/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/delay_manager.h" #include #include #include // max, min #include #include "common_audio/signal_processing/include/signal_processing_library.h" #include "modules/audio_coding/neteq/delay_peak_detector.h" #include "modules/include/module_common_types.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/field_trial.h" namespace { constexpr int kLimitProbability = 53687091; // 1/20 in Q30. constexpr int kLimitProbabilityStreaming = 536871; // 1/2000 in Q30. constexpr int kMaxStreamingPeakPeriodMs = 600000; // 10 minutes in ms. constexpr int kCumulativeSumDrift = 2; // Drift term for cumulative sum // |iat_cumulative_sum_|. // Steady-state forgetting factor for |iat_vector_|, 0.9993 in Q15. constexpr int kIatFactor_ = 32745; constexpr int kMaxIat = 64; // Max inter-arrival time to register. absl::optional GetForcedLimitProbability() { constexpr char kForceTargetDelayPercentileFieldTrial[] = "WebRTC-Audio-NetEqForceTargetDelayPercentile"; const bool use_forced_target_delay_percentile = webrtc::field_trial::IsEnabled(kForceTargetDelayPercentileFieldTrial); if (use_forced_target_delay_percentile) { const std::string field_trial_string = webrtc::field_trial::FindFullName( kForceTargetDelayPercentileFieldTrial); double percentile = -1.0; if (sscanf(field_trial_string.c_str(), "Enabled-%lf", &percentile) == 1 && percentile >= 0.0 && percentile <= 100.0) { return absl::make_optional(static_cast( (1 << 30) * (100.0 - percentile) / 100.0 + 0.5)); // in Q30. } else { RTC_LOG(LS_WARNING) << "Invalid parameter for " << kForceTargetDelayPercentileFieldTrial << ", ignored."; } } return absl::nullopt; } } // namespace namespace webrtc { DelayManager::DelayManager(size_t max_packets_in_buffer, DelayPeakDetector* peak_detector, const TickTimer* tick_timer) : first_packet_received_(false), max_packets_in_buffer_(max_packets_in_buffer), iat_vector_(kMaxIat + 1, 0), iat_factor_(0), tick_timer_(tick_timer), base_target_level_(4), // In Q0 domain. target_level_(base_target_level_ << 8), // In Q8 domain. packet_len_ms_(0), streaming_mode_(false), last_seq_no_(0), last_timestamp_(0), minimum_delay_ms_(0), maximum_delay_ms_(target_level_), iat_cumulative_sum_(0), max_iat_cumulative_sum_(0), peak_detector_(*peak_detector), last_pack_cng_or_dtmf_(1), frame_length_change_experiment_( field_trial::IsEnabled("WebRTC-Audio-NetEqFramelengthExperiment")), forced_limit_probability_(GetForcedLimitProbability()) { assert(peak_detector); // Should never be NULL. Reset(); } DelayManager::~DelayManager() {} const DelayManager::IATVector& DelayManager::iat_vector() const { return iat_vector_; } // Set the histogram vector to an exponentially decaying distribution // iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ... // iat_vector_ is in Q30. void DelayManager::ResetHistogram() { // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum // of iat_vector_ is 1. uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary. IATVector::iterator it = iat_vector_.begin(); for (; it < iat_vector_.end(); it++) { temp_prob >>= 1; (*it) = temp_prob << 16; } base_target_level_ = 4; target_level_ = base_target_level_ << 8; } int DelayManager::Update(uint16_t sequence_number, uint32_t timestamp, int sample_rate_hz) { if (sample_rate_hz <= 0) { return -1; } if (!first_packet_received_) { // Prepare for next packet arrival. packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); last_seq_no_ = sequence_number; last_timestamp_ = timestamp; first_packet_received_ = true; return 0; } // Try calculating packet length from current and previous timestamps. int packet_len_ms; if (!IsNewerTimestamp(timestamp, last_timestamp_) || !IsNewerSequenceNumber(sequence_number, last_seq_no_)) { // Wrong timestamp or sequence order; use stored value. packet_len_ms = packet_len_ms_; } else { // Calculate timestamps per packet and derive packet length in ms. int64_t packet_len_samp = static_cast(timestamp - last_timestamp_) / static_cast(sequence_number - last_seq_no_); packet_len_ms = rtc::saturated_cast(1000 * packet_len_samp / sample_rate_hz); } if (packet_len_ms > 0) { // Cannot update statistics unless |packet_len_ms| is valid. // Calculate inter-arrival time (IAT) in integer "packet times" // (rounding down). This is the value used as index to the histogram // vector |iat_vector_|. int iat_packets = packet_iat_stopwatch_->ElapsedMs() / packet_len_ms; if (streaming_mode_) { UpdateCumulativeSums(packet_len_ms, sequence_number); } // Check