/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/aec_state.h" #include #include #include #include "api/array_view.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/atomicops.h" #include "rtc_base/checks.h" namespace webrtc { namespace { // Computes delay of the adaptive filter. int EstimateFilterDelay( const std::vector>& adaptive_filter_frequency_response) { const auto& H2 = adaptive_filter_frequency_response; constexpr size_t kUpperBin = kFftLengthBy2 - 5; RTC_DCHECK_GE(kAdaptiveFilterLength, H2.size()); std::array delays; delays.fill(0); for (size_t k = 1; k < kUpperBin; ++k) { // Find the maximum of H2[j]. size_t peak = 0; for (size_t j = 0; j < H2.size(); ++j) { if (H2[j][k] > H2[peak][k]) { peak = j; } } ++delays[peak]; } return std::distance(delays.begin(), std::max_element(delays.begin(), delays.end())); } } // namespace int AecState::instance_count_ = 0; AecState::AecState(const EchoCanceller3Config& config) : data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h), config_(config), reverb_decay_(config_.ep_strength.default_len) { max_render_.fill(0.f); } AecState::~AecState() = default; void AecState::HandleEchoPathChange( const EchoPathVariability& echo_path_variability) { if (echo_path_variability.AudioPathChanged()) { blocks_since_last_saturation_ = kUnknownDelayRenderWindowSize + 1; usable_linear_estimate_ = false; echo_leakage_detected_ = false; capture_signal_saturation_ = false; echo_saturation_ = false; max_render_.fill(0.f); if (echo_path_variability.delay_change) { force_zero_gain_counter_ = 0; blocks_with_filter_adaptation_ = 0; blocks_with_strong_render_ = 0; initial_state_ = true; linear_echo_estimate_ = false; sufficient_filter_updates_ = false; render_received_ = false; force_zero_gain_ = true; capture_block_counter_ = 0; } if (echo_path_variability.gain_change) { capture_block_counter_ = kNumBlocksPerSecond; } } } void AecState::Update(const std::vector>& adaptive_filter_frequency_response, const std::array& adaptive_filter_impulse_response, bool converged_filter, const rtc::Optional& external_delay_samples, const RenderBuffer& render_buffer, const std::array& E2_main, const std::array& Y2, rtc::ArrayView x, const std::array& s, bool echo_leakage_detected) { // Store input parameters. echo_leakage_detected_ = echo_leakage_detected; // Update counters. ++capture_block_counter_; // Force zero echo suppression gain after an echo path change to allow at // least some render data to be collected in order to avoid an initial echo // burst. force_zero_gain_ = (++force_zero_gain_counter_) < kNumBlocksPerSecond / 5; // Estimate delays. filter_delay_ = rtc::Optional( EstimateFilterDelay(adaptive_filter_frequency_response)); external_delay_ = external_delay_samples ? rtc::Optional(*external_delay_samples / kBlockSize) : rtc::Optional(); // Update the ERL and ERLE measures. if (converged_filter && capture_block_counter_ >= 2 * kNumBlocksPerSecond) { const auto& X2 = render_buffer.Spectrum(*filter_delay_); erle_estimator_.Update(X2, Y2, E2_main); erl_estimator_.Update(X2, Y2); } // Update the echo audibility evaluator. echo_audibility_.Update(x, s, converged_filter); if (config_.ep_strength.echo_can_saturate) { // Detect and flag echo saturation. RTC_DCHECK_LT(0, x.size()); // Store the render values in a circular buffer. max_render_index_ = (max_render_index_ + 1) % max_render_.size(); auto x_max_result = std::minmax_element(x.begin(), x.end()); max_render_[max_render_index_] = std::max(fabs(*x_max_result.first), fabs(*x_max_result.second)); bool saturated_echo = false; // Check for whether a saturated frame potentially could consist of // saturated echo. if (SaturatedCapture()) { if (converged_filter) { RTC_DCHECK(filter_delay_); const size_t index = (max_render_index_ + max_render_.size() - *filter_delay_) % max_render_.size(); saturated_echo = max_render_[index] > 200.f; } else { saturated_echo = *std::max_element(max_render_.begin(), max_render_.end()) > 200.f; } } // Set flag for potential presence of saturated echo blocks_since_last_saturation_ = saturated_echo ? 