTestFaxMode : public NetEqDecodingTest { protected: NetEqDecodingTestFaxMode() : NetEqDecodingTest() { config_.playout_mode = kPlayoutFax; } }; TEST_F(NetEqDecodingTestFaxMode, TestFrameWaitingTimeStatistics) { // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. size_t num_frames = 30; const size_t kSamples = 10 * 16; const size_t kPayloadBytes = kSamples * 2; for (size_t i = 0; i < num_frames; ++i) { const uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; rtp_info.sequenceNumber = i; rtp_info.timestamp = i * kSamples; rtp_info.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info.payloadType = 94; // PCM16b WB codec. rtp_info.markerBit = 0; ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); } // Pull out all data. for (size_t i = 0; i < num_frames; ++i) { bool muted; ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } NetEqNetworkStatistics stats; EXPECT_EQ(0, neteq_->NetworkStatistics(&stats)); // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms // spacing (per definition), we expect the delay to increase with 10 ms for // each packet. Thus, we are calculating the statistics for a series from 10 // to 300, in steps of 10 ms. EXPECT_EQ(155, stats.mean_waiting_time_ms); EXPECT_EQ(155, stats.median_waiting_time_ms); EXPECT_EQ(10, stats.min_waiting_time_ms); EXPECT_EQ(300, stats.max_waiting_time_ms); // Check statistics again and make sure it's been reset. EXPECT_EQ(0, neteq_->NetworkStatistics(&stats)); EXPECT_EQ(-1, stats.mean_waiting_time_ms); EXPECT_EQ(-1, stats.median_waiting_time_ms); EXPECT_EQ(-1, stats.min_waiting_time_ms); EXPECT_EQ(-1, stats.max_waiting_time_ms); } TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) { const int kNumFrames = 3000; // Needed for convergence. int frame_index = 0; const size_t kSamples = 10 * 16; const size_t kPayloadBytes = kSamples * 2; while (frame_index < kNumFrames) { // Insert one packet each time, except every 10th time where we insert two // packets at once. This will create a negative clock-drift of approx. 10%. int num_packets = (frame_index % 10 == 0 ? 2 : 1); for (int n = 0; n < num_packets; ++n) { uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); ++frame_index; } // Pull out data once. bool muted; ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(-103192, network_stats.clockdrift_ppm); } TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) { const int kNumFrames = 5000; // Needed for convergence. int frame_index = 0; const size_t kSamples = 10 * 16; const size_t kPayloadBytes = kSamples * 2; for (int i = 0; i < kNumFrames; ++i) { // Insert one packet each time, except every 10th time where we don't insert // any packet. This will create a positive clock-drift of approx. 11%. int num_packets = (i % 10 == 9 ? 0 : 1); for (int n = 0; n < num_packets; ++n) { uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); ++frame_index; } // Pull out data once. bool muted; ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(110953, network_stats.clockdrift_ppm); } void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor, double network_freeze_ms, bool pull_audio_during_freeze, int delay_tolerance_ms, int max_time_to_speech_ms) { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 30; const size_t kSamples = kFrameSizeMs * 16; const size_t kPayloadBytes = kSamples * 2; double next_input_time_ms = 0.0; double t_ms; bool muted; // Insert speech for 5 seconds. const int kSpeechDurationMs = 5000; for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); ++seq_no; timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs) * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); rtc::Optional playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); int32_t delay_before = timestamp - *playout_timestamp; // Insert CNG for 1 minute (= 60000 ms). const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. const int kCngDurationMs = 60000; for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; size_t payload_len; RTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, payload_len), 0)); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += static_cast(kCngPeriodMs) * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); if (network_freeze_ms > 0) { // First keep pulling audio for |network_freeze_ms| without inserting // any data, then insert CNG data corresponding to |network_freeze_ms| // without pulling any output audio. const double loop_end_time = t_ms + network_freeze_ms; for (; t_ms < loop_end_time; t_ms += 10) { // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); } bool pull_once = pull_audio_during_freeze; // If |pull_once| is true, GetAudio will be