/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/aec_state.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "test/gtest.h" namespace webrtc { // Verify the general functionality of AecState TEST(AecState, NormalUsage) { ApmDataDumper data_dumper(42); AecState state(EchoCanceller3Config{}); RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, std::vector(1, 30)); std::array E2_main = {}; std::array Y2 = {}; std::vector> x(3, std::vector(kBlockSize, 0.f)); EchoPathVariability echo_path_variability(false, false); std::array s; s.fill(100.f); std::vector> converged_filter_frequency_response(10); for (auto& v : converged_filter_frequency_response) { v.fill(0.01f); } std::vector> diverged_filter_frequency_response = converged_filter_frequency_response; converged_filter_frequency_response[2].fill(100.f); converged_filter_frequency_response[2][0] = 1.f; std::array impulse_response; impulse_response.fill(0.f); // Verify that linear AEC usability is false when the filter is diverged and // there is no external delay reported. state.Update(diverged_filter_frequency_response, impulse_response, true, rtc::Optional(), render_buffer, E2_main, Y2, x[0], s, false); EXPECT_FALSE(state.UsableLinearEstimate()); // Verify that linear AEC usability is true when the filter is converged std::fill(x[0].begin(), x[0].end(), 101.f); for (int k = 0; k < 3000; ++k) { state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); } EXPECT_TRUE(state.UsableLinearEstimate()); // Verify that linear AEC usability becomes false after an echo path change is // reported state.HandleEchoPathChange(EchoPathVariability(true, false)); state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); EXPECT_FALSE(state.UsableLinearEstimate()); // Verify that the active render detection works as intended. std::fill(x[0].begin(), x[0].end(), 101.f); state.HandleEchoPathChange(EchoPathVariability(true, true)); state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); EXPECT_FALSE(state.ActiveRender()); for (int k = 0; k < 1000; ++k) { state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); } EXPECT_TRUE(state.ActiveRender()); // Verify that echo leakage is properly reported. state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); EXPECT_FALSE(state.EchoLeakageDetected()); state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, true); EXPECT_TRUE(state.EchoLeakageDetected()); // Verify that the ERL is properly estimated for (auto& x_k : x) { x_k = std::vector(kBlockSize, 0.f); } x[0][0] = 5000.f; for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) { render_buffer.Insert(x); } Y2.fill(10.f * 10000.f * 10000.f); for (size_t k = 0; k < 1000; ++k) { state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); } ASSERT_TRUE(state.UsableLinearEstimate()); const std::array& erl = state.Erl(); EXPECT_EQ(erl[0], erl[1]); for (size_t k = 1; k < erl.size() - 1; ++k) { EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1); } EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]); // Verify that the ERLE is properly estimated E2_main.fill(1.f * 10000.f * 10000.f); Y2.fill(10.f * E2_main[0]); for (size_t k = 0; k < 1000; ++k) { state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); } ASSERT_TRUE(state.UsableLinearEstimate()); { const auto& erle = state.Erle(); EXPECT_EQ(erle[0], erle[1]); constexpr size_t kLowFrequencyLimit = 32; for (size_t k = 1; k < kLowFrequencyLimit; ++k) { EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1); } for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) { EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1); } EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); } E2_main.fill(1.f * 10000.f * 10000.f); Y2.fill(5.f * E2_main[0]); for (size_t k = 0; k < 1000; ++k) { state.Update(converged_filter_frequency_response, impulse_response, true, rtc::Optional(2), render_buffer, E2_main, Y2, x[0], s, false); } ASSERT_TRUE(state.UsableLinearEstimate()); { const auto& erle = state.Erle(); EXPECT_EQ(erle[0], erle[1]); constexpr size_t kLowFrequencyLimit = 32; for (size_t k = 1; k < kLowFrequencyLimit; ++k) { EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1); } for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) { EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1); } EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); } } // Verifies the delay for a converged filter is correctly identified. TEST(AecState, ConvergedFilterDelay) { constexpr int kFilterLength = 10; AecState state(EchoCanceller3Config{}); RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, std::vector(1, 30)); std::array E2_main; std::array Y2; std::array x; EchoPathVariability echo_path_variability(false, false); std::array s; s.fill(100.f); x.fill(0.f); std::vector> frequency_response( kFilterLength); std::array impulse_response; impulse_response.fill(0.f); // Verify that the filter delay for a converged filter is properly identified. for (int k = 0; k < kFilterLength; ++k) { for (auto& v : frequency_response) { v.fill(0.01f); } frequency_response[k].fill(100.f); frequency_response[k][0] = 0.f; state.HandleEchoPathChange(echo_path_variability); state.Update(frequency_response, impulse_response, true, rtc::Optional(), render_buffer, E2_main, Y2, x, s, false); EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); if (k != (kFilterLength - 1)) { EXPECT_EQ(k, state.FilterDelay()); } } } // Verify that the externally reported delay is properly reported and converted. TEST(AecState, ExternalDelay) { AecState state(EchoCanceller3Config{}); std::array E2_main; std::array E2_shadow; std::array Y2; std::array x; std::array s; s.fill(100.f); E2_main.fill(0.f); E2_shadow.fill(0.f); Y2.fill(0.f); x.fill(0.f); RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, std::vector(1, 30)); std::vector> frequency_response( kAdaptiveFilterLength); for (auto& v : frequency_response) { v.fill(0.01f); } std::array impulse_response; impulse_response.fill(0.f); for (size_t k = 0; k < frequency_response.size() - 1; ++k) { state.HandleEchoPathChange(EchoPathVariability(false, false)); state.Update(frequency_response, impulse_response, true, rtc::Optional(k * kBlockSize + 5), render_buffer, E2_main, Y2, x, s, false); EXPECT_TRUE(state.ExternalDelay()); EXPECT_EQ(k, state.ExternalDelay()); } // Verify that the externally reported delay is properly unset when it is no // longer present. state.HandleEchoPathChange(EchoPathVariability(false, false)); state.Update(frequency_response, impulse_response, true, rtc::Optional(), render_buffer, E2_main, Y2, x, s, false); EXPECT_FALSE(state.ExternalDelay()); } } // namespace webrtc