0 : blocks_since_last_saturation_ + 1; if (converged_filter) { echo_saturation_ = blocks_since_last_saturation_ < kAdaptiveFilterLength + 1; } else { echo_saturation_ = blocks_since_last_saturation_ < kUnknownDelayRenderWindowSize + 1; } // Set flag for whether the echo path is generally strong enough to saturate // the echo. if (converged_filter) { // Base detection on predicted echo sample. auto s_max_result = std::minmax_element(s.begin(), s.end()); const float s_max_abs = std::max(fabs(*s_max_result.first), fabs(*s_max_result.second)); const bool saturated_echo_sample = s_max_abs >= 10000.f && SaturatedCapture(); saturating_echo_path_counter_ = saturated_echo_sample ? 10 * kNumBlocksPerSecond : saturating_echo_path_counter_ - 1; } else { // Base detection on detected potentially echo. saturating_echo_path_counter_ = saturated_echo ? 10 * kNumBlocksPerSecond : saturating_echo_path_counter_ - 1; } saturating_echo_path_counter_ = std::max(0, saturating_echo_path_counter_); saturating_echo_path_ = saturating_echo_path_counter_ > 0; } else { echo_saturation_ = false; saturating_echo_path_ = false; saturating_echo_path_counter_ = 0; } // Compute render energies. const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f); const bool active_render_block = x_energy > (config_.render_levels.active_render_limit * config_.render_levels.active_render_limit) * kFftLengthBy2; const bool strong_render_block = x_energy > 1000 * 1000 * kFftLengthBy2; if (active_render_block) { render_received_ = true; } // Update counters. blocks_with_filter_adaptation_ += (active_render_block && (!SaturatedCapture()) ? 1 : 0); blocks_with_strong_render_ += (strong_render_block && (!SaturatedCapture()) ? 1 : 0); // After an amount of active render samples for which an echo should have been // detected in the capture signal if the ERL was not infinite, flag that a // transparent mode should be entered. if (SaturatingEchoPath()) { transparent_mode_ = !converged_filter && (!render_received_ || blocks_with_strong_render_ >= 15 * kNumBlocksPerSecond); } else { transparent_mode_ = !converged_filter && (!render_received_ || blocks_with_strong_render_ >= 5 * kNumBlocksPerSecond); } // Update flag for whether the adaptation is in the initial state. if (SaturatingEchoPath()) { initial_state_ = capture_block_counter_ < 6 * kNumBlocksPerSecond; } else { initial_state_ = capture_block_counter_ < 3 * kNumBlocksPerSecond; } // Detect whether the linear filter is usable. if (SaturatingEchoPath()) { usable_linear_estimate_ = (!echo_saturation_) && (converged_filter && SufficientFilterUpdates()) && capture_block_counter_ >= 5 * kNumBlocksPerSecond && external_delay_; } else { usable_linear_estimate_ = (!echo_saturation_) && (converged_filter || SufficientFilterUpdates()) && capture_block_counter_ >= 2 * kNumBlocksPerSecond && external_delay_; } // Flag whether the linear echo estimate should be used. linear_echo_estimate_ = usable_linear_estimate_ && !TransparentMode(); // Flag whether a sufficient number of filter updates has been done for the // filter to perform well. if (SaturatingEchoPath()) { sufficient_filter_updates_ = blocks_with_filter_adaptation_ >= 2 * kEchoPathChangeConvergenceBlocks; } else { sufficient_filter_updates_ = blocks_with_filter_adaptation_ >= kEchoPathChangeConvergenceBlocks; } // Update the room reverb estimate. UpdateReverb(adaptive_filter_impulse_response); } void AecState::UpdateReverb( const std::array& impulse_response) { if ((!