called once half-way through // the network recovery period. double pull_time_ms = (t_ms + next_input_time_ms) / 2; while (next_input_time_ms <= t_ms) { if (pull_once && next_input_time_ms >= pull_time_ms) { pull_once = false; // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); t_ms += 10; } // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; size_t payload_len; RTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, payload_len), 0)); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += kCngPeriodMs * drift_factor; } } // Insert speech again until output type is speech. double speech_restart_time_ms = t_ms; while (out_frame_.speech_type_ != AudioFrame::kNormalSpeech) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); ++seq_no; timestamp += kSamples; next_input_time_ms += kFrameSizeMs * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); // Increase clock. t_ms += 10; } // Check that the speech starts again within reasonable time. double time_until_speech_returns_ms = t_ms - speech_restart_time_ms; EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms); playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); int32_t delay_after = timestamp - *playout_timestamp; // Compare delay before and after, and make sure it differs less than 20 ms. EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16); EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16); } TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDrift) { // Apply a clock drift of -25 ms / s (sender faster than receiver). const double kDriftFactor = 1000.0 / (1000.0 + 25.0); const double kNetworkFreezeTimeMs = 0.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDrift) { // Apply a clock drift of +25 ms / s (sender slower than receiver). const double kDriftFactor = 1000.0 / (1000.0 - 25.0); const double kNetworkFreezeTimeMs = 0.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDriftNetworkFreeze) { // Apply a clock drift of -25 ms / s (sender faster than receiver). const double kDriftFactor = 1000.0 / (1000.0 + 25.0); const double kNetworkFreezeTimeMs = 5000.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 50; const int kMaxTimeToSpeechMs = 200; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreeze) { // Apply a clock drift of +25 ms / s (sender slower than receiver). const double kDriftFactor = 1000.0 / (1000.0 - 25.0); const double kNetworkFreezeTimeMs = 5000.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreezeExtraPull) { // Apply a clock drift of +25 ms / s (sender slower than receiver). const double kDriftFactor = 1000.0 / (1000.0 - 25.0); const double kNetworkFreezeTimeMs = 5000.0; const bool kGetAudioDuringFreezeRecovery = true; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithoutClockDrift) { const double kDriftFactor = 1.0; // No drift. const double kNetworkFreezeTimeMs = 0.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 10; const int kMaxTimeToSpeechMs = 50; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, UnknownPayloadType) { const size_t kPayloadBytes = 100; uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.payloadType = 1; // Not registered as a decoder. EXPECT_EQ(NetEq::kFail, neteq_->InsertPacket(rtp_info, payload, 0)); } #if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX) #define MAYBE_DecoderError DecoderError #else #define MAYBE_DecoderError DISABLED_DecoderError #endif TEST_F(NetEqDecodingTest, MAYBE_DecoderError) { const size_t kPayloadBytes = 100; uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.payloadType = 103; // iSAC, but the payload is invalid. EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); // Set all of |out_data_| to 1, and verify that it was set to 0 by the call // to GetAudio. int16_t* out_frame_data = out_frame_.mutable_data(); for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; ++i) { out_frame_data[i] = 1; } bool muted; EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_FALSE(muted); // Verify that the first 160 samples are set to 0. static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate. const int16_t* const_out_frame_data = out_frame_.data(); for (int i = 0; i < kExpectedOutputLength; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(0, const_out_frame_data[i]); } } TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) { // Set all of |out_data_| to 1, and verify that it was set to 0 by the call // to GetAudio. int16_t* out_frame_data = out_frame_.mutable_data(); for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; ++i) { out_frame_data[i] = 1; } bool muted; EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_FALSE(muted); // Verify that