/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/remote_bitrate_estimator/aimd_rate_control.h" #include #include #include #include #include #include #include "modules/remote_bitrate_estimator/include/bwe_defines.h" #include "modules/remote_bitrate_estimator/overuse_detector.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_minmax.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { constexpr TimeDelta kDefaultRtt = TimeDelta::Millis<200>(); constexpr double kDefaultBackoffFactor = 0.85; constexpr TimeDelta kDefaultInitialBackOffInterval = TimeDelta::Millis<200>(); const char kBweBackOffFactorExperiment[] = "WebRTC-BweBackOffFactor"; const char kBweInitialBackOffIntervalExperiment[] = "WebRTC-BweInitialBackOffInterval"; double ReadBackoffFactor() { std::string experiment_string = webrtc::field_trial::FindFullName(kBweBackOffFactorExperiment); double backoff_factor; int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%lf", &backoff_factor); if (parsed_values == 1) { if (backoff_factor >= 1.0) { RTC_LOG(WARNING) << "Back-off factor must be less than 1."; } else if (backoff_factor <= 0.0) { RTC_LOG(WARNING) << "Back-off factor must be greater than 0."; } else { return backoff_factor; } } RTC_LOG(LS_WARNING) << "Failed to parse parameters for AimdRateControl " "experiment from field trial string. Using default."; return kDefaultBackoffFactor; } TimeDelta ReadInitialBackoffInterval() { std::string experiment_string = webrtc::field_trial::FindFullName(kBweInitialBackOffIntervalExperiment); int64_t backoff_interval; int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%" SCNd64, &backoff_interval); if (parsed_values == 1) { if (10 <= backoff_interval && backoff_interval <= 200) { return TimeDelta::ms(backoff_interval); } RTC_LOG(WARNING) << "Initial back-off interval must be between 10 and 200 ms."; } RTC_LOG(LS_WARNING) << "Failed to parse parameters for " << kBweInitialBackOffIntervalExperiment << " experiment. Using default."; return kDefaultInitialBackOffInterval; } AimdRateControl::AimdRateControl() : min_configured_bitrate_(congestion_controller::GetMinBitrate()), max_configured_bitrate_(DataRate::kbps(30000)), current_bitrate_(max_configured_bitrate_), latest_estimated_throughput_(current_bitrate_), link_capacity_(), rate_control_state_(kRcHold), time_last_bitrate_change_(Timestamp::MinusInfinity()), time_last_bitrate_decrease_(Timestamp::MinusInfinity()), time_first_throughput_estimate_(Timestamp::MinusInfinity()), bitrate_is_initialized_(false), beta_(webrtc::field_trial::IsEnabled(kBweBackOffFactorExperiment) ? ReadBackoffFactor() : kDefaultBackoffFactor), rtt_(kDefaultRtt), in_experiment_(!AdaptiveThresholdExperimentIsDisabled()), smoothing_experiment_( webrtc::field_trial::IsEnabled("WebRTC-Audio-BandwidthSmoothing")), in_initial_backoff_interval_experiment_( webrtc::field_trial::IsEnabled(kBweInitialBackOffIntervalExperiment)), initial_backoff_interval_(kDefaultInitialBackOffInterval) { if (in_initial_backoff_interval_experiment_) { initial_backoff_interval_ = ReadInitialBackoffInterval(); RTC_LOG(LS_INFO) << "Using aimd rate control with initial back-off interval" << " " << ToString(initial_backoff_interval_) << "."; } RTC_LOG(LS_INFO) << "Using aimd rate control with back off factor " << beta_; } AimdRateControl::~AimdRateControl() {} void AimdRateControl::SetStartBitrate(DataRate start_bitrate) { current_bitrate_ = start_bitrate; latest_estimated_throughput_ = current_bitrate_; bitrate_is_initialized_ = true; } void AimdRateControl::SetMinBitrate(DataRate min_bitrate) { min_configured_bitrate_ = min_bitrate; current_bitrate_ = std::max(min_bitrate, current_bitrate_); } bool AimdRateControl::ValidEstimate() const { return bitrate_is_initialized_; } TimeDelta AimdRateControl::GetFeedbackInterval() const { // Estimate how often we can send RTCP if we allocate up to 5% of bandwidth // to feedback. const DataSize kRtcpSize = DataSize::bytes(80); const DataRate rtcp_bitrate = current_bitrate_ * 0.05; const TimeDelta interval = kRtcpSize / rtcp_bitrate; const TimeDelta kMinFeedbackInterval = TimeDelta::ms(200); const TimeDelta kMaxFeedbackInterval = TimeDelta::ms(1000); return interval.Clamped(kMinFeedbackInterval, kMaxFeedbackInterval); } bool