(filter_delay_ && usable_linear_estimate_)) || (*filter_delay_ > kAdaptiveFilterLength - 4)) { return; } // Form the data to match against by squaring the impulse response // coefficients. std::array matching_data; std::transform(impulse_response.begin(), impulse_response.end(), matching_data.begin(), [](float a) { return a * a; }); // Avoid matching against noise in the model by subtracting an estimate of the // model noise power. constexpr size_t kTailLength = 64; constexpr size_t tail_index = kAdaptiveFilterTimeDomainLength - kTailLength; const float tail_power = *std::max_element(matching_data.begin() + tail_index, matching_data.end()); std::for_each(matching_data.begin(), matching_data.begin() + tail_index, [tail_power](float& a) { a = std::max(0.f, a - tail_power); }); // Identify the peak index of the impulse response. const size_t peak_index = *std::max_element( matching_data.begin(), matching_data.begin() + tail_index); if (peak_index + 128 < tail_index) { size_t start_index = peak_index + 64; // Compute the matching residual error for the current candidate to match. float residual_sqr_sum = 0.f; float d_k = reverb_decay_to_test_; for (size_t k = start_index; k < tail_index; ++k) { if (matching_data[start_index + 1] == 0.f) { break; } float residual = matching_data[k] - matching_data[peak_index] * d_k; residual_sqr_sum += residual * residual; d_k *= reverb_decay_to_test_; } // If needed, update the best candidate for the reverb decay. if (reverb_decay_candidate_residual_ < 0.f || residual_sqr_sum < reverb_decay_candidate_residual_) { reverb_decay_candidate_residual_ = residual_sqr_sum; reverb_decay_candidate_ = reverb_decay_to_test_; } } // Compute the next reverb candidate to evaluate such that all candidates will // be evaluated within one second. reverb_decay_to_test_ += (0.9965f - 0.9f) / (5 * kNumBlocksPerSecond); // If all reverb candidates have been evaluated, choose the best one as the // reverb decay. if (reverb_decay_to_test_ >= 0.9965f) { if (reverb_decay_candidate_residual_ < 0.f) { // Transform the decay to be in the unit of blocks. reverb_decay_ = powf(reverb_decay_candidate_, kFftLengthBy2); // Limit the estimated reverb_decay_ to the maximum one needed in practice // to minimize the impact of incorrect estimates. reverb_decay_ = std::min(config_.ep_strength.default_len, reverb_decay_); } reverb_decay_to_test_ = 0.9f; reverb_decay_candidate_residual_ = -1.f; } // For noisy impulse responses, assume a fixed tail length. if (tail_power > 0.0005f) { reverb_decay_ = config_.ep_strength.default_len; } data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_); data_dumper_->DumpRaw("aec3_tail_power", tail_power); } void AecState::EchoAudibility::Update(rtc::ArrayView x, const std::array& s, bool converged_filter) { auto result_x = std::minmax_element(x.begin(), x.end()); auto result_s = std::minmax_element(s.begin(), s.end()); const float x_abs = std::max(fabsf(*result_x.first), fabsf(*result_x.second)); const float s_abs = std::max(fabsf(*result_s.first), fabsf(*result_s.second)); if (converged_filter) { if (x_abs < 20.f) { ++low_farend_counter_; } else { low_farend_counter_ = 0; } } else { if (x_abs < 100.f) { ++low_farend_counter_; } else { low_farend_counter_ = 0; } } // The echo is deemed as not audible if the echo estimate is on the level of // the quantization noise in the FFTs and the nearend level is sufficiently // strong to mask that by ensuring that the playout and AGC gains do not boost // any residual echo that is below the quantization noise level. Furthermore, // cases where the render signal is very close to zero are also identified as // not producing audible echo. inaudible_echo_ = (max_nearend_ > 500 && s_abs < 30.f) || (!converged_filter && x_abs < 500); inaudible_echo_ = inaudible_echo_ || low_farend_counter_ > 20; } void AecState::EchoAudibility::UpdateWithOutput(rtc::ArrayView e) { const float e_max = *std::max_element(e.begin(), e.end()); const float e_min = *std::min_element(e.begin(), e.end()); const float e_abs = std::max(fabsf(e_max), fabsf(e_min)); if (max_nearend_ < e_abs) { max_nearend_ = e_abs; max_nearend_counter_ = 0; } else { if (++max_nearend_counter_ > 5 * kNumBlocksPerSecond) { max_nearend_ *= 0.995f; } } } } // namespace webrtc