the first block of samples is set to 0. static const int kExpectedOutputLength = kInitSampleRateHz / 100; // 10 ms at initial sample rate. const int16_t* const_out_frame_data = out_frame_.data(); for (int i = 0; i < kExpectedOutputLength; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(0, const_out_frame_data[i]); } // Verify that the sample rate did not change from the initial configuration. EXPECT_EQ(config_.sample_rate_hz, neteq_->last_output_sample_rate_hz()); } class NetEqBgnTest : public NetEqDecodingTest { protected: virtual void TestCondition(double sum_squared_noise, bool should_be_faded) = 0; void CheckBgn(int sampling_rate_hz) { size_t expected_samples_per_channel = 0; uint8_t payload_type = 0xFF; // Invalid. if (sampling_rate_hz == 8000) { expected_samples_per_channel = kBlockSize8kHz; payload_type = 93; // PCM 16, 8 kHz. } else if (sampling_rate_hz == 16000) { expected_samples_per_channel = kBlockSize16kHz; payload_type = 94; // PCM 16, 16 kHZ. } else if (sampling_rate_hz == 32000) { expected_samples_per_channel = kBlockSize32kHz; payload_type = 95; // PCM 16, 32 kHz. } else { ASSERT_TRUE(false); // Unsupported test case. } AudioFrame output; test::AudioLoop input; // We are using the same 32 kHz input file for all tests, regardless of // |sampling_rate_hz|. The output may sound weird, but the test is still // valid. ASSERT_TRUE(input.Init( webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"), 10 * sampling_rate_hz, // Max 10 seconds loop length. expected_samples_per_channel)); // Payload of 10 ms of PCM16 32 kHz. uint8_t payload[kBlockSize32kHz * sizeof(int16_t)]; RTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.payloadType = payload_type; uint32_t receive_timestamp = 0; bool muted; for (int n = 0; n < 10; ++n) { // Insert few packets and get audio. auto block = input.GetNextBlock(); ASSERT_EQ(expected_samples_per_channel, block.size()); size_t enc_len_bytes = WebRtcPcm16b_Encode(block.data(), block.size(), payload); ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2); ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, enc_len_bytes), receive_timestamp)); output.Reset(); ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); ASSERT_EQ(1u, output.num_channels_); ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_); ASSERT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); // Next packet. rtp_info.timestamp += expected_samples_per_channel; rtp_info.sequenceNumber++; receive_timestamp += expected_samples_per_channel; } output.Reset(); // Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull // one frame without checking speech-type. This is the first frame pulled // without inserting any packet, and might not be labeled as PLC. ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); ASSERT_EQ(1u, output.num_channels_); ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_); // To be able to test the fading of background noise we need at lease to // pull 611 frames. const int kFadingThreshold = 611; // Test several CNG-to-PLC packet for the expected behavior. The number 20 // is arbitrary, but sufficiently large to test enough number of frames. const int kNumPlcToCngTestFrames = 20; bool plc_to_cng = false; for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) { output.Reset(); // Set to non-zero. memset(output.mutable_data(), 1, AudioFrame::kMaxDataSizeBytes); ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); ASSERT_FALSE(muted); ASSERT_EQ(1u, output.num_channels_); ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_); if (output.speech_type_ == AudioFrame::kPLCCNG) { plc_to_cng = true; double sum_squared = 0; const int16_t* output_data = output.data(); for (size_t k = 0; k < output.num_channels_ * output.samples_per_channel_; ++k) sum_squared += output_data[k] * output_data[k]; TestCondition(sum_squared, n > kFadingThreshold); } else { EXPECT_EQ(AudioFrame::kPLC, output.speech_type_); } } EXPECT_TRUE(plc_to_cng); // Just to be sure that PLC-to-CNG has occurred. } }; class NetEqBgnTestOn : public NetEqBgnTest { protected: NetEqBgnTestOn() : NetEqBgnTest() { config_.background_noise_mode = NetEq::kBgnOn; } void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) { EXPECT_NE(0, sum_squared_noise); } }; class NetEqBgnTestOff : public NetEqBgnTest { protected: NetEqBgnTestOff() : NetEqBgnTest() { config_.background_noise_mode = NetEq::kBgnOff; } void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) { EXPECT_EQ(0, sum_squared_noise); } }; class NetEqBgnTestFade : public NetEqBgnTest { protected: NetEqBgnTestFade() : NetEqBgnTest() { config_.background_noise_mode = NetEq::kBgnFade; } void