AimdRateControl::TimeToReduceFurther(Timestamp at_time, DataRate estimated_throughput) const { const TimeDelta bitrate_reduction_interval = rtt_.Clamped(TimeDelta::ms(10), TimeDelta::ms(200)); if (at_time - time_last_bitrate_change_ >= bitrate_reduction_interval) { return true; } if (ValidEstimate()) { // TODO(terelius/holmer): Investigate consequences of increasing // the threshold to 0.95 * LatestEstimate(). const DataRate threshold = 0.5 * LatestEstimate(); return estimated_throughput < threshold; } return false; } bool AimdRateControl::InitialTimeToReduceFurther(Timestamp at_time) const { if (!in_initial_backoff_interval_experiment_) { return ValidEstimate() && TimeToReduceFurther(at_time, LatestEstimate() / 2 - DataRate::bps(1)); } // TODO(terelius): We could use the RTT (clamped to suitable limits) instead // of a fixed bitrate_reduction_interval. if (time_last_bitrate_decrease_.IsInfinite() || at_time - time_last_bitrate_decrease_ >= initial_backoff_interval_) { return true; } return false; } DataRate AimdRateControl::LatestEstimate() const { return current_bitrate_; } void AimdRateControl::SetRtt(TimeDelta rtt) { rtt_ = rtt; } DataRate AimdRateControl::Update(const RateControlInput* input, Timestamp at_time) { RTC_CHECK(input); // Set the initial bit rate value to what we're receiving the first half // second. // TODO(bugs.webrtc.org/9379): The comment above doesn't match to the code. if (!bitrate_is_initialized_) { const TimeDelta kInitializationTime = TimeDelta::seconds(5); RTC_DCHECK_LE(kBitrateWindowMs, kInitializationTime.ms()); if (time_first_throughput_estimate_.IsInfinite()) { if (input->estimated_throughput) time_first_throughput_estimate_ = at_time; } else if (at_time - time_first_throughput_estimate_ > kInitializationTime && input->estimated_throughput) { current_bitrate_ = *input->estimated_throughput; bitrate_is_initialized_ = true; } } current_bitrate_ = ChangeBitrate(current_bitrate_, *input, at_time); return current_bitrate_; } void AimdRateControl::SetEstimate(DataRate bitrate, Timestamp at_time) { bitrate_is_initialized_ = true; DataRate prev_bitrate = current_bitrate_; current_bitrate_ = ClampBitrate(bitrate, bitrate); time_last_bitrate_change_ = at_time; if (current_bitrate_ < prev_bitrate) { time_last_bitrate_decrease_ = at_time; } } double AimdRateControl::GetNearMaxIncreaseRateBpsPerSecond() const { RTC_DCHECK(!current_bitrate_.IsZero()); const TimeDelta kFrameInterval = TimeDelta::seconds(1) / 30; DataSize frame_size = current_bitrate_ * kFrameInterval; const DataSize kPacketSize = DataSize::bytes(1200); double packets_per_frame = std::ceil(frame_size / kPacketSize); DataSize avg_packet_size = frame_size / packets_per_frame; // Approximate the over-use estimator delay to 100 ms. TimeDelta response_time = rtt_ + TimeDelta::ms(100); if (in_experiment_) response_time = response_time * 2; double increase_rate_bps_per_second = (avg_packet_size / response_time).bps(); double kMinIncreaseRateBpsPerSecond = 4000; return std::max(kMinIncreaseRateBpsPerSecond, increase_rate_bps_per_second); } TimeDelta AimdRateControl::GetExpectedBandwidthPeriod() const { const TimeDelta kMinPeriod = smoothing_experiment_ ? TimeDelta::ms(500) : TimeDelta::seconds(2); const TimeDelta kDefaultPeriod = TimeDelta::seconds(3); const TimeDelta kMaxPeriod = TimeDelta::seconds(50); double increase_rate_bps_per_second = GetNearMaxIncreaseRateBpsPerSecond(); if (!last_decrease_) return smoothing_experiment_ ? kMinPeriod : kDefaultPeriod; double time_to_recover_decrease_seconds = last_decrease_->bps() / increase_rate_bps_per_second; TimeDelta period = TimeDelta::seconds(time_to_recover_decrease_seconds); return period.Clamped(kMinPeriod, kMaxPeriod); } DataRate AimdRateControl::ChangeBitrate(DataRate new_bitrate, const RateControlInput& input, Timestamp at_time) { DataRate estimated_throughput = input.estimated_throughput.value_or(latest_estimated_throughput_); if (input.estimated_throughput) latest_estimated_throughput_ = *input.estimated_throughput; // An over-use should always trigger us to reduce the bitrate, even though // we have not yet established our first estimate. By acting on the over-use, // we will end up with a valid