for discontinuous packet sequence and re-ordering. if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) { // Compensate for gap in the sequence numbers. Reduce IAT with the // expected extra time due to lost packets, but ensure that the IAT is // not negative. iat_packets -= static_cast(sequence_number - last_seq_no_ - 1); iat_packets = std::max(iat_packets, 0); } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) { iat_packets += static_cast(last_seq_no_ + 1 - sequence_number); } // Saturate IAT at maximum value. const int max_iat = kMaxIat; iat_packets = std::min(iat_packets, max_iat); UpdateHistogram(iat_packets); // Calculate new |target_level_| based on updated statistics. target_level_ = CalculateTargetLevel(iat_packets); if (streaming_mode_) { target_level_ = std::max(target_level_, max_iat_cumulative_sum_); } LimitTargetLevel(); } // End if (packet_len_ms > 0). // Prepare for next packet arrival. packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); last_seq_no_ = sequence_number; last_timestamp_ = timestamp; return 0; } void DelayManager::UpdateCumulativeSums(int packet_len_ms, uint16_t sequence_number) { // Calculate IAT in Q8, including fractions of a packet (i.e., more // accurate than |iat_packets|. int iat_packets_q8 = (packet_iat_stopwatch_->ElapsedMs() << 8) / packet_len_ms; // Calculate cumulative sum IAT with sequence number compensation. The sum // is zero if there is no clock-drift. iat_cumulative_sum_ += (iat_packets_q8 - (static_cast(sequence_number - last_seq_no_) << 8)); // Subtract drift term. iat_cumulative_sum_ -= kCumulativeSumDrift; // Ensure not negative. iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0); if (iat_cumulative_sum_ > max_iat_cumulative_sum_) { // Found a new maximum. max_iat_cumulative_sum_ = iat_cumulative_sum_; max_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); } if (max_iat_stopwatch_->ElapsedMs() > kMaxStreamingPeakPeriodMs) { // Too long since the last maximum was observed; decrease max value. max_iat_cumulative_sum_ -= kCumulativeSumDrift; } } // Each element in the vector is first multiplied by the forgetting factor // |iat_factor_|. Then the vector element indicated by |iat_packets| is then // increased (additive) by 1 - |iat_factor_|. This way, the probability of // |iat_packets| is slightly increased, while the sum of the histogram remains // constant (=1). // Due to inaccuracies in the fixed-point arithmetic, the histogram may no // longer sum up to 1 (in Q30) after the update. To correct this, a correction // term is added or subtracted from the first element (or elements) of the // vector. // The forgetting factor |iat_factor_| is also updated. When the DelayManager // is reset, the factor is set to 0 to facilitate rapid convergence in the // beginning. With each update of the histogram, the factor is increased towards // the steady-state value |kIatFactor_|. void DelayManager::UpdateHistogram(size_t iat_packets) { assert(iat_packets < iat_vector_.size()); int vector_sum = 0; // Sum up the vector elements as they are processed. // Multiply each element in |iat_vector_| with |iat_factor_|. for (IATVector::iterator it = iat_vector_.begin(); it != iat_vector_.end(); ++it) { *it = (static_cast(*it) * iat_factor_) >> 15; vector_sum += *it; } // Increase the probability for the currently observed inter-arrival time // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30. // Thus, left-shift 15 steps to obtain result in Q30. iat_vector_[iat_packets] += (32768 - iat_factor_) << 15; vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum. // |iat_vector_| should sum up to 1 (in Q30), but it may not due to // fixed-point rounding errors. vector_sum -= 1 << 30; // Should be zero. Compensate if not. if (vector_sum != 0) { // Modify a few values early in |iat_vector_|. int flip_sign = vector_sum > 0 ? -1 : 1; IATVector::iterator it = iat_vector_.begin(); while (it != iat_vector_.end() && abs(vector_sum) > 0) { // Add/subtract 1/16 of the element, but not more than |vector_sum|. int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4); *it += correction; vector_sum += correction; ++it; } } assert(vector_sum == 0); // Verify that the above is correct. // Update |iat_factor_| (changes only during the first seconds after a reset). // The factor converges to |kIatFactor_|. iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2; } // Enforces upper and lower limits for |target_level_|. The upper