TestCondition(double sum_squared_noise, bool should_be_faded) { if (should_be_faded) EXPECT_EQ(0, sum_squared_noise); } }; TEST_F(NetEqBgnTestOn, RunTest) { CheckBgn(8000); CheckBgn(16000); CheckBgn(32000); } TEST_F(NetEqBgnTestOff, RunTest) { CheckBgn(8000); CheckBgn(16000); CheckBgn(32000); } TEST_F(NetEqBgnTestFade, RunTest) { CheckBgn(8000); CheckBgn(16000); CheckBgn(32000); } void NetEqDecodingTest::WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, const std::set& drop_seq_numbers, bool expect_seq_no_wrap, bool expect_timestamp_wrap) { uint16_t seq_no = start_seq_no; uint32_t timestamp = start_timestamp; const int kBlocksPerFrame = 3; // Number of 10 ms blocks per frame. const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs; const int kSamples = kBlockSize16kHz * kBlocksPerFrame; const size_t kPayloadBytes = kSamples * sizeof(int16_t); double next_input_time_ms = 0.0; uint32_t receive_timestamp = 0; // Insert speech for 2 seconds. const int kSpeechDurationMs = 2000; int packets_inserted = 0; uint16_t last_seq_no; uint32_t last_timestamp; bool timestamp_wrapped = false; bool seq_no_wrapped = false; for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) { // This sequence number was not in the set to drop. Insert it. ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, receive_timestamp)); ++packets_inserted; } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); // Due to internal NetEq logic, preferred buffer-size is about 4 times the // packet size for first few packets. Therefore we refrain from checking // the criteria. if (packets_inserted > 4) { // Expect preferred and actual buffer size to be no more than 2 frames. EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2); EXPECT_LE(network_stats.current_buffer_size_ms, kFrameSizeMs * 2 + algorithmic_delay_ms_); } last_seq_no = seq_no; last_timestamp = timestamp; ++seq_no; timestamp += kSamples; receive_timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs); seq_no_wrapped |= seq_no < last_seq_no; timestamp_wrapped |= timestamp < last_timestamp; } // Pull out data once. AudioFrame output; bool muted; ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_); ASSERT_EQ(1u, output.num_channels_); // Expect delay (in samples) to be less than 2 packets. rtc::Optional playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); EXPECT_LE(timestamp - *playout_timestamp, static_cast(kSamples * 2)); } // Make sure we have actually tested wrap-around. ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped); ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped); } TEST_F(NetEqDecodingTest, SequenceNumberWrap) { // Start with a sequence number that will soon wrap. std::set drop_seq_numbers; // Don't drop any packets. WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); } TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) { // Start with a sequence number that will soon wrap. std::set drop_seq_numbers; drop_seq_numbers.insert(0xFFFF); drop_seq_numbers.insert(0x0); WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); } TEST_F(NetEqDecodingTest, TimestampWrap) { // Start with a timestamp that will soon wrap. std::set drop_seq_numbers; WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true); } TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) { // Start with a timestamp and a sequence number that will wrap at the same // time. std::set drop_seq_numbers; WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true); } void NetEqDecodingTest::DuplicateCng() { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 10; const int kSampleRateKhz = 16; const int kSamples = kFrameSizeMs * kSampleRateKhz; const size_t kPayloadBytes = kSamples * 2; const int algorithmic_delay_samples = std::max( algorithmic_delay_ms_ * kSampleRateKhz, 5 * kSampleRateKhz / 8); // Insert three speech packets. Three are needed to get the frame length // correct. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; bool muted; for (int i = 0; i < 3; ++i) { PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); ++seq_no; timestamp += kSamples; // Pull audio once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } // Verify speech output. EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); // Insert same CNG packet twice. const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; size_t payload_len; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); // This is the first time this CNG packet is inserted. ASSERT_EQ( 0, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, payload_len), 0)); // Pull audio once and make sure CNG is played. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); EXPECT_FALSE( neteq_->GetPlayoutTimestamp()); // Returns empty value during CNG. EXPECT_EQ(timestamp - algorithmic_delay_samples, out_frame_.timestamp_ + out_frame_.samples_per_channel_); // Insert the same CNG packet again. Note that at this point it is old, since // we have already decoded the first copy of it. ASSERT_EQ( 0, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, payload_len), 0)); // Pull audio until we have played |kCngPeriodMs| of CNG. Start at 10 ms since // we have already pulled out CNG once. for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) { ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); EXPECT_FALSE( neteq_->GetPlayoutTimestamp()); // Returns empty value during CNG. EXPECT_EQ(timestamp - algorithmic_delay_samples, out_frame_.timestamp_ + out_frame_.samples_per_channel_); } // Insert speech again. ++seq_no; timestamp += kCngPeriodSamples; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); // Pull audio once and verify that the output is speech again. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); rtc::Optional playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); EXPECT_EQ(timestamp + kSamples - algorithmic_delay_samples, *playout_timestamp); } TEST_F(NetEqDecodingTest, DiscardDuplicateCng) { DuplicateCng(); } TEST_F(NetEqDecodingTest, CngFirst) { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 10; const int kSampleRateKhz = 16; const int kSamples = kFrameSizeMs * kSampleRateKhz; const int kPayloadBytes = kSamples * 2; const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; size_t payload_len; uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ( NetEq::kOK, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, payload_len), 0)); ++seq_no; timestamp += kCngPeriodSamples; // Pull audio once and make sure CNG is played. bool muted; ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); // Insert some speech packets. const uint32_t first_speech_timestamp = timestamp; int timeout_counter = 0; do { ASSERT_LT(timeout_counter++, 20) << "Test timed out"; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); ++seq_no; timestamp += kSamples; // Pull audio once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } while (!IsNewerTimestamp(out_frame_.timestamp_, first_speech_timestamp)); // Verify speech output. EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); } class NetEqDecodingTestWithMutedState : public NetEqDecodingTest { public: NetEqDecodingTestWithMutedState() : NetEqDecodingTest() { config_.enable_muted_state = true; } protected: static constexpr size_t kSamples = 10 * 16; static constexpr size_t kPayloadBytes = kSamples * 2; void InsertPacket(uint32_t rtp_timestamp) { uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(0, rtp_timestamp, &rtp_info); EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); } void InsertCngPacket(uint32_t rtp_timestamp) { uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; size_t payload_len; PopulateCng(0, rtp_timestamp, &rtp_info, payload, &payload_len); EXPECT_EQ( NetEq::kOK, neteq_->InsertPacket( rtp_info, rtc::ArrayView(payload, payload_len), 0)); } bool GetAudioReturnMuted() { bool muted; EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); return muted; } void GetAudioUntilMuted() { while (!GetAudioReturnMuted()) { ASSERT_LT(counter_++, 1000) << "Test timed out"; } } void GetAudioUntilNormal() { bool muted = false; while (out_frame_.speech_type_ != AudioFrame::kNormalSpeech) { EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_LT(counter_++, 1000) << "Test timed out"; } EXPECT_FALSE(muted); } int counter_ = 0; }; // Verifies that NetEq goes in and out of muted state as expected. TEST_F(NetEqDecodingTestWithMutedState, MutedState) { // Insert one speech packet. InsertPacket(0); // Pull out audio once and expect it not to be muted. EXPECT_FALSE(GetAudioReturnMuted()); // Pull data until faded out. GetAudioUntilMuted(); EXPECT_TRUE(out_frame_.muted()); // Verify that output audio is not written during muted mode. Other parameters // should be correct, though. AudioFrame new_frame; int16_t* frame_data = new_frame.mutable_data(); for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; i++) { frame_data[i] = 17; } bool muted; EXPECT_EQ(0, neteq_->GetAudio(&new_frame, &muted)); EXPECT_TRUE(muted); EXPECT_TRUE(out_frame_.muted()); for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; i++) { EXPECT_EQ(17, frame_data[i]); } EXPECT_EQ(out_frame_.timestamp_ + out_frame_.samples_per_channel_, new_frame.timestamp_); EXPECT_EQ(out_frame_.samples_per_channel_, new_frame.samples_per_channel_); EXPECT_EQ(out_frame_.sample_rate_hz_, new_frame.sample_rate_hz_); EXPECT_EQ(out_frame_.num_channels_, new_frame.num_channels_); EXPECT_EQ(out_frame_.speech_type_, new_frame.speech_type_); EXPECT_EQ(out_frame_.vad_activity_, new_frame.vad_activity_); // Insert new data. Timestamp is corrected for the time elapsed since the last // packet. Verify that normal operation resumes. InsertPacket(kSamples * counter_); GetAudioUntilNormal(); EXPECT_FALSE(out_frame_.muted()); NetEqNetworkStatistics stats; EXPECT_EQ(0, neteq_->NetworkStatistics(&stats)); // NetEqNetworkStatistics::expand_rate tells the fraction of samples that were // concealment samples, in Q14 (16384 = 100%) .The vast majority should be // concealment samples in this test. EXPECT_GT(stats.expand_rate, 14000); // And, it should be greater than the speech_expand_rate. EXPECT_GT(stats.expand_rate, stats.speech_expand_rate); } // Verifies that NetEq goes out of muted state when given a delayed packet. TEST_F(NetEqDecodingTestWithMutedState, MutedStateDelayedPacket) { // Insert one speech packet. InsertPacket(0); // Pull out audio once and expect it not to be muted. EXPECT_FALSE(GetAudioReturnMuted()); // Pull data until faded out. GetAudioUntilMuted(); // Insert new data. Timestamp is only corrected for the half of the time // elapsed since the last packet. That is, the new packet is delayed. Verify // that normal operation resumes. InsertPacket(kSamples * counter_ / 2); GetAudioUntilNormal(); } // Verifies that NetEq goes out of muted state when given a future packet. TEST_F(NetEqDecodingTestWithMutedState, MutedStateFuturePacket) { // Insert one speech packet. InsertPacket(0); // Pull out audio once and expect it not to be muted. EXPECT_FALSE(GetAudioReturnMuted()); // Pull data until faded out. GetAudioUntilMuted(); // Insert new data. Timestamp is over-corrected for the time elapsed since the // last packet. That is, the new packet is too early. Verify that normal // operation resumes. InsertPacket(kSamples * counter_ * 2); GetAudioUntilNormal(); } // Verifies that NetEq goes out of muted state when given an old packet. TEST_F(NetEqDecodingTestWithMutedState, MutedStateOldPacket) { // Insert one speech packet. InsertPacket(0); // Pull out audio once and expect it not to be muted. EXPECT_FALSE(GetAudioReturnMuted()); // Pull data until faded out. GetAudioUntilMuted(); EXPECT_NE(AudioFrame::kNormalSpeech, out_frame_.speech_type_); // Insert packet which is older than the first packet. InsertPacket(kSamples * (counter_ - 1000)); EXPECT_FALSE(GetAudioReturnMuted()); EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); } // Verifies that NetEq doesn't enter muted state when CNG mode is active and the // packet stream is suspended for a long time. TEST_F(NetEqDecodingTestWithMutedState, DoNotMuteExtendedCngWithoutPackets) { // Insert one CNG packet. InsertCngPacket(0); // Pull 10 seconds of audio (10 ms audio generated per lap). for (int i = 0; i < 1000; ++i) { bool muted; EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_FALSE(muted); } EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); } // Verifies that NetEq goes back to normal after a long CNG period with the // packet stream suspended. TEST_F(NetEqDecodingTestWithMutedState, RecoverAfterExtendedCngWithoutPackets) { // Insert one CNG packet. InsertCngPacket(0); // Pull 10 seconds of audio (10 ms audio generated per lap). for (int i = 0; i < 1000; ++i) { bool muted; EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); } // Insert new data. Timestamp is corrected for the time elapsed since the last // packet. Verify that normal operation resumes. InsertPacket(kSamples * counter_); GetAudioUntilNormal(); } class NetEqDecodingTestTwoInstances : public NetEqDecodingTest { public: NetEqDecodingTestTwoInstances() : NetEqDecodingTest() {} void SetUp() override { NetEqDecodingTest::SetUp(); config2_ = config_; } void CreateSecondInstance() { neteq2_.reset(NetEq::Create(config2_, CreateBuiltinAudioDecoderFactory())); ASSERT_TRUE(neteq2_); LoadDecoders(neteq2_.get()); } protected: std::unique_ptr neteq2_; NetEq::Config config2_; }; namespace { ::testing::AssertionResult AudioFramesEqualExceptData(const AudioFrame& a, const AudioFrame& b) { if (a.timestamp_ != b.timestamp_) return ::testing::AssertionFailure() << "timestamp_ diff (" << a.timestamp_ << " != " << b.timestamp_ << ")"; if (a.sample_rate_hz_ != b.sample_rate_hz_) return ::testing::AssertionFailure() << "sample_rate_hz_ diff (" << a.sample_rate_hz_ << " != " << b.sample_rate_hz_ << ")"; if (a.samples_per_channel_ != b.samples_per_channel_) return ::testing::AssertionFailure() << "samples_per_channel_ diff (" << a.samples_per_channel_ << " != " << b.samples_per_channel_ << ")"; if (a.num_channels_ != b.num_channels_) return ::testing::AssertionFailure() << "num_channels_ diff (" << a.num_channels_ << " != " << b.num_channels_ << ")"; if (a.speech_type_ != b.speech_type_) return ::testing::AssertionFailure() << "speech_type_ diff (" << a.speech_type_ << " != " << b.speech_type_ << ")"; if (a.vad_activity_ != b.vad_activity_) return ::testing::AssertionFailure() << "vad_activity_ diff (" << a.vad_activity_ << " != " << b.vad_activity_ << ")"; return ::testing::AssertionSuccess(); } ::testing::AssertionResult AudioFramesEqual(const AudioFrame& a, const AudioFrame& b) { ::testing::AssertionResult res = AudioFramesEqualExceptData(a, b); if (!res) return res; if (memcmp( a.data(), b.data(), a.samples_per_channel_ * a.num_channels_ * sizeof(*a.data())) != 0) { return ::testing::AssertionFailure() << "data_ diff"; } return ::testing::AssertionSuccess(); } } // namespace TEST_F(NetEqDecodingTestTwoInstances, CompareMutedStateOnOff) { ASSERT_FALSE(config_.enable_muted_state); config2_.enable_muted_state = true; CreateSecondInstance(); // Insert one speech packet into both NetEqs. const size_t kSamples = 10 * 16; const size_t kPayloadBytes = kSamples * 2; uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); EXPECT_EQ(0, neteq2_->InsertPacket(rtp_info, payload, 0)); AudioFrame out_frame1, out_frame2; bool muted; for (int i = 0; i < 1000; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the loop iterator on failure. EXPECT_EQ(0, neteq_->GetAudio(&out_frame1, &muted)); EXPECT_FALSE(muted); EXPECT_EQ(0, neteq2_->GetAudio(&out_frame2, &muted)); if (muted) { EXPECT_TRUE(AudioFramesEqualExceptData(out_frame1, out_frame2)); } else { EXPECT_TRUE(AudioFramesEqual(out_frame1, out_frame2)); } } EXPECT_TRUE(muted); // Insert new data. Timestamp is corrected for the time elapsed since the last // packet. PopulateRtpInfo(0, kSamples * 1000, &rtp_info); EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); EXPECT_EQ(0, neteq2_->InsertPacket(rtp_info, payload, 0)); int counter = 0; while (out_frame1.speech_type_ != AudioFrame::kNormalSpeech) { ASSERT_LT(counter++, 1000) << "Test timed out"; std::ostringstream ss; ss << "counter = " << counter; SCOPED_TRACE(ss.str()); // Print out the loop iterator on failure. EXPECT_EQ(0, neteq_->GetAudio(&out_frame1, &muted)); EXPECT_FALSE(muted); EXPECT_EQ(0, neteq2_->GetAudio(&out_frame2, &muted)); if (muted) { EXPECT_TRUE(AudioFramesEqualExceptData(out_frame1, out_frame2)); } else { EXPECT_TRUE(AudioFramesEqual(out_frame1, out_frame2)); } } EXPECT_FALSE(muted); } TEST_F(NetEqDecodingTest, LastDecodedTimestampsEmpty) { EXPECT_TRUE(neteq_->LastDecodedTimestamps().empty()); // Pull out data once. AudioFrame output; bool muted; ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); EXPECT_TRUE(neteq_->LastDecodedTimestamps().empty()); } TEST_F(NetEqDecodingTest, LastDecodedTimestampsOneDecoded) { // Insert one packet with PCM16b WB data (this is what PopulateRtpInfo does by // default). Make the length 10 ms. constexpr size_t kPayloadSamples = 16 * 10; constexpr size_t kPayloadBytes = 2 * kPayloadSamples; uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; constexpr uint32_t kRtpTimestamp = 0x1234; PopulateRtpInfo(0, kRtpTimestamp, &rtp_info); EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); // Pull out data once. AudioFrame output; bool muted; ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); EXPECT_EQ(std::vector({kRtpTimestamp}), neteq_->LastDecodedTimestamps()); // Nothing decoded on the second call. ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); EXPECT_TRUE(neteq_->LastDecodedTimestamps().empty()); } TEST_F(NetEqDecodingTest, LastDecodedTimestampsTwoDecoded) { // Insert two packets with PCM16b WB data (this is what PopulateRtpInfo does // by default). Make the length 5 ms so that NetEq must decode them both in // the same GetAudio call. constexpr size_t kPayloadSamples = 16 * 5; constexpr size_t kPayloadBytes = 2 * kPayloadSamples; uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; constexpr uint32_t kRtpTimestamp1 = 0x1234; PopulateRtpInfo(0, kRtpTimestamp1, &rtp_info); EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); constexpr uint32_t kRtpTimestamp2 = kRtpTimestamp1 + kPayloadSamples; PopulateRtpInfo(1, kRtpTimestamp2, &rtp_info); EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, 0)); // Pull out data once. AudioFrame output; bool muted; ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); EXPECT_EQ(std::vector({kRtpTimestamp1, kRtpTimestamp2}), neteq_->LastDecodedTimestamps()); } } // namespace webrtc