estimate. if (!bitrate_is_initialized_ && input.bw_state != BandwidthUsage::kBwOverusing) return current_bitrate_; ChangeState(input, at_time); switch (rate_control_state_) { case kRcHold: break; case kRcIncrease: if (estimated_throughput > link_capacity_.UpperBound()) link_capacity_.Reset(); if (link_capacity_.has_estimate()) { // The link_capacity estimate is reset if the measured throughput // is too far from the estimate. We can therefore assume that our target // rate is reasonably close to link capacity and use additive increase. DataRate additive_increase = AdditiveRateIncrease(at_time, time_last_bitrate_change_); new_bitrate += additive_increase; } else { // If we don't have an estimate of the link capacity, use faster ramp up // to discover the capacity. DataRate multiplicative_increase = MultiplicativeRateIncrease( at_time, time_last_bitrate_change_, new_bitrate); new_bitrate += multiplicative_increase; } time_last_bitrate_change_ = at_time; break; case kRcDecrease: // Set bit rate to something slightly lower than the measured throughput // to get rid of any self-induced delay. new_bitrate = estimated_throughput * beta_; if (new_bitrate > current_bitrate_) { // Avoid increasing the rate when over-using. if (link_capacity_.has_estimate()) { new_bitrate = beta_ * link_capacity_.estimate(); } new_bitrate = std::min(new_bitrate, current_bitrate_); } if (bitrate_is_initialized_ && estimated_throughput < current_bitrate_) { constexpr double kDegradationFactor = 0.9; if (smoothing_experiment_ && new_bitrate < kDegradationFactor * beta_ * current_bitrate_) { // If bitrate decreases more than a normal back off after overuse, it // indicates a real network degradation. We do not let such a decrease // to determine the bandwidth estimation period. last_decrease_ = absl::nullopt; } else { last_decrease_ = current_bitrate_ - new_bitrate; } } if (estimated_throughput < link_capacity_.LowerBound()) { // The current throughput is far from the estimated link capacity. Clear // the estimate to allow an immediate update in OnOveruseDetected. link_capacity_.Reset(); } bitrate_is_initialized_ = true; link_capacity_.OnOveruseDetected(estimated_throughput); // Stay on hold until the pipes are cleared. rate_control_state_ = kRcHold; time_last_bitrate_change_ = at_time; time_last_bitrate_decrease_ = at_time; break; default: assert(false); } return ClampBitrate(new_bitrate, estimated_throughput); } DataRate AimdRateControl::ClampBitrate(DataRate new_bitrate, DataRate estimated_throughput) const { // Don't change the bit rate if the send side is too far off. // We allow a bit more lag at very low rates to not too easily get stuck if // the encoder produces uneven outputs. const DataRate max_bitrate = 1.5 * estimated_throughput + DataRate::kbps(10); if (new_bitrate > current_bitrate_ && new_bitrate > max_bitrate) { new_bitrate = std::max(current_bitrate_, max_bitrate); } new_bitrate = std::max(new_bitrate, min_configured_bitrate_); return new_bitrate; } DataRate AimdRateControl::MultiplicativeRateIncrease( Timestamp at_time, Timestamp last_time, DataRate current_bitrate) const { double alpha = 1.08; if (last_time.IsFinite()) { auto time_since_last_update = at_time - last_time; alpha = pow(alpha, std::min(time_since_last_update.seconds(), 1.0)); } DataRate multiplicative_increase = std::max(current_bitrate * (alpha - 1.0), DataRate::bps(1000)); return multiplicative_increase; } DataRate AimdRateControl::AdditiveRateIncrease(Timestamp at_time, Timestamp last_time) const { double time_period_seconds = (at_time - last_time).seconds(); double data_rate_increase_bps = GetNearMaxIncreaseRateBpsPerSecond() * time_period_seconds; return DataRate::bps(data_rate_increase_bps); } void AimdRateControl::ChangeState(const RateControlInput& input, Timestamp at_time) { switch (input.bw_state) { case BandwidthUsage::kBwNormal: if (rate_control_state_ == kRcHold) { time_last_bitrate_change_ = at_time; rate_control_state_ = kRcIncrease; } break; case BandwidthUsage::kBwOverusing: if (rate_control_state_ != kRcDecrease) { rate_control_state_ = kRcDecrease; } break; case BandwidthUsage::kBwUnderusing: rate_control_state_ = kRcHold; break; default: assert(false); } } } // namespace webrtc