limit is // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some // headroom for natural fluctuations around the target, and ii) equivalent of // |maximum_delay_ms_| in packets. Note that in practice, if no // |maximum_delay_ms_| is specified, this does not have any impact, since the // target level is far below the buffer capacity in all reasonable cases. // The lower limit is equivalent of |minimum_delay_ms_| in packets. We update // |least_required_level_| while the above limits are applied. // TODO(hlundin): Move this check to the buffer logistics class. void DelayManager::LimitTargetLevel() { if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) { int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_; target_level_ = std::max(target_level_, minimum_delay_packet_q8); } if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) { int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_; target_level_ = std::min(target_level_, maximum_delay_packet_q8); } // Shift to Q8, then 75%.; int max_buffer_packets_q8 = static_cast((3 * (max_packets_in_buffer_ << 8)) / 4); target_level_ = std::min(target_level_, max_buffer_packets_q8); // Sanity check, at least 1 packet (in Q8). target_level_ = std::max(target_level_, 1 << 8); } int DelayManager::CalculateTargetLevel(int iat_packets) { int limit_probability = forced_limit_probability_.value_or(kLimitProbability); if (streaming_mode_) { limit_probability = kLimitProbabilityStreaming; } // Calculate target buffer level from inter-arrival time histogram. // Find the |iat_index| for which the probability of observing an // inter-arrival time larger than or equal to |iat_index| is less than or // equal to |limit_probability|. The sought probability is estimated using // the histogram as the reverse cumulant PDF, i.e., the sum of elements from // the end up until |iat_index|. Now, since the sum of all elements is 1 // (in Q30) by definition, and since the solution is often a low value for // |iat_index|, it is more efficient to start with |sum| = 1 and subtract // elements from the start of the histogram. size_t index = 0; // Start from the beginning of |iat_vector_|. int sum = 1 << 30; // Assign to 1 in Q30. sum -= iat_vector_[index]; // Ensure that target level is >= 1. do { // Subtract the probabilities one by one until the sum is no longer greater // than limit_probability. ++index; sum -= iat_vector_[index]; } while ((sum > limit_probability) && (index < iat_vector_.size() - 1)); // This is the base value for the target buffer level. int target_level = static_cast(index); base_target_level_ = static_cast(index); // Update detector for delay peaks. bool delay_peak_found = peak_detector_.Update(iat_packets, target_level); if (delay_peak_found) { target_level = std::max(target_level, peak_detector_.MaxPeakHeight()); } // Sanity check. |target_level| must be strictly positive. target_level = std::max(target_level, 1); // Scale to Q8 and assign to member variable. target_level_ = target_level << 8; return target_level_; } int DelayManager::SetPacketAudioLength(int length_ms) { if (length_ms <= 0) { RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms; return -1; } if (frame_length_change_experiment_ && packet_len_ms_ != length_ms) { iat_vector_ = ScaleHistogram(iat_vector_, packet_len_ms_, length_ms); } packet_len_ms_ = length_ms; peak_detector_.SetPacketAudioLength(packet_len_ms_); packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove? return 0; } void DelayManager::Reset() { packet_len_ms_ = 0; // Packet size unknown. streaming_mode_ = false; peak_detector_.Reset(); ResetHistogram(); // Resets target levels too. iat_factor_ = 0; // Adapt the histogram faster for the first few packets. packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); max_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); iat_cumulative_sum_ = 0; max_iat_cumulative_sum_ = 0; last_pack_cng_or_dtmf_ = 1; } double DelayManager::EstimatedClockDriftPpm() const { double sum = 0.0; // Calculate the expected value based on the probabilities in |iat_vector_|. for (size_t i = 0; i < iat_vector_.size(); ++i) { sum += static_cast(iat_vector_[i]) * i; } // The probabilities in |iat_vector_| are in Q30. Divide by 1 << 30 to convert // to Q0; subtract the nominal inter-arrival time (1) to make a zero // clockdrift represent as 0; mulitply by 1000000 to produce parts-per-million // (ppm). return (sum / (1 << 30) - 1) * 1e6; } bool DelayManager::PeakFound() const { return