/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/level_controller/level_controller.h" #include #include #include #include "api/array_view.h" #include "modules/audio_processing/audio_buffer.h" #include "modules/audio_processing/level_controller/gain_applier.h" #include "modules/audio_processing/level_controller/gain_selector.h" #include "modules/audio_processing/level_controller/noise_level_estimator.h" #include "modules/audio_processing/level_controller/peak_level_estimator.h" #include "modules/audio_processing/level_controller/saturating_gain_estimator.h" #include "modules/audio_processing/level_controller/signal_classifier.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { void UpdateAndRemoveDcLevel(float forgetting_factor, float* dc_level, rtc::ArrayView x) { RTC_DCHECK(!x.empty()); float mean = std::accumulate(x.begin(), x.end(), 0.0f) / static_cast(x.size()); *dc_level += forgetting_factor * (mean - *dc_level); for (float& v : x) { v -= *dc_level; } } float FrameEnergy(const AudioBuffer& audio) { float energy = 0.f; for (size_t k = 0; k < audio.num_channels(); ++k) { float channel_energy = std::accumulate(audio.channels_const_f()[k], audio.channels_const_f()[k] + audio.num_frames(), 0.f, [](float a, float b) -> float { return a + b * b; }); energy = std::max(channel_energy, energy); } return energy; } float PeakLevel(const AudioBuffer& audio) { float peak_level = 0.f; for (size_t k = 0; k < audio.num_channels(); ++k) { auto* channel_peak_level = std::max_element( audio.channels_const_f()[k], audio.channels_const_f()[k] + audio.num_frames(), [](float a, float b) { return std::abs(a) < std::abs(b); }); peak_level = std::max(*channel_peak_level, peak_level); } return peak_level; } const int kMetricsFrameInterval = 1000; } // namespace int LevelController::instance_count_ = 0; void LevelController::Metrics::Initialize(int sample_rate_hz) { RTC_DCHECK(sample_rate_hz == AudioProcessing::kSampleRate8kHz || sample_rate_hz == AudioProcessing::kSampleRate16kHz || sample_rate_hz == AudioProcessing::kSampleRate32kHz || sample_rate_hz == AudioProcessing::kSampleRate48kHz); Reset(); frame_length_ = rtc::CheckedDivExact(sample_rate_hz, 100); } void LevelController::Metrics::Reset() { metrics_frame_counter_ = 0; gain_sum_ = 0.f; peak_level_sum_ = 0.f; noise_energy_sum_ = 0.f; max_gain_ = 0.f; max_peak_level_ = 0.f; max_noise_energy_ = 0.f; } void LevelController::Metrics::Update(float long_term_peak_level, float noise_energy, float gain, float frame_peak_level) { const float kdBFSOffset = 90.3090f; gain_sum_ += gain; peak_level_sum_ += long_term_peak_level; noise_energy_sum_ += noise_energy; max_gain_ = std::max(max_gain_, gain); max_peak_level_ = std::max(max_peak_level_, long_term_peak_level); max_noise_energy_ = std::max(max_noise_energy_, noise_energy); ++metrics_frame_counter_; if (metrics_frame_counter_ == kMetricsFrameInterval) { RTC_DCHECK_LT(0, frame_length_); RTC_DCHECK_LT(0, kMetricsFrameInterval); const int max_noise_power_dbfs = static_cast( 10 * log10(max_noise_energy_ / frame_length_ + 1e-10f) - kdBFSOffset); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.MaxNoisePower", max_noise_power_dbfs, -90, 0, 50); const int average_noise_power_dbfs = static_cast( 10 * log10(noise_energy_sum_ / (frame_length_ * kMetricsFrameInterval) + 1e-10f) - kdBFSOffset); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.AverageNoisePower", average_noise_power_dbfs, -90, 0, 50); const int max_peak_level_dbfs = static_cast( 10 * log10(max_peak_level_ * max_peak_level_ + 1e-10f) - kdBFSOffset); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.MaxPeakLevel", max_peak_level_dbfs, -90, 0, 50); const int average_peak_level_dbfs = static_cast( 10 * log10(peak_level_sum_ * peak_level_sum_ / (kMetricsFrameInterval * kMetricsFrameInterval) + 1e-10f) - kdBFSOffset); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.AveragePeakLevel", average_peak_level_dbfs, -90, 0, 50); RTC_DCHECK_LE(1.f, max_gain_); RTC_DCHECK_LE(1.f, gain_sum_ / kMetricsFrameInterval); const int max_gain_db = static_cast(10 * log10(max_gain_ * max_gain_)); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.MaxGain", max_gain_db, 0, 33, 30); const int average_gain_db = static_cast( 10 * log10(gain_sum_ * gain_sum_ / (kMetricsFrameInterval * kMetricsFrameInterval))); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.AverageGain", average_gain_db, 0, 33, 30); const int long_term_peak_level_dbfs = static_cast( 10 * log10(long_term_peak_level * long_term_peak_level + 1e-10f) - kdBFSOffset); const int frame_peak_level_dbfs = static_cast( 10 * log10(frame_peak_level * frame_peak_level + 1e-10f) - kdBFSOffset); RTC_LOG(LS_INFO) << "Level Controller metrics: {" << "Max noise power: " << max_noise_power_dbfs << " dBFS, " << "Average noise power: " << average_noise_power_dbfs << " dBFS, " << "Max long term peak level: " << max_peak_level_dbfs << " dBFS, " << "Average long term peak level: " << average_peak_level_dbfs << " dBFS, " << "Max gain: " << max_gain_db << " dB, " << "Average gain: " << average_gain_db << " dB, " << "Long term peak level: " << long_term_peak_level_dbfs << " dBFS, " << "Last frame peak level: " << frame_peak_level_dbfs << " dBFS" << "}"; Reset(); } } LevelController::LevelController() : data_dumper_(new ApmDataDumper(instance_count_)), gain_applier_(data_dumper_.get()), signal_classifier_(data_dumper_.get()), peak_level_estimator_(kTargetLcPeakLeveldBFS) { Initialize(AudioProcessing::kSampleRate48kHz); ++instance_count_; } LevelController::~LevelController() {} void LevelController::Initialize(int sample_rate_hz) { RTC_DCHECK(sample_rate_hz == AudioProcessing::kSampleRate8kHz || sample_rate_hz == AudioProcessing::kSampleRate16kHz || sample_rate_hz == AudioProcessing::kSampleRate32kHz || sample_rate_hz == AudioProcessing::kSampleRate48kHz); data_dumper_->InitiateNewSetOfRecordings(); gain_selector_.Initialize(sample_rate_hz); gain_applier_.Initialize(sample_rate_hz); signal_classifier_.Initialize(sample_rate_hz); noise_level_estimator_.Initialize(sample_rate_hz); peak_level_estimator_.Initialize(config_.initial_peak_level_dbfs); saturating_gain_estimator_.Initialize(); metrics_.Initialize(sample_rate_hz); last_gain_ = 1.0f; sample_rate_hz_ = sample_rate_hz; dc_forgetting_factor_ = 0.01f * sample_rate_hz / 48000.f; std::fill(dc_level_, dc_level_ + arraysize(dc_level_), 0.f); } void LevelController::Process(AudioBuffer* audio) { RTC_DCHECK_LT(0, audio->num_channels()); RTC_DCHECK_GE(2, audio->num_channels()); RTC_DCHECK_NE(0.f, dc_forgetting_factor_); RTC_DCHECK(sample_rate_hz_); data_dumper_->DumpWav("lc_input", audio->num_frames(), audio->channels_const_f()[0], *sample_rate_hz_, 1); // Remove DC level. for (size_t k = 0; k < audio->num_channels(); ++k) { UpdateAndRemoveDcLevel( dc_forgetting_factor_, &dc_level_[k], rtc::ArrayView(audio->channels_f()[k], audio->num_frames())); } SignalClassifier::SignalType signal_type; signal_classifier_.Analyze(*audio, &signal_type); int tmp = static_cast(signal_type); data_dumper_->DumpRaw("lc_signal_type", 1, &tmp); // Estimate the noise energy. float noise_energy = noise_level_estimator_.Analyze(signal_type, FrameEnergy(*audio)); // Estimate the overall signal peak level. const float frame_peak_level = PeakLevel(*audio); const float long_term_peak_level = peak_level_estimator_.Analyze(signal_type, frame_peak_level); float saturating_gain = saturating_gain_estimator_.GetGain(); // Compute the new gain to apply. last_gain_ = gain_selector_.GetNewGain(long_term_peak_level, noise_energy, saturating_gain, gain_jumpstart_, signal_type); // Unflag the jumpstart of the gain as it should only happen once. gain_jumpstart_ = false; // Apply the gain to the signal. int num_saturations = gain_applier_.Process(last_gain_, audio); // Estimate the gain that saturates the overall signal. saturating_gain_estimator_.Update(last_gain_, num_saturations); // Update the metrics. metrics_.Update(long_term_peak_level, noise_energy, last_gain_, frame_peak_level); data_dumper_->DumpRaw("lc_selected_gain", 1, &last_gain_); data_dumper_->DumpRaw("lc_noise_energy", 1, &noise_energy); data_dumper_->DumpRaw("lc_peak_level", 1, &long_term_peak_level); data_dumper_->DumpRaw("lc_saturating_gain", 1, &saturating_gain); data_dumper_->DumpWav("lc_output", audio->num_frames(), audio->channels_f()[0], *sample_rate_hz_, 1); } void LevelController::ApplyConfig( const AudioProcessing::Config::LevelController& config) { RTC_DCHECK(Validate(config)); config_ = config; peak_level_estimator_.Initialize(config_.initial_peak_level_dbfs); gain_jumpstart_ = true; } std::string LevelController::ToString( const AudioProcessing::Config::LevelController& config) { std::stringstream ss; ss << "{" << "enabled: " << (config.enabled ? "true" : "false") << ", " << "initial_peak_level_dbfs: " << config.initial_peak_level_dbfs << "}"; return ss.str(); } bool LevelController::Validate( const AudioProcessing::Config::LevelController& config) { return (config.initial_peak_level_dbfs < std::numeric_limits::epsilon() && config.initial_peak_level_dbfs > -(100.f + std::numeric_limits::epsilon())); } } // namespace webrtc