peak_detector_.peak_found(); } void DelayManager::ResetPacketIatCount() { packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); } // Note that |low_limit| and |higher_limit| are not assigned to // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this // class. They are computed from |target_level_| and used for decision making. void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const { if (!lower_limit || !higher_limit) { RTC_LOG_F(LS_ERROR) << "NULL pointers supplied as input"; assert(false); return; } int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness. if (packet_len_ms_ > 0) { window_20ms = (20 << 8) / packet_len_ms_; } // |target_level_| is in Q8 already. *lower_limit = (target_level_ * 3) / 4; // |higher_limit| is equal to |target_level_|, but should at // least be 20 ms higher than |lower_limit_|. *higher_limit = std::max(target_level_, *lower_limit + window_20ms); } int DelayManager::TargetLevel() const { return target_level_; } void DelayManager::LastDecodedWasCngOrDtmf(bool it_was) { if (it_was) { last_pack_cng_or_dtmf_ = 1; } else if (last_pack_cng_or_dtmf_ != 0) { last_pack_cng_or_dtmf_ = -1; } } void DelayManager::RegisterEmptyPacket() { ++last_seq_no_; } DelayManager::IATVector DelayManager::ScaleHistogram(const IATVector& histogram, int old_packet_length, int new_packet_length) { if (old_packet_length == 0) { // If we don't know the previous frame length, don't make any changes to the // histogram. return histogram; } RTC_DCHECK_GT(new_packet_length, 0); RTC_DCHECK_EQ(old_packet_length % 10, 0); RTC_DCHECK_EQ(new_packet_length % 10, 0); IATVector new_histogram(histogram.size(), 0); int64_t acc = 0; int time_counter = 0; size_t new_histogram_idx = 0; for (size_t i = 0; i < histogram.size(); i++) { acc += histogram[i]; time_counter += old_packet_length; // The bins should be scaled, to ensure the histogram still sums to one. const int64_t scaled_acc = acc * new_packet_length / time_counter; int64_t actually_used_acc = 0; while (time_counter >= new_packet_length) { const int64_t old_histogram_val = new_histogram[new_histogram_idx]; new_histogram[new_histogram_idx] = rtc::saturated_cast(old_histogram_val + scaled_acc); actually_used_acc += new_histogram[new_histogram_idx] - old_histogram_val; new_histogram_idx = std::min(new_histogram_idx + 1, new_histogram.size() - 1); time_counter -= new_packet_length; } // Only subtract the part that was succesfully written to the new histogram. acc -= actually_used_acc; } // If there is anything left in acc (due to rounding errors), add it to the // last bin. If we cannot add everything to the last bin we need to add as // much as possible to the bins after the last bin (this is only possible // when compressing a histogram). while (acc > 0 && new_histogram_idx < new_histogram.size()) { const int64_t old_histogram_val = new_histogram[new_histogram_idx]; new_histogram[new_histogram_idx] = rtc::saturated_cast(old_histogram_val + acc); acc -= new_histogram[new_histogram_idx] - old_histogram_val; new_histogram_idx++; } RTC_DCHECK_EQ(histogram.size(), new_histogram.size()); if (acc == 0) { // If acc is non-zero, we were not able to add everything to the new // histogram, so this check will not hold. RTC_DCHECK_EQ(accumulate(histogram.begin(), histogram.end(), 0ll), accumulate(new_histogram.begin(), new_histogram.end(), 0ll)); } return new_histogram; } bool DelayManager::SetMinimumDelay(int delay_ms) { // Minimum delay shouldn't be more than maximum delay, if any maximum is set. // Also, if possible check |delay| to less than 75% of // |max_packets_in_buffer_|. if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) || (packet_len_ms_ > 0 && delay_ms > static_cast(3 * max_packets_in_buffer_ * packet_len_ms_ / 4))) { return false; } minimum_delay_ms_ = delay_ms; return true; } bool DelayManager::SetMaximumDelay(int delay_ms) { if (delay_ms == 0) { // Zero input unsets the maximum delay. maximum_delay_ms_ = 0; return true; } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) { // Maximum delay shouldn't be less than minimum delay or less than a packet. return false; } maximum_delay_ms_ = delay_ms; return true; } int DelayManager::base_target_level() const { return base_target_level_; } void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; } int DelayManager::last_pack_cng_or_dtmf() const { return last_pack_cng_or_dtmf_; } void DelayManager::set_last_pack_cng_or_dtmf(int value) { last_pack_cng_or_dtmf_ = value; } } // namespace webrtc